[go: up one dir, main page]

CN103412564B - A kind of unmanned systems distributed consensus formation control method and system thereof - Google Patents

A kind of unmanned systems distributed consensus formation control method and system thereof Download PDF

Info

Publication number
CN103412564B
CN103412564B CN201310320211.9A CN201310320211A CN103412564B CN 103412564 B CN103412564 B CN 103412564B CN 201310320211 A CN201310320211 A CN 201310320211A CN 103412564 B CN103412564 B CN 103412564B
Authority
CN
China
Prior art keywords
node
formation
relative
relative position
nodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310320211.9A
Other languages
Chinese (zh)
Other versions
CN103412564A (en
Inventor
李超
徐勇军
安竹林
唐宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
No61 Institute Of Headquarters Of General Staff Of Pla
Institute of Computing Technology of CAS
Original Assignee
No61 Institute Of Headquarters Of General Staff Of Pla
Institute of Computing Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by No61 Institute Of Headquarters Of General Staff Of Pla, Institute of Computing Technology of CAS filed Critical No61 Institute Of Headquarters Of General Staff Of Pla
Priority to CN201310320211.9A priority Critical patent/CN103412564B/en
Publication of CN103412564A publication Critical patent/CN103412564A/en
Application granted granted Critical
Publication of CN103412564B publication Critical patent/CN103412564B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

本发明公开了一种无人系统分布式一致性编队控制方法及其系统,该方法包括:步骤1,为每个节点设置一个初始状态;步骤2,根据需要的编队队形和每个节点的初始状态,得到每个节点相对于头节点的相对位置矩阵;步骤3,设置每个节点的通信功率,使其只能与邻居节点通信;步骤4,调整节点编队中的所有节点的位置;步骤5,根据每个节点的头节点位置以及相对位置矩阵,得到每个节点最终需要的位置。本发明实现了无人编队的协同控制。

The invention discloses a method and system for unmanned system distributed consistent formation control. The method includes: step 1, setting an initial state for each node; step 2, according to the required formation formation and each node's In the initial state, get the relative position matrix of each node relative to the head node; step 3, set the communication power of each node so that it can only communicate with neighbor nodes; step 4, adjust the positions of all nodes in the node formation; step 5. According to the position of the head node of each node and the relative position matrix, the final required position of each node is obtained. The invention realizes the cooperative control of unmanned formation.

Description

一种无人系统分布式一致性编队控制方法及其系统A distributed consistent formation control method and system for unmanned systems

技术领域technical field

本发明涉及信息技术领域中的机器人编队控制技术,特别是涉及一种无人系统分布式一致性编队控制方法及其系统。The invention relates to robot formation control technology in the field of information technology, in particular to a distributed consistent formation control method and system for an unmanned system.

背景技术Background technique

近年来,随着计算机技术和无线通信技术的发展,多机器人协调合作已成为可能,而且得到了广泛的应用。多个机器人协调合作可以完成单一机器人难以完成的任务。其中编队问题是多机器人协调合作中的一个典型性的问题,所谓的编队控制是指多个机器人在到达目的地的过程中,保持某种队形,同时又要适应环境约束的控制技术。In recent years, with the development of computer technology and wireless communication technology, multi-robot coordination and cooperation has become possible and has been widely used. Coordination and cooperation of multiple robots can complete tasks that are difficult for a single robot. Among them, the formation problem is a typical problem in multi-robot coordination and cooperation. The so-called formation control refers to the control technology that multiple robots maintain a certain formation while adapting to environmental constraints during the process of reaching the destination.

多机器人的编队控制是目前国内外研究的热门课题,也是研究其他协调合作问题的基础。通常协调是为了解决机器人之间的冲突和矛盾。对于自主移动机器人编队问题来说,冲突主要就是碰撞,也就是说在同一时刻多个机器人不能处于同一位置。协作是指机器人通过一种机制合作完成一项任务,对于自主移动机器人编队问题来说合作就是保持队形,在各时刻各机器人的位置满足一种数学关系。对于机器人系统而言,多机器人之间保持一定的队形具有许多优点,比如,空间结构中特定队形的实现可以充分有效地利用多移动机器人完成任务,缩短执行任务的时间,降低系统的成本,提高系统的工作效率,能充分获取当前的环境信息,在对抗性环境中能增强抵抗外界进攻的能力,并且能够提高鲁棒性等。The formation control of multi-robots is a hot research topic at home and abroad, and it is also the basis for studying other coordination and cooperation problems. Usually coordination is to resolve conflicts and contradictions between robots. For the formation problem of autonomous mobile robots, the conflict is mainly collision, that is to say, multiple robots cannot be in the same position at the same time. Collaboration means that robots cooperate to complete a task through a mechanism. For the formation problem of autonomous mobile robots, cooperation is to maintain formation, and the positions of each robot at each moment satisfy a mathematical relationship. For robot systems, maintaining a certain formation between multiple robots has many advantages. For example, the realization of a specific formation in the space structure can fully and effectively use multiple mobile robots to complete tasks, shorten the time for performing tasks, and reduce the cost of the system. , to improve the working efficiency of the system, to fully obtain the current environmental information, to enhance the ability to resist external attacks in an adversarial environment, and to improve robustness, etc.

编队控制在军事、娱乐、生产等各个领域有广泛的应用,尤其是在军事领域有着广泛的应用,例如航天器、无人机的编队飞行、自主水下航行器的编队航行。因此,实现一个合理、有效的编队控制方法将具有重要的理论及现实意义。Formation control has a wide range of applications in various fields such as military, entertainment, and production, especially in the military field, such as formation flight of spacecraft, unmanned aerial vehicles, and formation flight of autonomous underwater vehicles. Therefore, realizing a reasonable and effective formation control method will have important theoretical and practical significance.

发明内容Contents of the invention

本发明的目的在于提供一种无人系统分布式一致性编队控制方法及其系统,用于实现无人编队的协同控制。The purpose of the present invention is to provide a distributed consistent formation control method and system for unmanned systems, which are used to realize the coordinated control of unmanned formations.

为了实现上述目的,本发明提供了一种无人系统分布式一致性编队控制方法,其特征在于,包括:In order to achieve the above object, the present invention provides a distributed consistent formation control method for unmanned systems, characterized in that it includes:

步骤1,为每个节点设置一个初始状态;Step 1, set an initial state for each node;

步骤2,根据需要的编队队形和每个节点的初始状态,得到每个节点相对于头节点的相对位置矩阵;Step 2, according to the required formation formation and the initial state of each node, obtain the relative position matrix of each node relative to the head node;

步骤3,设置每个节点的通信功率,使其只能与邻居节点通信;Step 3, set the communication power of each node so that it can only communicate with neighbor nodes;

步骤4,调整节点编队中的所有节点的位置;Step 4, adjusting the positions of all nodes in the node formation;

步骤5,根据每个节点的头节点位置以及相对位置矩阵,得到每个节点最终需要的位置。Step 5, according to the position of the head node of each node and the relative position matrix, the final required position of each node is obtained.

所述的编队控制方法,其中,所述步骤2中,包括:以如下公式表示N个节点中每个节点相对于头节点的相对位置矩阵:The formation control method, wherein, in the step 2, comprising: expressing the relative position matrix of each node in the N nodes with respect to the head node with the following formula:

SS ii ,, jj == Xx jj -- Xx ii == xx jj -- xx ii ythe y jj -- ythe y ii zz jj -- zz ii ηη jj -- ηη ii

Xx ii (( tt )) == xx ii (( tt )) ythe y ii (( tt )) zz ii (( tt )) ηη ii (( tt )) ,, (( ii == 11 ,, ...... NN ,, tt >> 00 ))

其中:in:

Si,j为节点j相对于节点i的相对位置坐标和角度值;S i, j is the relative position coordinate and angle value of node j relative to node i;

Xi(t)为节点i在t时刻的位置矢量;xi(t)为节点i在t时刻在x轴方向上的坐标;yi(t)为节点i在t时刻在y轴方向上的坐标;zi(t)为节点i在t时刻在z轴方向上的坐标;ηi(t)为节点i在t时刻相对于水平面的角度值。X i (t) is the position vector of node i at time t; x i (t) is the coordinate of node i in the x-axis direction at time t; y i (t) is the coordinate of node i in the y-axis direction at time t z i (t) is the coordinate of node i in the z-axis direction at time t; η i (t) is the angle value of node i relative to the horizontal plane at time t.

所述的编队控制方法,其中,所述步骤2中,包括:在有N个节点的编队中,将其中一个节点设为头节点,通过N-1个编队矢量矩阵表示编队的形状,编队矢量矩阵的形式如下:The formation control method, wherein, in the step 2, includes: in the formation with N nodes, one of the nodes is set as the head node, and the shape of the formation is represented by N-1 formation vector matrices, and the formation vector The form of the matrix is as follows:

SS ii ,, nno == SS ii ,, jj ++ SS jj ,, nno ,, ∀∀ ii ,, jj ,, nno ∈∈ 11 ,, ...... ,, NN

Si,i=[0,0,0,0]T S i,i = [0,0,0,0] T

Si,j=-Sj,i S i,j =-S j,i

其中:in:

Si,n是节点n相对于节点i的相对位置坐标和角度值;Si,j为节点j相对于节点i的相对位置坐标和角度值;Sj,i为节点i相对于节点j的相对位置坐标和角度值。Si,i为节点i相对于节点i的相对位置坐标和角度值。S i, n is the relative position coordinate and angle value of node n relative to node i; S i, j is the relative position coordinate and angle value of node j relative to node i; S j, i is the relative position coordinate and angle value of node i relative to node j Relative position coordinates and angle values. S i,i is the relative position coordinate and angle value of node i relative to node i.

所述的编队控制方法,其中,所述步骤4中,包括:采用分布式一致性方式调整节点编队中所有节点的位置。The formation control method, wherein, in step 4, includes: adjusting the positions of all nodes in the node formation in a distributed consistency manner.

所述的编队控制方法,其中,所述步骤5中,包括:以如下方式得到每个节点最终需要的位置:The formation control method, wherein, in the step 5, includes: obtaining the final required position of each node in the following manner:

ΣΣ jj ∈∈ AA ii cc ii ,, jj == 11

xx ii ,, dd == ΣΣ cc ii ,, jj (( xx ^^ jj ii ++ SS ii ,, jj ))

其中:in:

xi,d为节点i最终需要的位置,ci,j为大于0的加权系数,Ai为节点i的邻居节点的集合, x ^ j i 为节点i所得到节点j的位置,Si,j为每个节点相对于头节点的相对位置矩阵。x i, d is the final position of node i, c i, j is a weighting coefficient greater than 0, A i is the set of neighbor nodes of node i, x ^ j i is the position of node j obtained by node i, and S i,j is the relative position matrix of each node relative to the head node.

为了实现上述目的,本发明提供了一种无人系统分布式一致性编队控制系统,其特征在于,包括:In order to achieve the above object, the present invention provides a distributed consistent formation control system for unmanned systems, characterized in that it includes:

状态设置模块,用于为每个节点设置一个初始状态;A state setting module is used to set an initial state for each node;

矩阵获取模块,连接所述状态设置模块,用于根据需要的编队队形和每个节点的初始状态,得到每个节点相对于头节点的相对位置矩阵;The matrix acquisition module is connected to the state setting module, and is used to obtain the relative position matrix of each node relative to the head node according to the required formation formation and the initial state of each node;

功率设置模块,用于设置每个节点的通信功率,使其只能与邻居通信;The power setting module is used to set the communication power of each node so that it can only communicate with neighbors;

节点调整模块,连接所述矩阵获取模块、所述功率设置模块,用于调整节点编队中的所有节点的位置;A node adjustment module, connected to the matrix acquisition module and the power setting module, is used to adjust the positions of all nodes in the node formation;

节点控制模块,连接所述矩阵获取模块、所述节点调整模块,用于根据每个节点的头节点位置以及相对位置矩阵,得到每个节点最终需要的位置。The node control module is connected to the matrix acquisition module and the node adjustment module, and is used to obtain the final required position of each node according to the head node position of each node and the relative position matrix.

所述的编队控制系统,其中,所述矩阵获取模块以如下公式表示N个节点中每个节点相对于头节点的相对位置矩阵:The formation control system, wherein the matrix acquisition module represents the relative position matrix of each node in the N nodes with respect to the head node with the following formula:

SS ii ,, jj == Xx jj -- Xx ii == xx jj -- xx ii ythe y jj -- ythe y ii zz jj -- zz ii ηη jj -- ηη ii

Xx ii (( tt )) == xx ii (( tt )) ythe y ii (( tt )) zz ii (( tt )) ηη ii (( tt )) ,, (( ii == 11 ,, ...... NN ,, tt >> 00 ))

其中:in:

Si,j为节点j相对于节点i的相对位置坐标和角度值;S i, j is the relative position coordinate and angle value of node j relative to node i;

Xi(t)为节点i在t时刻的位置矢量;xi(t)为节点i在t时刻在x轴方向上的坐标;yi(t)为节点i在t时刻在y轴方向上的坐标;zi(t)为i节点在t时刻在z轴方向上的坐标;ηi(t)为节点i在t时刻相对于水平面的角度值。X i (t) is the position vector of node i at time t; x i (t) is the coordinate of node i in the x-axis direction at time t; y i (t) is the coordinate of node i in the y-axis direction at time t z i (t) is the coordinate of node i in the z-axis direction at time t; η i (t) is the angle value of node i relative to the horizontal plane at time t.

所述的编队控制系统,其中,所述矩阵获取模块在有N个节点的编队中,将其中一个节点设为头节点,通过N-1个编队矢量矩阵表示编队的形状,编队矢量矩阵的形式如下:The formation control system, wherein, the matrix acquisition module sets one of the nodes as the head node in the formation with N nodes, and represents the shape of the formation through N-1 formation vector matrices, and the formation vector matrix is in the form of as follows:

SS ii ,, nno == SS ii ,, jj ++ SS jj ,, nno ,, ∀∀ ii ,, jj ,, nno ∈∈ 11 ,, ...... ,, NN

Si,i=[0,0,0,0]T S i,i = [0,0,0,0] T

Si,j=-Sj,i S i,j =-S j,i

其中:in:

Si,n是节点n相对于节点i的相对位置坐标和角度值;Si,j为节点j相对于节点i的相对位置坐标和角度值;Sj,i为节点i相对于节点j的相对位置坐标和角度值。Si,i为节点i相对于节点i的相对位置坐标和角度值。S i, n is the relative position coordinate and angle value of node n relative to node i; S i, j is the relative position coordinate and angle value of node j relative to node i; S j, i is the relative position coordinate and angle value of node i relative to node j Relative position coordinates and angle values. S i,i is the relative position coordinate and angle value of node i relative to node i.

所述的编队控制系统,其中,所述节点调整模块采用分布式一致性方式调整节点编队中的所有节点的位置。In the formation control system, the node adjustment module adjusts the positions of all nodes in the node formation in a distributed consistency manner.

所述的编队控制系统,其中,所述节点控制模块以如下方式得到每个节点最终需要的位置:The formation control system, wherein the node control module obtains the final required position of each node in the following manner:

ΣΣ jj ∈∈ AA ii cc ii ,, jj == 11

xx ii ,, dd == ΣΣ cc ii ,, jj (( xx ^^ jj ii ++ SS ii ,, jj ))

其中:in:

xi,d为节点i的最终状态,ci,j为大于0的加权系数,Ai为节点i的邻居节点的集合,为节点i所得到节点j的位置,Si,j为每个节点相对于头节点的相对位置矩阵。x i, d is the final state of node i, c i, j is a weighting coefficient greater than 0, A i is the set of neighbor nodes of node i, is the position of node j obtained by node i, and S i,j is the relative position matrix of each node relative to the head node.

与现有技术相比,本发明的有益技术效果在于:Compared with the prior art, the beneficial technical effect of the present invention is:

(1)完全分布式,算法异步执行。(1) Completely distributed, the algorithm is executed asynchronously.

(2)计算简单,实时性能好。(2) The calculation is simple and the real-time performance is good.

(3)自适应性较高,适用于动态网络。(3) High adaptability, suitable for dynamic network.

(4)降低网络传输延迟。(4) Reduce network transmission delay.

(5)缓解通信失败和运动速度快对整体性能的影响。(5) Mitigate the impact of communication failures and fast motion on overall performance.

本发明将分布式一致性算法引入机器人编队控制,研究如何基于分布式一致性方法实现无人编队的协同控制。该方法是将一维空间上的分布式一致性算法引入到四维空间上来实现,利用分布式一致性算法可在有限时间内收敛的特性,实现对于无人系统的分布式编队控制。从而可以仅利用网络中邻居节点信息,使整个网络收敛到同一状态,大大缩减了通信延迟和节点失效带来系统崩溃的问题。The invention introduces the distributed consensus algorithm into the robot formation control, and studies how to realize the cooperative control of the unmanned formation based on the distributed consensus method. This method introduces the distributed consensus algorithm in the one-dimensional space into the four-dimensional space, and uses the characteristic that the distributed consensus algorithm can converge within a limited time to realize the distributed formation control of the unmanned system. Therefore, only the neighbor node information in the network can be used to make the entire network converge to the same state, which greatly reduces the problems of communication delays and system crashes caused by node failures.

附图说明Description of drawings

图1是本发明的无人系统分布式一致性编队控制方法流程图;Fig. 1 is the flow chart of the unmanned system distributed consistent formation control method of the present invention;

图2是本发明的无人系统分布式一致性编队控制系统结构图。Fig. 2 is a structural diagram of the distributed consistent formation control system of the unmanned system of the present invention.

具体实施方式detailed description

以下结合附图和具体实施例对本发明进行详细描述,但不作为对本发明的限定。(请特别仔细确认如下全部内容的正确性)The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments, but not as a limitation of the present invention. (Please carefully confirm the correctness of all the following contents)

如图1所示,是本发明的无人系统分布式一致性编队控制方法流程图。该流程的具体步骤如下:As shown in FIG. 1 , it is a flow chart of the distributed consistent formation control method of the unmanned system of the present invention. The specific steps of the process are as follows:

步骤101,为每个节点设置一个初始状态,这个初始状态可以是随意指定的,参照公式1;Step 101, setting an initial state for each node, this initial state can be specified arbitrarily, refer to formula 1;

步骤102,根据需要的编队队形和每个节点的初始状态,得到每个节点的相对于头节点的位置矩阵,即相对位置矩阵,参照公式2;Step 102, according to the required formation and the initial state of each node, obtain the position matrix of each node relative to the head node, that is, the relative position matrix, referring to formula 2;

步骤103,设置每个节点的通信发射功率,使其只能与邻居通信,这样就能充分体现这个方法的分布式的特点;Step 103, setting the communication transmission power of each node so that it can only communicate with neighbors, so that the distributed characteristics of this method can be fully reflected;

步骤104,利用分布式一致性算法(参考公式3、4、5)使得节点阵列中的所有节点来调整自己在空间中的位置,即在某个时刻的xi,d,参考公式5;Step 104, use the distributed consensus algorithm (refer to formulas 3, 4, 5) to make all nodes in the node array adjust their positions in space, that is, x i,d at a certain moment, refer to formula 5;

步骤105,根据每个节点得到的头节点位置以及相对于头节点的位置矩阵,得到每个节点最终需要的位置,参照公式5。Step 105, according to the position of the head node obtained by each node and the position matrix relative to the head node, obtain the final required position of each node, refer to formula 5.

本发明把节点在空间中的位置用X,Y,Z和η相对于水平面的角度来描述,如下公式1所示。其中Xi(t)为节点i在t时刻的位置矢量;xi(t)为节点i在t时刻在x轴方向上的坐标;yi(t)为节点i在t时刻在y轴方向上的坐标;zi(t)为i节点在t时刻在z轴方向上的坐标;ηi(t)为节点i在t时刻相对于水平面的角度值。In the present invention, the position of the node in space is described by the angle of X, Y, Z and η relative to the horizontal plane, as shown in the following formula 1. Among them, Xi (t) is the position vector of node i at time t; x i (t) is the coordinate of node i in the x-axis direction at time t; y i ( t) is the coordinate of node i in the y-axis direction at time t z i (t) is the coordinate of node i in the z-axis direction at time t; η i (t) is the angle value of node i relative to the horizontal plane at time t.

Xx ii (( tt )) == xx ii (( tt )) ythe y ii (( tt )) zz ii (( tt )) ηη ii (( tt )) ,, (( ii == 11 ,, ...... NN ,, tt >> 00 )) -- -- -- (( 11 ))

编队的形状可以用一组节点的相对位置矢量和相对角度来描述。本发明用如下公式2的Si,j这个4X1编队矢量矩阵来描述两个节点的相对位置坐标和角度值,即Si,j为节点j相对于节点i的相对位置坐标和角度值,即相对位置矩阵。The shape of a formation can be described by the relative position vectors and relative angles of a set of nodes. In the present invention, the 4X1 formation vector matrix S i, j of the following formula 2 is used to describe the relative position coordinates and angle values of two nodes, that is, S i, j is the relative position coordinates and angle values of node j relative to node i, namely Relative position matrix.

SS ii ,, jj == Xx jj -- Xx ii == xx jj -- xx ii ythe y jj -- ythe y ii zz jj -- zz ii ηη jj -- ηη ii -- -- -- (( 22 ))

其中,xi为节点i在x轴方向上的坐标,xj为节点j在x轴方向上的坐标,yi为节点i在y轴方向上的坐标,yj为节点j在y轴方向上的坐标,zi为节点i在z轴方向上的坐标,zj为节点j在z轴方向上的坐标,ηi为节点i相对于水平面的角度值,ηj为节点j相对于水平面的角度值,如上各参数均对应某一时刻(如t时刻),为简化公式表达,对该时刻加以省略,下面表述与此相同。Among them, x i is the coordinate of node i in the x-axis direction, x j is the coordinate of node j in the x-axis direction, y i is the coordinate of node i in the y-axis direction, y j is the node j in the y-axis direction z i is the coordinate of node i in the z-axis direction, z j is the coordinate of node j in the z-axis direction, η i is the angle value of node i relative to the horizontal plane, η j is the angle value of node j relative to the horizontal plane The angle value of , the above parameters all correspond to a certain moment (such as t moment), in order to simplify the expression of the formula, this moment is omitted, and the following expression is the same.

在有N个节点的编队中,有N个如公式2的编队矢量矩阵,并且这些矩阵具有如下特性:In a formation with N nodes, there are N formation vector matrices as in formula 2, and these matrices have the following properties:

SS ii ,, nno == SS ii ,, jj ++ SS jj ,, nno ,, ∀∀ ii ,, jj ,, nno ∈∈ 11 ,, ...... ,, NN

Si,i=[0,0,0,0]T(3)S i,i = [0,0,0,0] T (3)

Si,j=-Sj,i S i,j =-S j,i

其中Si,n是节点n相对于节点i的相对位置坐标和角度值;Si,j为节点j相对于节点i的相对位置坐标和角度值;Sj,i为节点i相对于节点j的相对位置坐标和角度值。Si,i为节点i相对于节点i的相对位置坐标和角度值。Among them, S i, n is the relative position coordinate and angle value of node n relative to node i; S i, j is the relative position coordinate and angle value of node j relative to node i; S j, i is the relative position coordinate and angle value of node i relative to node j The relative position coordinates and angle values of . S i,i is the relative position coordinate and angle value of node i relative to node i.

如果指定一个节点为头节点,那么可以用一个(N-1)X4斜对称矢量矩阵(N-1个编队矢量矩阵Si,j)来描述这个编队的形状,斜对称矢量矩阵用于表示N个节点的位置。和其他编队控制方法不同的是,本方法中的节点只能和自己的邻居节点通信,这样节点i最多可以获得N-1个编队矢量矩阵Si,j,j∈Ai,Ai为节点i的邻居节点的集合。假定节点i通过通信或直接估计,得到一个对于节点j的估计编队矢量矩阵和节点j的位置由于节点i的邻居节点距离i的距离不尽相同,它们与节点i的通信质量也不尽相同,给节点i对于自己的所有邻居节点的估计选择一个大于0的加权系数ci,j,它满足如下条件:If a node is designated as the head node, then a (N-1)X4 oblique symmetric vector matrix (N-1 formation vector matrix S i,j ) can be used to describe the shape of the formation, and the oblique symmetric vector matrix is used to represent N position of a node. Different from other formation control methods, the nodes in this method can only communicate with their own neighbor nodes, so that node i can obtain at most N-1 formation vector matrices S i,j ,j∈A i , where A i is the node The set of neighbor nodes of i. Assume that node i obtains an estimated formation vector matrix for node j through communication or direct estimation and the position of node j Since the neighbor nodes of node i are not at the same distance from i, the quality of communication between them and node i is also different. Give node i an estimate of all its neighbor nodes Choose a weighting coefficient c i,j greater than 0, which satisfies the following conditions:

ΣΣ jj ∈∈ AA ii cc ii ,, jj == 11 -- -- -- (( 44 ))

此处用公式5描述节点i的最终状态xi,d(即需要的节点i的状态):Here, formula 5 is used to describe the final state x i,d of node i (that is, the required state of node i):

xx ii ,, dd == ΣΣ cc ii ,, jj (( xx ^^ jj ii ++ SS ii ,, jj )) -- -- -- (( 55 ))

从公式5可以看出,只需要从节点i的Xi位置得到xi,d状态,就可以得到节点i的轨迹,如果把编队的N个节点都如此做,并且根据编队矢量矩阵,就可以保持整个编队在按照既定运动轨迹运动的时候,保持需要的队形。由于xi,d的获得,节点只需要和自己的邻居节点进行通信,所以,即使某个节点失效或通信链路断开,对xi,d准确性的影响并不大。It can be seen from formula 5 that the trajectory of node i can be obtained only by obtaining the state of x i ,d from the position of Xi of node i. Keep the entire formation in the required formation when moving according to the established trajectory. Due to the acquisition of xi,d , nodes only need to communicate with their neighbor nodes, so even if a node fails or the communication link is disconnected, the accuracy of xi,d is not greatly affected.

如图2所示,是本发明的无人系统分布式一致性编队控制系统结构图。结合图1,该编队控制系统200具体包括:As shown in FIG. 2 , it is a structural diagram of the distributed consistent formation control system of the unmanned system of the present invention. With reference to Fig. 1, the formation control system 200 specifically includes:

状态设置模块10,用于为每个节点设置一个初始状态;State setting module 10, is used for setting an initial state for each node;

矩阵获取模块20,连接状态设置模块10,用于根据需要的编队队形和每个节点的初始状态,得到每个节点的相对于头节点的位置矩阵,即相对位置矩阵;Matrix acquisition module 20, connection state setting module 10, is used to obtain the position matrix of each node relative to the head node, i.e. the relative position matrix, according to the required formation formation and the initial state of each node;

功率设置模块30,用于设置每个节点的通信发射功率,使其只能与邻居节点通信;The power setting module 30 is used to set the communication transmission power of each node so that it can only communicate with neighbor nodes;

节点调整模块40,连接矩阵获取模块20、功率设置模块30,用于利用分布式一致性算法使得节点编队中的所有节点来调整自己在空间中的位置,即在某个时刻的xi,d,参考公式5;The node adjustment module 40, the connection matrix acquisition module 20, and the power setting module 30 are used to use the distributed consensus algorithm to make all nodes in the node formation adjust their positions in space, that is, x i,d at a certain moment , refer to formula 5;

节点控制模块50,连接矩阵获取模块20、节点调整模块40,用于根据每个节点得到的头节点位置以及相对位置矩阵,得到每个节点最终需要的位置,参照如上公式5。The node control module 50, the connection matrix acquisition module 20, and the node adjustment module 40 are used to obtain the final required position of each node according to the head node position and relative position matrix obtained by each node, refer to formula 5 above.

矩阵获取模块20在有N个节点的编队中,指定一个节点为头节点,那么可以用一个(N-1)X4斜对称矢量矩阵(N-1个编队矢量矩阵Si,j)来描述这个编队的形状,斜对称矢量矩阵用于表示N个节点的位置。The matrix acquisition module 20 designates a node as the head node in a formation with N nodes, then a (N-1)X4 oblique symmetric vector matrix (N-1 formation vector matrix S i,j ) can be used to describe this The shape of the formation, a skew-symmetric vector matrix is used to represent the positions of the N nodes.

为使本发明的目的、技术方案和优点更加清楚明白,以下结合本发明利用MK2.0四旋翼飞机具体实施过程和结果,并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the specific implementation process and results of the MK2.0 quadrotor aircraft of the present invention, and with reference to the accompanying drawings.

下述实施过程是在MK2.0四旋翼飞机(以下简称为节点),利用IOT-NODE433实现各节点间的通信。以下结合具体实施例,并参照附图1、2,对本发明的分布式一致性算法编队控制的主流程进一步详细说明。该方法包含以下主要步骤:The following implementation process is in the MK2.0 quadrotor aircraft (hereinafter referred to as the node), using IOT-NODE433 to realize the communication between the nodes. The main flow of the formation control of the distributed consensus algorithm of the present invention will be further described in detail below in conjunction with specific embodiments and with reference to the accompanying drawings 1 and 2 . The method includes the following main steps:

步骤A:首先参照公式1为每个节点设置一个初始状态XI;Step A: First, refer to Formula 1 to set an initial state XI for each node;

Xx II == xx ii ythe y ii zz ii ηη ii ,, (( ii == 11 ,, ...... NN )) ..

步骤B:根据需要的编队队形和每个节点的初始状态,得到每个节点的相对于头节点的位置矩阵Si,j,其中假设节点i为头节点。Step B: According to the required formation and the initial state of each node, obtain the position matrix S i,j of each node relative to the head node, where it is assumed that node i is the head node.

步骤C:设置每个节点的发射功率,使其只能与邻居通信。Step C: Set the transmit power of each node so that it can only communicate with its neighbors.

步骤D:利用分布式一致性算法使得节点编队中的所有节点来调整自己在空间中的位置,即在某个时刻的xi,d,参考公式5;分布式一致性算法的提出有力地促进了编队控制的发展。分布式一致性算法是节点阵列中多个节点都有一个初始的时间,并且每个节点只能和自己的邻居通信,每个节点通过和自己邻居节点不断的运行分布式一致性算法来调整自己的本地时间,这个节点阵列中的所有节点都能达到同一个时间。Step D: Use the distributed consensus algorithm to enable all nodes in the node formation to adjust their positions in space, that is, x i,d at a certain moment, refer to formula 5; the proposal of the distributed consensus algorithm effectively promotes development of formation control. The distributed consensus algorithm is that multiple nodes in the node array have an initial time, and each node can only communicate with its own neighbors, and each node adjusts itself by continuously running the distributed consensus algorithm with its neighbor nodes The local time of , all nodes in this node array can reach the same time.

分布式一致性算法只是对于一个1维变量进行了分析,本发明把分布式一致性算法中的这个1维变量扩展到4维变量,让每个节点运行分布式一致性算法。The distributed consensus algorithm only analyzes a 1-dimensional variable, and the present invention extends the 1-dimensional variable in the distributed consensus algorithm to a 4-dimensional variable, allowing each node to run the distributed consensus algorithm.

步骤E:每个节点都可以得到头节点的位置,又根据相对位置矩阵,参照公式2,可以得到每个节点在最终需要的位置,参照公式5,这样就保证了整个编队在运动过程中节点的相对位置保持不变。Step E: Each node can get the position of the head node, and according to the relative position matrix, refer to formula 2, you can get the final required position of each node, refer to formula 5, so as to ensure that the entire formation is moving. The relative position remains unchanged.

本发明可以把多个机器人组成的编队看成分布式系统,基于消息传递通信模型的分布式系统,不可避免的会发生以下错误:进程可能会慢、垮、重启,消息可能会延迟、丢失、重复。传统机器人编队控制的方法有:基于行为法,人工势场法,跟随-领航法,循环法等。这些传统方法存在如下问题:The present invention can regard the formation composed of multiple robots as a distributed system. In the distributed system based on the message passing communication model, the following errors will inevitably occur: the process may be slow, crashed, restarted, and the message may be delayed, lost, repeat. Traditional robot formation control methods include: behavior-based method, artificial potential field method, follow-lead method, cycle method, etc. These traditional methods have the following problems:

(1)基于一定的拓扑,一旦通信链路被干扰,控制中断。(1) Based on a certain topology, once the communication link is disturbed, the control is interrupted.

(2)集中式或部分集中式结构,节点角色不同,关键节点的失效导致算法协议失效。(2) Centralized or partially centralized structure, the roles of nodes are different, and the failure of key nodes leads to the failure of the algorithm protocol.

(3)控制协议复杂,计算时间长,实时性较差。(3) The control protocol is complicated, the calculation time is long, and the real-time performance is poor.

分布式一致性算法解决的问题是在一个可能发生上述异常的分布式系统中如何就某个值达成一致,保证不论发生以上任何异常,都不会破坏决议的一致性。例如,在一个分布式数据库系统中,如果各节点的初始状态一致,每个节点都执行相同的操作序列,那么他们最后能得到一个一致的状态。为保证每个节点执行相同的命令序列,需要在每一条指令上执行一个一致性算法以保证每个节点看到的指令一致。The problem solved by the distributed consensus algorithm is how to reach a consensus on a certain value in a distributed system where the above abnormalities may occur, so as to ensure that no matter any of the above abnormalities occur, the consistency of the resolution will not be destroyed. For example, in a distributed database system, if the initial state of each node is consistent, and each node performs the same sequence of operations, then they can finally get a consistent state. In order to ensure that each node executes the same sequence of commands, a consensus algorithm needs to be executed on each instruction to ensure that the instructions seen by each node are consistent.

相比于传统方法,本发明提出的分布式一致性算法对机器人编队控制具有如下优点:Compared with traditional methods, the distributed consensus algorithm proposed by the present invention has the following advantages for robot formation control:

(1)完全分布式,算法异步执行。(1) Completely distributed, the algorithm is executed asynchronously.

(2)计算简单,实时性能好。(2) The calculation is simple and the real-time performance is good.

(3)自适应性较高,适用于动态网络。(3) High adaptability, suitable for dynamic network.

(4)降低网络传输延迟。(4) Reduce network transmission delay.

(5)缓解通信失败和运动速度快对整体性能的影响。(5) Mitigate the impact of communication failures and fast motion on overall performance.

本发明将分布式一致性算法引入机器人编队控制,研究如何基于分布式一致性方法实现无人编队的协同控制。该方法可以仅利用网络中邻居节点信息,使整个网络收敛到同一状态,大大缩减了通信延迟和节点失效带来系统崩溃的问题。The invention introduces the distributed consensus algorithm into the robot formation control, and studies how to realize the cooperative control of the unmanned formation based on the distributed consensus method. This method can only use the information of neighbor nodes in the network to make the entire network converge to the same state, which greatly reduces the problems of communication delays and system crashes caused by node failures.

当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明做出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。Of course, the present invention can also have other various embodiments, and those skilled in the art can make various corresponding changes and deformations according to the present invention without departing from the spirit and essence of the present invention. All changes and deformations should belong to the protection scope of the appended claims of the present invention.

Claims (4)

1.一种无人系统分布式一致性编队控制方法,其特征在于,包括:1. A distributed consistent formation control method for unmanned systems, characterized in that it comprises: 步骤1,为每个节点设置一个初始状态;Step 1, set an initial state for each node; 步骤2,根据需要的编队队形和每个节点的初始状态,得到每个节点相对于头节点的相对位置矩阵;Step 2, according to the required formation formation and the initial state of each node, obtain the relative position matrix of each node relative to the head node; 步骤3,设置每个节点的通信功率,使其只能与邻居节点通信;Step 3, set the communication power of each node so that it can only communicate with neighbor nodes; 步骤4,调整节点编队中的所有节点的位置;Step 4, adjusting the positions of all nodes in the node formation; 步骤5,根据每个节点的头节点位置以及相对位置矩阵,得到每个节点最终需要的位置;Step 5, according to the position of the head node of each node and the relative position matrix, obtain the final required position of each node; 所述步骤2中,包括:以如下公式表示N个节点中每个节点相对于头节点的相对位置矩阵:In the step 2, including: expressing the relative position matrix of each node in the N nodes with respect to the head node with the following formula: SS ii ,, jj == Xx jj -- Xx ii == xx jj -- xx ii ythe y jj -- ythe y ii zz jj -- zz ii ηη jj -- ηη ii Xx ii (( tt )) == xx ii (( tt )) ythe y ii (( tt )) zz ii (( tt )) ηη ii (( tt )) ,, ii == 11 ,, ...... NN ,, tt >> 00 其中:in: Si,j为节点j相对于节点i的相对位置坐标和角度值;S i, j is the relative position coordinate and angle value of node j relative to node i; Xi(t)为节点i在t时刻的位置矢量;xi(t)为节点i在t时刻在x轴方向上的坐标;yi(t)为节点i在t时刻在y轴方向上的坐标;zi(t)为节点i在t时刻在z轴方向上的坐标;ηi(t)为节点i在t时刻相对于水平面的角度值;X i (t) is the position vector of node i at time t; x i (t) is the coordinate of node i in the x-axis direction at time t; y i (t) is the coordinate of node i in the y-axis direction at time t coordinates; z i (t) is the coordinates of node i in the z-axis direction at time t; η i (t) is the angle value of node i at time t relative to the horizontal plane; 所述步骤2中,包括:在有N个节点的编队中,将其中一个节点设为头节点,通过N-1个编队矢量矩阵表示编队的形状,编队矢量矩阵的形式如下:In the step 2, including: in the formation with N nodes, one of the nodes is set as the head node, and the shape of the formation is represented by N-1 formation vector matrices. The form of the formation vector matrix is as follows: SS ii ,, nno == SS ii ,, jj ++ SS jj ,, nno ,, ∀∀ ii ,, jj ,, nno ∈∈ 11 ,, ...... ,, NN Si,i=[0,0,0,0]T S i,i = [0,0,0,0] T Si,j=-Sj,i S i,j =-S j,i 其中:in: Si,n是节点n相对于节点i的相对位置坐标和角度值;Si,j为节点j相对于节点i的相对位置坐标和角度值;Sj,i为节点i相对于节点j的相对位置坐标和角度值,Si,i为节点i相对于节点i的相对位置坐标和角度值;S i, n is the relative position coordinate and angle value of node n relative to node i; S i, j is the relative position coordinate and angle value of node j relative to node i; S j, i is the relative position coordinate and angle value of node i relative to node j Relative position coordinates and angle values, S i,i is the relative position coordinates and angle values of node i relative to node i; 所述步骤5中,包括:以如下方式得到每个节点最终需要的位置:In said step 5, comprising: obtaining the final required position of each node in the following manner: ΣΣ jj ∈∈ AA ii cc ii ,, jj == 11 xx ii ,, dd == ΣcΣc ii ,, jj (( xx ^^ jj ii ++ SS ii ,, jj )) 其中:in: xi,d为节点i最终需要的位置,ci,j为大于0的加权系数,Ai为节点i的邻居节点的集合,为节点i所得到节点j的位置,Si,j为每个节点相对于头节点的相对位置矩阵。x i, d is the final position of node i, c i, j is a weighting coefficient greater than 0, A i is the set of neighbor nodes of node i, is the position of node j obtained by node i, and S i,j is the relative position matrix of each node relative to the head node. 2.根据权利要求1所述的编队控制方法,其特征在于,所述步骤4中,包括:采用分布式一致性方式调整节点编队中所有节点的位置。2. The formation control method according to claim 1, characterized in that, in step 4, comprising: adjusting the positions of all nodes in the node formation in a distributed consistency manner. 3.一种无人系统分布式一致性编队控制系统,其特征在于,包括:3. A distributed consistent formation control system for unmanned systems, characterized in that it comprises: 状态设置模块,用于为每个节点设置一个初始状态;A state setting module is used to set an initial state for each node; 矩阵获取模块,连接所述状态设置模块,用于根据需要的编队队形和每个节点的初始状态,得到每个节点相对于头节点的相对位置矩阵;The matrix acquisition module is connected to the state setting module, and is used to obtain the relative position matrix of each node relative to the head node according to the required formation formation and the initial state of each node; 功率设置模块,用于设置每个节点的通信功率,使其只能与邻居通信;The power setting module is used to set the communication power of each node so that it can only communicate with neighbors; 节点调整模块,连接所述矩阵获取模块、所述功率设置模块,用于调整节点编队中的所有节点的位置;A node adjustment module, connected to the matrix acquisition module and the power setting module, is used to adjust the positions of all nodes in the node formation; 节点控制模块,连接所述矩阵获取模块、所述节点调整模块,用于根据每个节点的头节点位置以及相对位置矩阵,得到每个节点最终需要的位置;The node control module is connected to the matrix acquisition module and the node adjustment module, and is used to obtain the final required position of each node according to the head node position and the relative position matrix of each node; 所述矩阵获取模块以如下公式表示N个节点中每个节点相对于头节点的相对位置矩阵:The matrix acquisition module expresses the relative position matrix of each node in the N nodes with respect to the head node with the following formula: SS ii ,, jj == Xx jj -- Xx ii == xx jj -- xx ii ythe y jj -- ythe y ii zz jj -- zz ii ηη jj -- ηη ii Xx ii (( tt )) == xx ii (( tt )) ythe y ii (( tt )) zz ii (( tt )) ηη ii (( tt )) ,, ii == 11 ,, ...... NN ,, tt >> 00 其中:in: Si,j为节点j相对于节点i的相对位置坐标和角度值;S i, j is the relative position coordinate and angle value of node j relative to node i; Xi(t)为节点i在t时刻的位置矢量;xi(t)为节点i在t时刻在x轴方向上的坐标;yi(t)为节点i在t时刻在y轴方向上的坐标;zi(t)为i节点在t时刻在z轴方向上的坐标;ηi(t)为节点i在t时刻相对于水平面的角度值;X i (t) is the position vector of node i at time t; x i (t) is the coordinate of node i in the x-axis direction at time t; y i (t) is the coordinate of node i in the y-axis direction at time t coordinates; z i (t) is the coordinates of node i in the z-axis direction at time t; η i (t) is the angle value of node i relative to the horizontal plane at time t; 所述矩阵获取模块在有N个节点的编队中,将其中一个节点设为头节点,通过N-1个编队矢量矩阵表示编队的形状,编队矢量矩阵的形式如下:The matrix acquisition module sets one of the nodes as the head node in the formation of N nodes, and represents the shape of the formation by N-1 formation vector matrices, and the formation vector matrix is in the form of: SS ii ,, nno == SS ii ,, jj ++ SS jj ,, nno ,, ∀∀ ii ,, jj ,, nno ∈∈ 11 ,, ...... ,, NN Si,i=[0,0,0,0]T S i,i = [0,0,0,0] T Si,j=-Sj,i S i,j =-S j,i 其中:in: Si,n是节点n相对于节点i的相对位置坐标和角度值;Si,j为节点j相对于节点i的相对位置坐标和角度值;Sj,i为节点i相对于节点j的相对位置坐标和角度值,Si,i为节点i相对于节点i的相对位置坐标和角度值;S i, n is the relative position coordinate and angle value of node n relative to node i; S i, j is the relative position coordinate and angle value of node j relative to node i; S j, i is the relative position coordinate and angle value of node i relative to node j Relative position coordinates and angle values, S i,i is the relative position coordinates and angle values of node i relative to node i; 所述节点控制模块以如下方式得到每个节点最终需要的位置:Described node control module obtains the final required position of each node in the following manner: ΣΣ jj ∈∈ AA ii cc ii ,, jj == 11 xx ii ,, dd == ΣcΣc ii ,, jj (( xx ^^ jj ii ++ SS ii ,, jj )) 其中:in: xi,d为节点i的最终状态,ci,j为大于0的加权系数,Ai为节点i的邻居节点的集合,为节点i所得到节点j的位置,Si,j为每个节点相对于头节点的相对位置矩阵。x i, d is the final state of node i, c i, j is a weighting coefficient greater than 0, A i is the set of neighbor nodes of node i, is the position of node j obtained by node i, and S i,j is the relative position matrix of each node relative to the head node. 4.根据权利要求3所述的编队控制系统,其特征在于,所述节点调整模块采用分布式一致性方式调整节点编队中的所有节点的位置。4. The formation control system according to claim 3, wherein the node adjustment module adjusts the positions of all nodes in the node formation in a distributed consistency manner.
CN201310320211.9A 2013-07-26 2013-07-26 A kind of unmanned systems distributed consensus formation control method and system thereof Expired - Fee Related CN103412564B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310320211.9A CN103412564B (en) 2013-07-26 2013-07-26 A kind of unmanned systems distributed consensus formation control method and system thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310320211.9A CN103412564B (en) 2013-07-26 2013-07-26 A kind of unmanned systems distributed consensus formation control method and system thereof

Publications (2)

Publication Number Publication Date
CN103412564A CN103412564A (en) 2013-11-27
CN103412564B true CN103412564B (en) 2016-02-03

Family

ID=49605589

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310320211.9A Expired - Fee Related CN103412564B (en) 2013-07-26 2013-07-26 A kind of unmanned systems distributed consensus formation control method and system thereof

Country Status (1)

Country Link
CN (1) CN103412564B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103777640B (en) * 2014-01-15 2016-05-04 北京航空航天大学 A kind of distributed control unmanned aerial vehicle group is concentrated sub-clustering formation method
CN103777638B (en) * 2014-01-26 2016-09-28 北京航空航天大学 The concordance control method that multiple no-manned plane network is formed into columns
CN104656663B (en) * 2015-02-15 2017-12-01 西北工业大学 A kind of unmanned plane formation of view-based access control model perceives and bypassing method
CN105093934B (en) * 2015-08-17 2017-08-25 哈尔滨工业大学 Consider interference and the distributed finite time tracking controller design method of multi-robot system of model uncertainty
CN105511494B (en) * 2016-01-20 2018-06-19 浙江大学 A kind of method of multiple no-manned plane distributed formation control
CN107171739B (en) * 2017-04-28 2020-09-01 天津大学 A MAC access method for underwater acoustic network
CN108388269A (en) * 2018-03-17 2018-08-10 青岛理工大学 Unmanned aerial vehicle formation flight control method based on four-rotor aircraft
CN108983816B (en) * 2018-08-07 2021-04-02 中南大学 Multi-rotor UAV variable-scale cooperative surveillance formation flight control method
CN110162084B (en) * 2018-10-11 2022-01-11 北京机电工程研究所 Formation control method of flying missile cluster system based on consistency theory
CN109765928A (en) * 2019-01-07 2019-05-17 杭州电子科技大学 Collaborative control and target tracking method based on mobile multi-agent formation
CN109901584B (en) * 2019-03-21 2020-04-24 南京大学 Robot formation method based on self-organization, readable storage medium and robot
CN110083175B (en) * 2019-04-22 2020-07-14 清华大学 Unmanned aerial vehicle formation network cooperative scheduling method and device
CN110456807B (en) * 2019-07-02 2021-01-12 西北工业大学 Multi-spacecraft consistency dynamic gain control method
CN110825113B (en) * 2019-11-22 2021-10-22 南京航空航天大学 A Formation Keeping Method Applicable to Quadrotor UAV Swarm Flight
CN112684705B (en) * 2020-12-18 2022-06-24 杭州电子科技大学 Four-rotor aircraft formation tracking control method
CN115903817B (en) * 2022-11-24 2025-08-12 重庆邮电大学 Containing control method of multi-leader intelligent unmanned cluster system with obstacle avoidance and continuity maintenance

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329450A (en) * 1991-05-10 1994-07-12 Shinko Electric Co., Ltd. Control method for mobile robot system
EP1531340A1 (en) * 1998-12-30 2005-05-18 L-3 Communications Corporation Close/intra-formation positioning collision avoidance system and method
CN101127657A (en) * 2007-07-16 2008-02-20 江南大学 Dynamic Modeling and Control Techniques for Autonomous Mobile Sensor Networks
CN101711062A (en) * 2009-11-27 2010-05-19 上海交通大学 Distributed wireless sensor network node positioning method
CN102420733A (en) * 2011-12-07 2012-04-18 中国科学院上海微系统与信息技术研究所 Method for realizing group aggregation formation in sensor network
CN103139812A (en) * 2013-03-01 2013-06-05 哈尔滨工业大学 Mobile node formation obstacle avoidance method based on wireless sensor network
CN103220778A (en) * 2013-03-11 2013-07-24 哈尔滨工业大学 Mobile node formation change method based on wireless sensor networks and achieving device thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329450A (en) * 1991-05-10 1994-07-12 Shinko Electric Co., Ltd. Control method for mobile robot system
EP1531340A1 (en) * 1998-12-30 2005-05-18 L-3 Communications Corporation Close/intra-formation positioning collision avoidance system and method
CN101127657A (en) * 2007-07-16 2008-02-20 江南大学 Dynamic Modeling and Control Techniques for Autonomous Mobile Sensor Networks
CN101711062A (en) * 2009-11-27 2010-05-19 上海交通大学 Distributed wireless sensor network node positioning method
CN102420733A (en) * 2011-12-07 2012-04-18 中国科学院上海微系统与信息技术研究所 Method for realizing group aggregation formation in sensor network
CN103139812A (en) * 2013-03-01 2013-06-05 哈尔滨工业大学 Mobile node formation obstacle avoidance method based on wireless sensor network
CN103220778A (en) * 2013-03-11 2013-07-24 哈尔滨工业大学 Mobile node formation change method based on wireless sensor networks and achieving device thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
基于一致性理论的多机器人系统队形控制;吴正平 等;《控制与决策》;20071130;第22卷(第11期);1241-1244 *
基于一致性理论的多机器鱼编队控制;乔琳 等;《兵工自动化》;20111231;第30卷(第12期);70-74 *
基于移动传感网络模型的多机器人编队控制;彭力 等;《Proceedings of the 27th Chinese Control Conference》;20080718;169-172 *

Also Published As

Publication number Publication date
CN103412564A (en) 2013-11-27

Similar Documents

Publication Publication Date Title
CN103412564B (en) A kind of unmanned systems distributed consensus formation control method and system thereof
CN106945041B (en) A Redundant Manipulator Repeated Motion Planning Method
CN109116868B (en) Distributed unmanned aerial vehicle formation cooperative control method
CN108845590B (en) A multi-UAV cooperative formation control method in a time-delay environment
CN114020042A (en) A heterogeneous unmanned swarm formation encirclement tracking control method and system
CN104865960A (en) Multi-intelligent-body formation control method based on plane
CN112947086B (en) Self-adaptive compensation method for actuator faults in formation control of heterogeneous multi-agent system consisting of unmanned aerial vehicle and unmanned vehicle
CN113867150B (en) An event-driven control method for multi-agents with saturated input
CN106406097B (en) The distributed self-adaption control method for coordinating of Multi-arm robots
CN104181813B (en) There is the Lagrange system self-adaptation control method of connective holding
CN112631335A (en) Event-triggered multi-quad-rotor unmanned aerial vehicle fixed event formation method
CN106647771A (en) Multi-mobile-robot minimum step formation method
CN110658811B (en) Neural network-based collaborative path tracking control method for limited mobile robot
Wu et al. Formation control algorithms for multi-UAV systems with unstable topologies and hybrid delays
CN117177208A (en) A collaborative fault-tolerant control method for clustered UAVs considering random communication delays
CN114296473A (en) Multi-agent self-adaptive formation control method for avoiding collision and communication interruption
CN116692031A (en) Spacecraft cluster attitude cooperative control method under interference fault mixing condition
CN114564044A (en) Unmanned aerial vehicle finite time formation control method triggered by input amplitude limiting event
CN114265315A (en) Time-varying output formation tracking control method and system for heterogeneous linear cluster system
CN112276952B (en) Robust simultaneous stabilization method and system for multi-robot system
CN118394131A (en) A UAV swarm synchronization control method based on discontinuous neural network
Li et al. Collision-Free Maneuvering for a UAV Swarm Based on Parallel Control
Wang et al. Cluster consensus in multiple Lagrangian systems under pinning control
CN114995521B (en) Multi-unmanned aerial vehicle distributed formation control method and device and electronic equipment
CN112327932B (en) Incremental PID control method for fire-fighting unmanned aerial vehicle formation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160203