[go: up one dir, main page]

CN103106385B - Face image recognition method and device - Google Patents

Face image recognition method and device Download PDF

Info

Publication number
CN103106385B
CN103106385B CN201110355062.0A CN201110355062A CN103106385B CN 103106385 B CN103106385 B CN 103106385B CN 201110355062 A CN201110355062 A CN 201110355062A CN 103106385 B CN103106385 B CN 103106385B
Authority
CN
China
Prior art keywords
component
information
face image
processor
statistical information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110355062.0A
Other languages
Chinese (zh)
Other versions
CN103106385A (en
Inventor
古人豪
黄昱豪
陈昱翰
高铭璨
黄森煌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pixart Imaging Inc
Original Assignee
Pixart Imaging Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pixart Imaging Inc filed Critical Pixart Imaging Inc
Priority to CN201110355062.0A priority Critical patent/CN103106385B/en
Publication of CN103106385A publication Critical patent/CN103106385A/en
Application granted granted Critical
Publication of CN103106385B publication Critical patent/CN103106385B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

The invention discloses a face image identification device and method. The processor of the face image recognition device calculates a red component statistical information, a green component statistical information and a blue component statistical information for each of a plurality of face images. The processor further processes at least two color component statistics of the red, green and blue component statistics by an independent component analysis to obtain a first component information and a second component information. The processor converts the first component information and the second component information into a frequency domain to obtain a first frequency domain information and a second frequency domain information. The processor calculates an energy value of the first frequency domain information in a preset frequency range, and determines that the face images are captured from a real person or a dummy according to the energy value.

Description

人脸影像辨识方法及装置Face image recognition method and device

技术领域technical field

本发明系关于一种人脸影像辨识方法及装置;详细而言,系关于一种利用独立成分分析法的人脸影像辨识方法及装置。The present invention relates to a face image recognition method and device; in detail, it relates to a face image recognition method and device using independent component analysis.

背景技术Background technique

近年来,由于多媒体技术快速地发展,人脸辨识技术已被广泛地使用于不同的应用领域,例如电脑游戏、监控系统等等。人脸辨识技术中,除了辨识影像内是否含有人脸之外,更重要的则是判断影像中的人脸系撷取自“真人”或“假人”。In recent years, due to the rapid development of multimedia technology, face recognition technology has been widely used in different application fields, such as computer games, monitoring systems and so on. In face recognition technology, in addition to identifying whether an image contains a human face, it is more important to determine whether the face in the image is taken from a "real person" or a "dummy".

习知技术系利用复数张人脸影像来判断其内的人脸为“真人”或“假人”。具体而言,习知技术先判断这些人脸影像中是否含有人类的眼睛,再由这些人脸影像判断是否有“眨眼”的动作。倘若判断的结果为“有眨眼的动作”,则表示影像中的人脸影像为真人的人脸影像;倘若判断的结果为“无眨眼的动作”,则表示影像中的人脸影像为假人的人脸影像。The prior art uses a plurality of face images to judge whether the faces in them are "real people" or "dummy people". Specifically, the conventional technology first judges whether these human face images contain human eyes, and then judges whether there is an action of "blinking" from these human face images. If the result of the judgment is "with blinking action", it means that the face image in the image is a real face image; if the result of the judgment is "no blinking action", it means that the face image in the image is a dummy face images.

由于习知技术需判断人脸影像中是否含有人类的眼睛,因此需要高解析度的影像方能获得较为正确的结果。当解析度低时,则判断错误的机率会大幅提高。Since the conventional technology needs to judge whether the human face image contains human eyes, a high-resolution image is required to obtain a more accurate result. When the resolution is low, the probability of misjudgment will be greatly increased.

有鉴于此,本领域仍亟需一种能不受影像解析度影响而能判断人脸影像系撷取自真人或假人的技术。In view of this, there is still an urgent need in the art for a technology capable of judging whether a face image is captured from a real person or a dummy without being affected by the image resolution.

发明内容Contents of the invention

为解决前述问题,本发明提供了一种人脸影像辨识方法及一种人脸影像辨识装置。To solve the aforementioned problems, the present invention provides a face image recognition method and a face image recognition device.

本发明所提供的人脸影像辨识方法,其系适用于一电子装置。该电子装置包含一处理器及一存储器单元。该存储器单元储存复数张人脸影像。该人脸影像辨识方法包含下列步骤:(a)使该处理器对各该人脸影像计算一红色成分统计信息、一绿色成分统计信息及一蓝色成分统计信息;(b)使该处理器利用一独立成分分析法(IndependentComponentAnalysis)对该等红色成分统计信息、该等绿色成分统计信息及该等蓝色成分统计信息中的至少二种颜色成分统计信息进行处理,藉此取得一第一成分信息及一第二成分信息;(c)使该处理器分别将该第一成分信息及该第二成分信息转换至一频率域,藉此取得一第一频域信息及一第二频域信息;(d)使该处理器计算该第一频域信息于一预设频率范围的一能量值;以及(e)使该处理器将该能量值与一预设值进行比较,藉此决定该等人脸影像撷取自一真人或一假人。The face image recognition method provided by the present invention is applicable to an electronic device. The electronic device includes a processor and a memory unit. The memory unit stores a plurality of face images. The face image recognition method includes the following steps: (a) making the processor calculate a red component statistical information, a green component statistical information and a blue component statistical information for each of the human face images; (b) making the processor Using an independent component analysis (IndependentComponentAnalysis) to process at least two color component statistical information among the red component statistical information, the green component statistical information, and the blue component statistical information, thereby obtaining a first component information and a second component information; (c) causing the processor to convert the first component information and the second component information into a frequency domain, thereby obtaining a first frequency domain information and a second frequency domain information (d) causing the processor to calculate an energy value of the first frequency domain information in a predetermined frequency range; and (e) causing the processor to compare the energy value with a preset value, thereby determining the The face image is extracted from a real person or a dummy.

本发明所提供的人脸影像辨识装置,其系包含一存储器单元及一处理器。该存储器单元储存复数张人脸影像,而该处理器电性连接至该存储器单元。该处理器对各该人脸影像计算一红色成分统计信息、一绿色成分统计信息及一蓝色成分统计信息。该处理器再利用一独立成分分析法对该等红色成分统计信息、该等绿色成分统计信息及该等蓝色成分统计信息中的至少二种颜色成分统计信息进行处理,藉此取得一第一成分信息及一第二成分信息。该处理器更分别将该第一成分信息及该第二成分信息转换至一频率域,藉此取得一第一频域信息及一第二频域信息。该处理器更计算该第一频域信息于一预设频率范围的一能量值,且将该能量值与一预设值进行比较,藉此决定该等人脸影像撷取自一真人或一假人。The face image recognition device provided by the present invention includes a memory unit and a processor. The memory unit stores a plurality of face images, and the processor is electrically connected to the memory unit. The processor calculates a red component statistical information, a green component statistical information and a blue component statistical information for each of the face images. The processor then uses an independent component analysis method to process at least two color component statistical information among the red component statistical information, the green component statistical information, and the blue component statistical information, thereby obtaining a first Composition information and a second composition information. The processor further transforms the first component information and the second component information into a frequency domain, thereby obtaining a first frequency domain information and a second frequency domain information. The processor further calculates an energy value of the first frequency domain information in a preset frequency range, and compares the energy value with a preset value, thereby determining that the face images are captured from a real person or a person dummy.

本发明所提供的人脸影像辨识方法及人脸影像辨识装置系利用独立成分分析法对复数张人脸影像的不同颜色成分的统计信息进行分析,藉此获取第一成分信息及第二成分信息。之后再将第一成分信息及第二成分信息转换至频率域以分析该二成分信息于频率域上的能量值,再根据能量值判断该等人脸影像系撷取自真人或假人。简言之,本发明系对人脸影像中的颜色成分的统计信息进行分析再为后续的处理及判断。从各张人脸影像的角度观之,由于各颜色成分系来自人脸影像,而非影像中的一小部份,故所涵盖的信息较为准确,不会因为影像的解析度不佳而影响到后续的处理及判断结果。The face image recognition method and the face image recognition device provided by the present invention use the independent component analysis method to analyze the statistical information of different color components of a plurality of face images, thereby obtaining the first component information and the second component information . Afterwards, the first component information and the second component information are converted to the frequency domain to analyze the energy value of the two component information in the frequency domain, and then judge whether the face images are taken from real people or dummy according to the energy value. In short, the present invention analyzes the statistical information of the color components in the face image for subsequent processing and judgment. From the perspective of each face image, since each color component comes from the face image rather than a small part of the image, the information covered is more accurate and will not be affected by poor resolution of the image to subsequent processing and judgment results.

为让本发明的上述目的、技术特征和优点能更明显易懂,下文系以较佳实施例配合所附图式进行详细说明。In order to make the above-mentioned purpose, technical features and advantages of the present invention more comprehensible, the following is a detailed description of preferred embodiments with accompanying drawings.

附图说明Description of drawings

图1系描绘第一实施例的人脸影像辨识装置的内部元件示意图;Fig. 1 is a schematic diagram depicting the internal components of the face image recognition device of the first embodiment;

图2A及图2B系描绘第三实施例的人脸影像辨识方法的流程图;2A and 2B are flow charts depicting the face image recognition method of the third embodiment;

图2C系描绘第三实施例的步骤21的细部流程图;以及Figure 2C is a detailed flowchart depicting step 21 of the third embodiment; and

图3系描绘第四实施例的人脸影像辨识方法的流程图。FIG. 3 is a flow chart depicting the face image recognition method of the fourth embodiment.

主要元件符号说明:Description of main component symbols:

1人脸影像辨识装置1 Facial image recognition device

11影像感测器11 image sensor

13处理器13 processors

15存储器单元15 memory cells

17接收接口17 receiving interface

具体实施方式detailed description

以下将透过实施例来解释本发明所提供的人脸影像辨识装置及人脸影像辨识方法。然而,本发明的实施例并非用以限制本发明需在如实施例所述的任何环境、应用或方式方能实施。因此,关于实施例的说明仅为阐释本发明的目的,而非用以直接限制本发明。需说明者,以下实施例及图示中,与本发明非直接相关的元件已省略而未绘示。The following will illustrate the face image recognition device and the face image recognition method provided by the present invention through the embodiments. However, the embodiments of the present invention are not intended to limit the present invention to be implemented in any environment, application or manner as described in the embodiments. Therefore, the descriptions about the embodiments are only for the purpose of illustrating the present invention, rather than directly limiting the present invention. It should be noted that in the following embodiments and illustrations, elements not directly related to the present invention have been omitted and not shown.

本发明的第一实施例为一人脸影像辨识装置1,其内部元件示意图如图1所示。人脸影像辨识装置1包含一影像感测器11、一处理器13、一存储器单元15及一接收接口17,其中处理器13电性连接至影像感测器11、存储器单元15及接收接口17。影像感测器11可为视讯摄影机(Webcam)或所属技术领域中具有通常知识者可轻易思及的其他具有影像撷取能力的装置。处理器13可为本发明所属技术领域中具有通常知识者所熟知的各种处理器、中央处理装置(centralprocessingunit)、微处理器或其它计算装置其中的任一种。存储器单元15可为存储器、软碟、硬碟、光碟、随身碟、磁带、可由网路存取的资料库或所属技术领域中具有通常知识者可轻易思及具有相同功能的储存媒体。The first embodiment of the present invention is a face image recognition device 1 , the schematic diagram of its internal components is shown in FIG. 1 . The face image recognition device 1 includes an image sensor 11, a processor 13, a memory unit 15 and a receiving interface 17, wherein the processor 13 is electrically connected to the image sensor 11, the memory unit 15 and the receiving interface 17 . The image sensor 11 can be a video camera (Webcam) or other devices capable of image capture that can be easily imagined by those skilled in the art. The processor 13 can be any one of various processors, central processing units, microprocessors or other computing devices known to those skilled in the art to which the present invention pertains. The memory unit 15 can be a memory, a floppy disk, a hard disk, an optical disk, a pen drive, a magnetic tape, a database accessible from the network, or a storage medium that can be easily imagined by those skilled in the art to have the same function.

首先,影像感测器11于一时间区间内撷取复数张影像。针对影像感测器11所撷取的各张影像,处理器13会进行人脸侦测。若侦测的结果为影像中含有人脸,则处理器13会视该张影像为人脸影像,并将的储存于存储器单元15;若侦测的结果为影像中不含有人脸,则处理器13会舍弃该张影像。处理器13对影像进行人脸侦测的技术为本发明所属技术领域的通常知识,且并非本发明的重点,因此不赘述其细节。兹假设经影像感测器11及处理器13进行前述处理后,已储存了复数张人脸影像于存储器单元15中。First, the image sensor 11 captures a plurality of images within a time interval. For each image captured by the image sensor 11 , the processor 13 performs face detection. If the detected result is that the image contains a human face, the processor 13 will regard the image as a human face image and store it in the memory unit 15; if the detected result does not contain a human face in the image, the processor 13 will 13 discards the image. The face detection technology of the image by the processor 13 is common knowledge in the technical field of the present invention, and is not the focus of the present invention, so details thereof will not be repeated. It is assumed that a plurality of face images have been stored in the memory unit 15 after the aforementioned processing is performed by the image sensor 11 and the processor 13 .

须说明者,依本发明所实施的其他人脸影像辨识装置可不配置影像感测器11。于此情形下,使用者可先将复数张人脸影像储存于存储器单元即可。It should be noted that other face image recognition devices implemented according to the present invention may not be equipped with the image sensor 11 . In this case, the user can first store a plurality of face images in the memory unit.

接着,处理器13对各张人脸影像计算一红色成分统计信息、一绿色成分统计信息及一蓝色成分统计信息。兹以一范例说明红色成分统计信息、绿色成分统计信息及蓝色成分统计信息的计算方式。举例而言,处理器13可先分离各张人脸影像的红色成分、绿色成分及蓝色成分,于处理完所有的人脸影像后,便得到复数张红色成分影像、复数张绿色成分影像及复数张蓝色成分影像。Next, the processor 13 calculates a red component statistical information, a green component statistical information and a blue component statistical information for each face image. An example is hereby used to illustrate the calculation methods of the statistical information of the red component, the statistical information of the green component and the statistical information of the blue component. For example, the processor 13 can first separate the red component, green component and blue component of each face image, and after processing all the face images, a plurality of red component images, a plurality of green component images and Multiple blue component images.

处理器13接着可对各该红色成分影像进行计算,以得一红色成分信息,当处理完所有的红色成分影像后,便获得复数个红色成分信息。类似的,处理器13可对各该绿色成分影像进行计算,以得一绿色成分信息,当处理完所有的绿色成分影像后,便获得复数个绿色成分信息。类似的,处理器13可对各该蓝色成分影像进行计算,以得一蓝色成分信息,当处理完所有的蓝色成分影像后,便获得复数个蓝色成分信息。The processor 13 can then perform calculations on each of the red component images to obtain a piece of red component information. After processing all the red component images, a plurality of red component information can be obtained. Similarly, the processor 13 may perform calculations on each of the green component images to obtain a piece of green component information, and obtain a plurality of green component information after processing all the green component images. Similarly, the processor 13 may perform calculations on each of the blue component images to obtain a piece of blue component information, and obtain a plurality of blue component information after processing all the blue component images.

举例而言,各红色成分信息可为相对应的红色成分影像的平均亮度值、最大亮度值、最小亮度值或其他统计值;各绿色成分信息可为相对应的绿色成分影像的平均亮度值、最大亮度值、最小亮度值或其他统计值;各蓝色成分信息可为相对应的蓝色成分影像的平均亮度值、最大亮度值、最小亮度值或其他统计值。For example, each piece of red component information can be the average luminance value, maximum luminance value, minimum luminance value or other statistical values of the corresponding red component image; each piece of green component information can be the average luminance value, Maximum brightness value, minimum brightness value or other statistical values; each blue component information can be the average brightness value, maximum brightness value, minimum brightness value or other statistical values of the corresponding blue component image.

于取得该等红色成分信息、该等绿色成分信息及该等蓝色成分信息后,处理器13选取其中二种颜色成分信息进行后续处理,假设处理器13选取该等红色成分信息及该等绿色成分信息。之后,处理器13利用独立成分分析法(IndependentComponentAnalysis)对该等红色成分信息及该等绿色成分信息进行处理,处理之后便得到一第一成分信息及一第二成分信息。须说明者,独立成分分析法为一既有的演算法,当有二组输入资料时,独立成分分析法会产生二组输出资料,此为本发明所属技术领域中的通常知识者。另外,第一成分信息及第二成分信息的“第一”及“第二”仅用来区分第一成分信息及第二成分信息为不同的成分信息而已。After obtaining the red component information, the green component information and the blue component information, the processor 13 selects two of the color component information for subsequent processing, assuming that the processor 13 selects the red component information and the green component information Ingredient information. Afterwards, the processor 13 processes the red component information and the green component information by independent component analysis, and obtains a first component information and a second component information after processing. It should be noted that the independent component analysis method is an existing algorithm. When there are two sets of input data, the independent component analysis method will generate two sets of output data. This is the common knowledge in the technical field of the present invention. In addition, "first" and "second" in the first component information and the second component information are only used to distinguish the first component information and the second component information as different component information.

采用独立成分分析法的目的在于分离该等红色成分信息及该等绿色成分信息中的人类心跳的信号与其他信号。换言之,第一成分信息及第二成分信息其中之一可视为人类心跳的信号。人类心跳的信号在频率域上有特殊的特性,亦即,于特定频率范围内的信号能量较强。本实施例将此特定频率范围设为预设频率范围,以便进行后续的处理。一般而言,大部分人类心跳的信号的频率较低,故此预设频率范围可设在低频之处。The purpose of adopting the independent component analysis method is to separate the human heartbeat signal and other signals in the red component information and the green component information. In other words, one of the first component information and the second component information can be regarded as a human heartbeat signal. The human heartbeat signal has special characteristics in the frequency domain, that is, the signal energy is stronger in a specific frequency range. In this embodiment, the specific frequency range is set as a preset frequency range for subsequent processing. Generally speaking, the frequencies of most human heartbeat signals are relatively low, so the preset frequency range can be set at low frequencies.

具体而言,处理器13接着会将第一成分信息及第二成分信息分别转换至一频率域,藉此取得一第一频域信息及一第二频域信息。举例而言,处理器13可采用快速傅里叶转换(FastFourierTransform)以将第一成分信息及第二成分信息分别转换为第一频域信息及第二频域信息。依本发明所实施的其他人脸影像辨识装置亦可采用其他的频域转换方式。Specifically, the processor 13 then converts the first component information and the second component information into a frequency domain, thereby obtaining a first frequency domain information and a second frequency domain information. For example, the processor 13 may adopt Fast Fourier Transform (FFT) to convert the first component information and the second component information into first frequency domain information and second frequency domain information respectively. Other face image recognition devices implemented according to the present invention may also adopt other frequency domain conversion methods.

之后,处理器13计算第一频域信息于预设频率范围的一能量值,再将此能量值与一预设值进行比较。倘若第一频域信息于预设频率范围的能量值大于预设值,则存储器单元15内所储存的人脸影像撷取自一真人。倘若第一频域信息于预设频率范围的能量值小于预设值,则处理器13再计算第二频域信息于预设频率范围的一能量值,再将此能量值与预设值进行比较。倘若第二频域信息于预设频率范围的能量值大于预设值,则存储器单元15内所储存的人脸影像亦可被认定为撷取自一真人。倘若第一频域信息于预设频率范围的能量值小于预设值,且第二频域信息于预设频率范围的能量值亦小于预设值,则存储器单元15内所储存的人脸影像会被认定为撷取自一假人。简言之,只要第一频域信息或第二频域信息其中的一的能量值大于预设值,则存储器单元15内所储存的人脸影像会被认定为撷取自一真人。Afterwards, the processor 13 calculates an energy value of the first frequency domain information in a preset frequency range, and then compares the energy value with a preset value. If the energy value of the first frequency domain information in the predetermined frequency range is greater than the predetermined value, the face image stored in the memory unit 15 is captured from a real person. If the energy value of the first frequency domain information in the preset frequency range is smaller than the preset value, the processor 13 recalculates an energy value of the second frequency domain information in the preset frequency range, and then compares the energy value with the preset value. Compare. If the energy value of the second frequency domain information in the predetermined frequency range is greater than the predetermined value, the face image stored in the memory unit 15 can also be identified as being captured from a real person. If the energy value of the first frequency domain information in the preset frequency range is smaller than the preset value, and the energy value of the second frequency domain information in the preset frequency range is also smaller than the preset value, the face image stored in the memory unit 15 would be assumed to be taken from a dummy. In short, as long as the energy value of one of the first frequency domain information or the second frequency domain information is greater than a preset value, the face image stored in the memory unit 15 will be identified as being captured from a real person.

倘若经前述处理后,处理器13决定该等人脸影像系撷取自一真人,则人脸影像辨识装置1会继续进行登入程序。具体而言,接收接口17会接收一登入信息,而处理器13则会进一步地处理此登入信息。举例而言,假设登入信息包含使用者的帐号及密码,处理器13便会判断此帐号及密码是否正确。然而,倘若经前述处理后,处理器13决定该等人脸影像系撷取自一假人,则人脸影像辨识装置1不会进行登入程序。If after the aforementioned processing, the processor 13 determines that the face images are captured from a real person, the face image recognition device 1 will continue to perform the login procedure. Specifically, the receiving interface 17 receives login information, and the processor 13 further processes the login information. For example, if the login information includes the user's account number and password, the processor 13 will determine whether the account number and password are correct. However, if after the aforementioned processing, the processor 13 determines that the face images are captured from a dummy, the face image recognition device 1 will not perform the login process.

本发明的第二实施例亦为人脸影像辨识装置1,然其详细运作与第一实施例稍有不同。以下将仅说明第二实施例与第一实施例的相异处。The second embodiment of the present invention is also a face image recognition device 1 , but its detailed operation is slightly different from that of the first embodiment. Only the differences between the second embodiment and the first embodiment will be described below.

本实施例中,当处理器13取得该等红色成分信息、该等绿色成分信息及该等蓝色成分信息后,处理器13选取全部的颜色成分信息进行后续处理。之后,处理器13利用独立成分分析法对该等红色成分信息、该等绿色成分信息及该等蓝色成分信息进行处理,处理之后便得到一第一成分信息、一第二成分信息及一第三成分信息。须说明者,独立成分分析法为一既有的演算法,当有三组输入资料时,独立成分分析法会产生三组输出资料,此为本发明所属技术领域中的通常知识者。另外,第一成分信息、第二成分信息及第三成分信息的“第一”、“第二”及“第三”仅用来区分第一成分信息、第二成分信息及第三成分信息为不同的成分信息而已。In this embodiment, after the processor 13 obtains the red component information, the green component information and the blue component information, the processor 13 selects all the color component information for subsequent processing. Afterwards, the processor 13 processes the red component information, the green component information and the blue component information by independent component analysis, and obtains a first component information, a second component information and a first component information after processing. Three component information. It should be noted that the independent component analysis method is an existing algorithm. When there are three sets of input data, the independent component analysis method will generate three sets of output data. This is a common knowledge person in the technical field of the present invention. In addition, "first", "second" and "third" in the first component information, the second component information and the third component information are only used to distinguish the first component information, the second component information and the third component information as Different ingredient information only.

由于本实施的处理器13选取三种颜色成分信息进行后续处理,因此独立成分分析法会分离该等红色成分信息、该等绿色成分信息及该等蓝色成分信息中的人类心跳的信号、人类移动(或晃动)的信号与其他信号。换言之,第一成分信息、第二成分信息及第三成分信息其中的一可视为人类心跳的信号。Since the processor 13 of this embodiment selects three kinds of color component information for subsequent processing, the independent component analysis method will separate the human heartbeat signal, human heartbeat signal, human Moving (or shaking) signals with other signals. In other words, one of the first component information, the second component information and the third component information can be regarded as a human heartbeat signal.

处理器13接着会将第一成分信息、第二成分信息及第三成分信息分别转换至一频率域,藉此取得一第一频域信息、一第二频域信息及一第三频域信息。之后,处理器13计算第一频域信息于预设频率范围的一能量值,第二频域信息于预设频率范围的一能量值,及第三频域信息于预设频率范围的一能量值。只要第一频域信息、第二频域信息或第三频域信息其中的一的能量值大于预设值,则存储器单元15内所储存的人脸影像会被认定为撷取自一真人。The processor 13 then converts the first component information, the second component information and the third component information into a frequency domain, thereby obtaining a first frequency domain information, a second frequency domain information and a third frequency domain information . Afterwards, the processor 13 calculates an energy value of the first frequency domain information in the preset frequency range, an energy value of the second frequency domain information in the preset frequency range, and an energy value of the third frequency domain information in the preset frequency range value. As long as the energy value of one of the first frequency domain information, the second frequency domain information or the third frequency domain information is greater than a preset value, the face image stored in the memory unit 15 is identified as being captured from a real person.

除了上述步骤,第二实施例亦能执行第一实施例所描述的所有操作及功能,所属技术领域具有通常知识者可直接了解第二实施例如何基于上述第一实施例以执行此等操作及功能,故不赘述。In addition to the above steps, the second embodiment can also perform all the operations and functions described in the first embodiment, and those skilled in the art can directly understand how the second embodiment performs these operations and functions based on the above-mentioned first embodiment function, so I won’t go into details.

本发明的第三实施例为一人脸影像辨识方法,其流程图如图2A及图2B所示。此人脸影像辨识方法适用于一电子装置,例如第一实施例及第二实施例的人脸影像辨识装置1。此电子装置包含一处理器及一存储器单元,且此存储器单元储存复数张人脸影像。The third embodiment of the present invention is a face image recognition method, the flow chart of which is shown in FIG. 2A and FIG. 2B . The face image recognition method is applicable to an electronic device, such as the face image recognition device 1 of the first embodiment and the second embodiment. The electronic device includes a processor and a memory unit, and the memory unit stores a plurality of face images.

首先,人脸影像辨识方法执行步骤S21,以使处理器对各该人脸影像计算一红色成分统计信息、一绿色成分统计信息及一蓝色成分统计信息。First, the face image recognition method executes step S21, so that the processor calculates a red component statistical information, a green component statistical information and a blue component statistical information for each of the human face images.

举例而言,步骤S21可藉由图2C所描绘的细部流程图来完成。于步骤S211中,人脸影像辨识方法使处理器分离各张人脸影像的红色成分、绿色成分及蓝色成分,藉此得到复数张红色成分影像、复数张绿色成分影像及复数张蓝色成分影像。接着,步骤S212使处理器对各该红色成分影像计算,以得该等红色成分统计信息。步骤S213使处理器对各该绿色成分影像计算,以得该等绿色成分统计信息。步骤S214使处理器对各该蓝色成分影像计算,以得该等蓝色成分统计信息。须说明者,本实施例并未限制步骤S212、S213及S214的执行顺序。再者,各该红色成分统计信息可为相对应的该红色成分影像的平均亮度值、最大亮度值、最小亮度值或其他统计值,各该绿色成分统计信息为相对应的该绿色成分影像的平均亮度值、最大亮度值、最小亮度值或其他统计值,且各该蓝色成分统计信息为相对应的该蓝色成分影像的平均亮度值、最大亮度值、最小亮度值或其他统计值。For example, step S21 can be accomplished through the detailed flowchart depicted in FIG. 2C . In step S211, the face image recognition method makes the processor separate the red component, green component and blue component of each face image, thereby obtaining a plurality of red component images, a plurality of green component images and a plurality of blue components image. Next, step S212 enables the processor to perform calculations on each of the red component images to obtain the red component statistical information. Step S213 enables the processor to perform calculations on each of the green component images to obtain the green component statistical information. Step S214 enables the processor to perform calculations on each of the blue component images to obtain the blue component statistical information. It should be noted that the present embodiment does not limit the execution sequence of steps S212 , S213 and S214 . Furthermore, each statistical information of the red component can be the average luminance value, maximum luminance value, minimum luminance value or other statistical values of the corresponding red component image, and each of the green component statistical information is the corresponding green component image. The average brightness value, maximum brightness value, minimum brightness value or other statistical values, and each of the blue component statistical information is the average brightness value, maximum brightness value, minimum brightness value or other statistical values of the corresponding blue component image.

于步骤S21后,人脸影像辨识方法执行步骤S22,使处理器利用独立成分分析法对该等红色成分统计信息、该等绿色成分统计信息及该等蓝色成分统计信息中的至少二种颜色成分统计信息进行处理,藉此取得一第一成分信息及一第二成分信息。After step S21, the face image recognition method executes step S22, so that the processor uses the independent component analysis method to analyze at least two colors in the red component statistical information, the green component statistical information and the blue component statistical information The component statistical information is processed to obtain a first component information and a second component information.

接着,步骤S23使处理器分别将该第一成分信息及该第二成分信息转换至一频率域,藉此取得一第一频域信息及一第二频域信息。举例而言,步骤S23可使处理器采用傅里叶转换法。Next, step S23 enables the processor to convert the first component information and the second component information into a frequency domain, thereby obtaining a first frequency domain information and a second frequency domain information. For example, step S23 can enable the processor to adopt the Fourier transform method.

人脸影像辨识方法之后执行步骤S24,使处理器计算第一频域信息于一预设频率范围的一能量值。接着执行步骤25,使处理器判断第一频域信息于预设频率范围的能量值是否大于一预设值。若步骤S25的判断结果为是,人脸影像辨识方法便执行步骤S29,使处理器判断该等人脸影像系撷取自真人。若步骤S25的结果为否,则执行步骤S26使处理器计算第二频域信息于一预设频率范围的一能量值。接着步骤S27使处理器判断第二频域信息于预设频率范围的能量值是否大于预设值。若步骤S27的判断结果为是,人脸影像辨识方法便执行步骤S29,使处理器判断该等人脸影像系撷取自真人。若步骤S25的判断结果为否,人脸影像辨识方法便执行步骤S28,使处理器判断该等人脸影像系撷取自假人。The face image recognition method then executes step S24 to enable the processor to calculate an energy value of the first frequency domain information in a preset frequency range. Then step 25 is executed to enable the processor to determine whether the energy value of the first frequency domain information in the predetermined frequency range is greater than a predetermined value. If the judgment result of step S25 is yes, the face image recognition method executes step S29 to make the processor judge that the face images are captured from real people. If the result of step S25 is negative, step S26 is executed to enable the processor to calculate an energy value of the second frequency domain information in a predetermined frequency range. Then step S27 enables the processor to determine whether the energy value of the second frequency domain information in the preset frequency range is greater than a preset value. If the judgment result of step S27 is yes, the face image recognition method executes step S29 to make the processor judge that the face images are captured from real people. If the judgment result of step S25 is negative, the face image recognition method executes step S28 to make the processor judge that the face images are taken from dummy persons.

须说明者,步骤S24至步骤S29亦可改由其他步骤来加以实现。举例而言,可先计算第一频域信息于一预设频率范围的一能量值,并计算计算第二频域信息于一预设频率范围的一能量值。接着选取此二能量值较大者进行后续的比对。倘若此二能量值较大者大于预设值,则处理器便能判断该等人脸影像系撷取自真人。倘若此二能量值较大者小于预设值,则处理器便能判断该等人脸影像系撷取自假人。It should be noted that steps S24 to S29 can also be implemented by other steps instead. For example, an energy value of the first frequency domain information in a preset frequency range may be calculated first, and an energy value of the second frequency domain information in a preset frequency range may be calculated. Then, the one with the larger energy value is selected for subsequent comparison. If the larger of the two energy values is greater than the preset value, the processor can determine that the face images are taken from real people. If the larger of the two energy values is smaller than the preset value, the processor can determine that the face images are taken from dummy people.

倘若前述步骤S27的判断结果为是且人脸影像辨识方法因此执行步骤S29,则人脸影像辨识方法可继续进行登入程序。具体而言,人脸影像辨识方法可进一步执行步骤S291,使电子装置的一接收接口接收一登入信息;接着,人脸影像辨识方法执行步骤S293,使处理器处理此登入信息。举例而言,假设登入信息包含使用者的帐号及密码,则步骤S293便使处理器判断此帐号及密码是否正确。须说明者,倘若前述步骤S27的判断结果为否且人脸影像辨识方法因此执行步骤S28,则人脸影像辨识方法不会进行登入程序。If the determination result of the aforementioned step S27 is yes and the face image recognition method executes step S29 accordingly, the face image recognition method can continue to perform the login procedure. Specifically, the face image recognition method can further execute step S291, so that a receiving interface of the electronic device receives a login information; then, the face image recognition method executes step S293, so that the processor processes the login information. For example, if the login information includes the user's account number and password, step S293 enables the processor to determine whether the account number and password are correct. It should be noted that if the determination result of the aforementioned step S27 is negative and the face image recognition method executes step S28 accordingly, the face image recognition method will not perform the login procedure.

除了上述步骤,第三实施例亦能执行第一实施例所描述的所有操作及功能,所属技术领域具有通常知识者可直接了解第三实施例如何基于上述第一实施例以执行此等操作及功能,故不赘述。In addition to the above steps, the third embodiment can also perform all the operations and functions described in the first embodiment, and those skilled in the art can directly understand how the third embodiment performs these operations and functions based on the above-mentioned first embodiment function, so I won’t go into details.

本发明的第四实施例为一人脸影像辨识方法,其流程图如图3所示。此人脸影像辨识方法适用于一电子装置,例如第一实施例及第二实施例的人脸影像辨识装置1。此电子装置包含一处理器及一存储器单元,且此存储器单元储存复数张人脸影像。第四实施例的详细流程与第三实施例稍有不同。以下将仅详述第四实施例与第三实施例的相异处。The fourth embodiment of the present invention is a face image recognition method, the flowchart of which is shown in FIG. 3 . The face image recognition method is applicable to an electronic device, such as the face image recognition device 1 of the first embodiment and the second embodiment. The electronic device includes a processor and a memory unit, and the memory unit stores a plurality of face images. The detailed flow of the fourth embodiment is slightly different from that of the third embodiment. Only the differences between the fourth embodiment and the third embodiment will be described in detail below.

与第三实施例相同,第四实施例的人脸影像辨识方法先执行步骤S21,使处理器对各该人脸影像计算一红色成分统计信息、一绿色成分统计信息及一蓝色成分统计信息。步骤S21亦可藉由图2C所绘示的步骤S211、S212、S213及S214来完成。Same as the third embodiment, the face image recognition method of the fourth embodiment first executes step S21, so that the processor calculates a red component statistical information, a green component statistical information and a blue component statistical information for each of the human face images . Step S21 can also be completed by steps S211 , S212 , S213 and S214 shown in FIG. 2C .

第四实施例接着执行步骤S32,使处理器利用独立成分分析法对该等红色成分统计信息、该等绿色成分统计信息及该等蓝色成分统计信息中的全部颜色成分统计信息进行处理,藉此取得一第一成分信息、一第二成分信息及一第三成分信息。之后,步骤S33使处理器分别将该第一成分信息、该第二成分信息及该第三成分信息转换至一频率域,藉此取得一第一频域信息、一第二频域信息及一第三频域信息。The fourth embodiment then executes step S32, so that the processor uses the independent component analysis method to process all the statistical information of the red components, the statistical information of the green components, and the statistical information of the blue components. This obtains a first component information, a second component information and a third component information. Afterwards, step S33 enables the processor to convert the first component information, the second component information and the third component information into a frequency domain, thereby obtaining a first frequency domain information, a second frequency domain information and a Third frequency domain information.

接着,执行步骤S34、S35及S36,使处理器计算第一频域信息、第二频域信息及第三频域信息各自于一预设频率范围的一能量值。须说明者,第四实施例并未限制步骤S34、S35及S36的执行顺序。于步骤S37,处理器选取步骤S34、步骤S35及步骤S36的三个能量值的较大者以便进行后续的处理。Next, steps S34 , S35 and S36 are executed to enable the processor to calculate an energy value of each of the first frequency domain information, the second frequency domain information and the third frequency domain information in a preset frequency range. It should be noted that the fourth embodiment does not limit the execution order of steps S34 , S35 and S36 . In step S37, the processor selects the larger of the three energy values in steps S34, S35 and S36 for subsequent processing.

第四实施例接着执行步骤S38,判断步骤S37所选取的能量值是否大于预设值。若步骤S37的判断结果为是,则执行步骤S39,使处理器判断该等人脸影像系撷取自真人。若步骤S37的判断结果为否,人脸影像辨识方法便执行步骤S40,使处理器判断该等人脸影像系撷取自假人。The fourth embodiment then executes step S38 to determine whether the energy value selected in step S37 is greater than a preset value. If the judging result of step S37 is yes, then step S39 is executed to make the processor judge that the face images are captured from real people. If the judgment result of step S37 is negative, the face image recognition method executes step S40 to make the processor judge that the face images are captured from dummy persons.

类似的,第四实施例的步骤S34至S40亦可改由其他步骤来加以实现。举例而言,第四实施例可先计算Similarly, steps S34 to S40 of the fourth embodiment can also be implemented by other steps instead. For example, the fourth embodiment can first calculate

第一频域信息、第二频域信息及第三频域信息其中的一于预设频率范围的能量值,并判断该能量值是否大于一预设值。若是,则该等人脸影像系撷取自真人,便可停止运作;若否,则再选取其他的频域信息计算能量值及后续的判断。后续的处理依此类推。倘若所有的频域信息的能量值皆不大于预设值,则该等人脸影像系撷取自假人。An energy value of one of the first frequency domain information, the second frequency domain information and the third frequency domain information in a preset frequency range, and judging whether the energy value is greater than a preset value. If yes, the face images are taken from real people, and the operation can be stopped; if not, other frequency domain information is selected to calculate energy values and subsequent judgments. Subsequent processing and so on. If the energy values of all the frequency domain information are not greater than the preset value, then the face images are taken from dummy people.

除了上述步骤,第四实施例亦能执行第二实施例所描述的所有操作及功能,所属技术领域具有通常知识者可直接了解第四实施例如何基于上述第二实施例以执行此等操作及功能,故不赘述。In addition to the above-mentioned steps, the fourth embodiment can also perform all the operations and functions described in the second embodiment, and those skilled in the art can directly understand how the fourth embodiment performs these operations and functions based on the above-mentioned second embodiment function, so I won’t go into details.

另外,第三实施例及第四实施例所描述的人脸影像辨识方法可由一电脑程式产品执行,当电子装置或人脸辨识装置载入该电脑程式产品,并执行该电脑程式产品所包含的复数个指令后,即可完成第三实施及第四实施例例所述的投影方法。前述的电脑程式产品可储存于电脑可读取记录媒体中,例如唯读存储器(readonlymemory;ROM)、快闪存储器、软碟、硬碟、光碟、随身碟、磁带、可由网路存取的资料库或熟习此项技艺者所习知且具有相同功能的任何其它储存媒体中。In addition, the facial image recognition method described in the third embodiment and the fourth embodiment can be executed by a computer program product, when the electronic device or face recognition device loads the computer program product and executes the computer program product contained in the computer program product After a plurality of instructions, the projection method described in the third implementation and the fourth embodiment can be completed. The aforementioned computer program product may be stored in a computer-readable recording medium, such as read-only memory (ROM), flash memory, floppy disk, hard disk, optical disk, flash drive, magnetic tape, and data accessible through the Internet. library or any other storage medium known to those skilled in the art that can perform the same function.

由上述第一至第四实施例的说明可知,本发明所提供的人脸影像辨识方法及人脸影像辨识装置系利用独立成分分析法对复数张人脸影像的不同颜色成分的统计信息进行分析,藉此获取至少第一成分信息及第二成分信息。第一成分信息及第二成分信息其中的一可视为人类心跳的信号。本发明之后再将第一成分信息及第二成分信息转换至频率域以分析该二成分信息于频率域上的能量值,再根据能量值判断该等人脸影像系撷取自真人或假人。From the above descriptions of the first to fourth embodiments, it can be seen that the face image recognition method and face image recognition device provided by the present invention use the independent component analysis method to analyze the statistical information of different color components of a plurality of face images , so as to obtain at least the first component information and the second component information. One of the first component information and the second component information can be regarded as a human heartbeat signal. The present invention then converts the first component information and the second component information to the frequency domain to analyze the energy value of the two component information in the frequency domain, and then judges based on the energy value whether the face images are taken from real people or dummy people .

简言之,本发明系对人脸影像中的颜色成分的统计信息进行分析再为后续的处理及判断。从各张人脸影像的角度观之,由于各颜色成分系来自整张影像,而非影像中的一小部份,故所涵盖的信息较为准确,不会因为影像的解析度不佳而影响到后续的处理及判断结果。In short, the present invention analyzes the statistical information of the color components in the face image for subsequent processing and judgment. From the perspective of each face image, since each color component comes from the entire image, not a small part of the image, the information covered is more accurate and will not be affected by the poor resolution of the image. to subsequent processing and judgment results.

上述的实施例仅用来举例本发明的实施态样,以及阐述本发明的技术特征,并非用来限制本发明的保护范畴。任何熟悉此技术者可轻易完成的改变或均等性的安排均属于本发明所主张的范围,本发明的权利保护范围应以本发明权利要求范围为准。The above-mentioned embodiments are only used to illustrate the implementation of the present invention and illustrate the technical features of the present invention, and are not intended to limit the scope of protection of the present invention. Any changes or equivalence arrangements that can be easily accomplished by those skilled in the art belong to the scope of the present invention, and the protection scope of the present invention should be based on the scope of the claims of the present invention.

Claims (17)

1.一种人脸影像辨识方法,适用于一电子装置,所述的电子装置包含一处理器及一存储器单元,所述的存储器单元储存复数张人脸影像,其特征在于,所述的人脸影像辨识方法包含下列步骤:1. A face image recognition method, suitable for an electronic device, the electronic device includes a processor and a memory unit, the memory unit stores a plurality of face images, it is characterized in that the person The face image recognition method includes the following steps: (a)使所述的处理器对各所述的人脸影像计算一红色成分统计信息、一绿色成分统计信息及一蓝色成分统计信息;(a) causing the processor to calculate a red component statistical information, a green component statistical information and a blue component statistical information for each of the described human face images; (b)使所述的处理器利用一独立成分分析法对所述的红色成分统计信息、所述的绿色成分统计信息及所述的蓝色成分统计信息中的至少二种颜色成分统计信息进行处理,藉此取得一第一成分信息及一第二成分信息;(b) causing the processor to perform an independent component analysis on at least two color component statistical information among the red component statistical information, the green component statistical information, and the blue component statistical information processing, thereby obtaining a first component information and a second component information; (c)使所述的处理器分别将所述的第一成分信息及所述的第二成分信息转换至一频率域,藉此取得一第一频域信息及一第二频域信息;(c) causing the processor to respectively convert the first component information and the second component information into a frequency domain, thereby obtaining a first frequency domain information and a second frequency domain information; (d)使所述的处理器计算所述的第一频域信息于一预设频率范围的一能量值;以及(d) causing the processor to calculate an energy value of the first frequency domain information in a predetermined frequency range; and (e)使所述的处理器将所述的能量值与一预设值进行比较,藉此决定所述的人脸影像撷取自一真人或一假人。(e) making the processor compare the energy value with a preset value, thereby determining that the face image is captured from a real person or a dummy. 2.如权利要求1所述的人脸影像辨识方法,其特征在于,所述的步骤(a)包含下列步骤:2. the facial image recognition method as claimed in claim 1, is characterized in that, described step (a) comprises the following steps: (a1)使所述的处理器分离各所述的人脸影像的红色成分、绿色成分及蓝色成分,藉此得到复数张红色成分影像、复数张绿色成分影像及复数张蓝色成分影像;(a1) causing the processor to separate the red component, green component and blue component of each of the human face images, thereby obtaining a plurality of red component images, a plurality of green component images and a plurality of blue component images; (a2)使所述的处理器对各所述的红色成分影像计算,以得所述的红色成分统计信息;(a2) causing the processor to calculate each of the red component images to obtain the statistical information of the red component; (a3)使所述的处理器对各所述的绿色成分影像计算,以得所述的绿色成分统计信息;以及(a3) causing the processor to calculate each of the green component images to obtain the green component statistical information; and (a4)使所述的处理器对各所述的蓝色成分影像计算,以得所述的蓝色成分统计信息。(a4) enabling the processor to perform calculations on each of the blue component images to obtain the blue component statistical information. 3.如权利要求2所述的人脸影像辨识方法,其特征在于,所述的各红色成分统计信息为相对应的所述的红色成分影像的一平均亮度值,各所述的绿色成分统计信息为相对应的所述的绿色成分影像的一平均亮度值,且各所述的蓝色成分统计信息为相对应的所述的蓝色成分影像的一平均亮度值。3. The face image recognition method according to claim 2, wherein each of the statistical information of the red components is an average brightness value of the corresponding red component image, and each of the statistical information of the green components is The information is an average brightness value of the corresponding green component image, and each of the blue component statistical information is an average brightness value of the corresponding blue component image. 4.如权利要求1所述的人脸影像辨识方法,其特征在于,所述的步骤(b)系使所述的处理器利用所述的独立成分分析法对所述的红色成分统计信息、所述的绿色成分统计信息及所述的蓝色成分统计信息进行处理,以取得所述的第一成分信息、所述的第二成分信息及一第三成分信息,所述的步骤(c)更使所述的处理器将所述的第三成分信息转换至所述的频率域,藉此取得一第三频域信息。4. The face image recognition method as claimed in claim 1, wherein said step (b) is to make said processor utilize said independent component analysis method to analyze said red component statistical information, The green component statistical information and the blue component statistical information are processed to obtain the first component information, the second component information and a third component information, and the step (c) Further enabling the processor to convert the third component information into the frequency domain, thereby obtaining a third frequency domain information. 5.如权利要求1所述的人脸影像辨识方法,其特征在于,所述的步骤(c)系使所述的处理器分别对所述的第一成分信息及所述的第二成分信息进行一快速傅里叶转换,藉此取得所述的第一频域信息及所述的第二频域信息。5. The facial image recognition method as claimed in claim 1, wherein said step (c) is to make said processor respectively analyze said first component information and said second component information performing a fast Fourier transform to obtain the first frequency domain information and the second frequency domain information. 6.如权利要求1所述的人脸影像辨识方法,其特征在于,当所述的能量值大于所述的预设值时,所述的步骤(e)决定所述的人脸影像系撷取自所述的真人。6. The face image recognition method as claimed in claim 1, wherein when said energy value is greater than said preset value, said step (e) determines said face image to be retrieved Taken from said real person. 7.如权利要求1所述的人脸影像辨识方法,其特征在于,当所述的能量值小于所述的预设值时,所述的步骤(e)决定所述的人脸影像系撷取自所述的假人。7. The face image recognition method as claimed in claim 1, wherein when said energy value is less than said preset value, said step (e) determines said face image to be retrieved Taken from the dummies described. 8.如权利要求1所述的人脸影像辨识方法,其特征在于,所述的步骤(e)系决定所述的人脸影像撷取自一真人,且所述的人脸影像辨识方法更包含以下步骤:8. The face image recognition method as claimed in claim 1, wherein said step (e) determines that said face image is captured from a real person, and said face image recognition method is further Contains the following steps: 使所述的电子装置的一接收接口接收一登入信息;及making a receiving interface of the electronic device receive a login message; and 使所述的处理器处理所述的登入信息。causing the processor to process the login information. 9.一种人脸影像辨识装置,其特征在于,所述的人脸影像辨识装置包含:9. A human face image recognition device, characterized in that the human face image recognition device comprises: 一存储器单元,储存复数张人脸影像;A memory unit for storing multiple face images; 一处理器,电性连接至所述的存储器单元,所述的处理器包括:A processor electrically connected to the memory unit, the processor comprising: 第一模块,用于对各所述的人脸影像计算一红色成分统计信息、一绿色成分统计信息及一蓝色成分统计信息,The first module is used to calculate a red component statistical information, a green component statistical information and a blue component statistical information for each of the human face images, 第二模块,用于利用一独立成分分析法对所述的红色成分统计信息、所述的绿色成分统计信息及所述的蓝色成分统计信息中的至少二种颜色成分统计信息进行处理,藉此取得一第一成分信息及一第二成分信息,The second module is used to use an independent component analysis method to process at least two kinds of color component statistical information among the red component statistical information, the green component statistical information and the blue component statistical information, by This obtains a first component information and a second component information, 第三模块,用于分别将所述的第一成分信息及所述的第二成分信息转换至一频率域,藉此取得一第一频域信息及一第二频域信息,A third module, configured to respectively convert the first component information and the second component information into a frequency domain, thereby obtaining a first frequency domain information and a second frequency domain information, 第四模块,用于计算所述的第一频域信息于一预设频率范围的一能量值,以及A fourth module, configured to calculate an energy value of the first frequency domain information in a preset frequency range, and 第五模块,用于将所述的能量值与一预设值进行比较,藉此决定所述的人脸影像撷取自一真人或一假人。The fifth module is used for comparing the energy value with a preset value, so as to determine that the face image is captured from a real person or a dummy. 10.如权利要求9所述的人脸影像辨识装置,其特征在于,所述的第一模块分离各所述的人脸影像的红色成分、绿色成分及蓝色成分,藉此得到复数张红色成分影像、复数张绿色成分影像及复数张蓝色成分影像,所述的第一模块对各所述的红色成分影像计算,以得所述的红色成分统计信息,所述的第一模块对各所述的绿色成分影像计算,以得所述的绿色成分统计信息,且所述的第一模块对各所述的蓝色成分影像计算,以得所述的蓝色成分统计信息。10. The human face image recognition device according to claim 9, wherein the first module separates the red component, green component and blue component of each of the human face images, thereby obtaining a plurality of red component images, a plurality of green component images and a plurality of blue component images, the first module calculates each of the red component images to obtain the red component statistical information, and the first module calculates each The green component image is calculated to obtain the green component statistical information, and the first module is calculated for each of the blue component images to obtain the blue component statistical information. 11.如权利要求10所述的人脸影像辨识装置,其特征在于,所述的各红色成分统计信息为相对应的所述的红色成分影像的一平均亮度值,各所述的绿色成分统计信息为相对应的所述的绿色成分影像的一平均亮度值,且各所述的蓝色成分统计信息为相对应的所述的蓝色成分影像的一平均亮度值。11. The face image recognition device according to claim 10, wherein each of the statistical information of the red components is an average brightness value of the corresponding red component image, and each of the statistical information of the green components is The information is an average brightness value of the corresponding green component image, and each of the blue component statistical information is an average brightness value of the corresponding blue component image. 12.如权利要求9所述的人脸影像辨识装置,其特征在于,所述的第二模块利用所述的独立成分分析法对所述的红色成分统计信息、所述的绿色成分统计信息及所述的蓝色成分统计信息进行处理,以取得所述的第一成分信息、所述的第二成分信息及一第三成分信息,所述的第二模块更将所述的第三成分信息转换至所述的频率域,藉此取得一第三频域信息。12. The human face image recognition device according to claim 9, wherein said second module utilizes said independent component analysis method to analyze said red component statistical information, said green component statistical information and The blue component statistical information is processed to obtain the first component information, the second component information and a third component information, and the second module further converts the third component information Convert to the frequency domain, thereby obtaining a third frequency domain information. 13.如权利要求9所述的人脸影像辨识装置,其特征在于,所述的第三模块分别对所述的第一成分信息及所述的第二成分信息进行一快速傅里叶转换,藉此取得所述的第一频域信息及所述的第二频域信息。13. The face image recognition device according to claim 9, wherein said third module performs a fast Fourier transform on said first component information and said second component information respectively, In this way, the first frequency domain information and the second frequency domain information are obtained. 14.如权利要求9所述的人脸影像辨识装置,其特征在于,当所述的能量值大于所述的预设值时,所述的第五模块决定所述的人脸影像系撷取自所述的真人。14. The face image recognition device according to claim 9, wherein when the energy value is greater than the preset value, the fifth module determines that the face image is to be captured from the real person described. 15.如权利要求9所述的人脸影像辨识装置,其特征在于,当所述的能量值小于所述的预设值时,所述的第五模块决定所述的人脸影像系撷取自所述的假人。15. The face image recognition device according to claim 9, wherein when the energy value is smaller than the preset value, the fifth module determines that the face image is to be captured from the dummies described. 16.如权利要求9所述的人脸影像辨识装置,其特征在于,所述的人脸影像识别装置更包含:16. The human face image recognition device as claimed in claim 9, wherein the human face image recognition device further comprises: 一影像感测器,用以撷取复数张影像;以及an image sensor for capturing a plurality of images; and 第六模块,用于对各所述的影像进行人脸侦测以得所述的人脸影像。The sixth module is used to perform face detection on each of the images to obtain the face images. 17.如权利要求9所述的人脸影像辨识装置,其特征在于,所述的人脸影像识别装置更包含:17. The human face image recognition device as claimed in claim 9, wherein the human face image recognition device further comprises: 一接收接口,电性连接至所述的处理器,且于所述的第五模块决定所述的人脸影像系撷取自一真人后,接收一登入信息;以及a receiving interface, electrically connected to the processor, and receiving a login message after the fifth module determines that the face image is captured from a real person; and 第七模块,用于处理所述的登入信息。The seventh module is used for processing the login information.
CN201110355062.0A 2011-11-10 2011-11-10 Face image recognition method and device Active CN103106385B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110355062.0A CN103106385B (en) 2011-11-10 2011-11-10 Face image recognition method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110355062.0A CN103106385B (en) 2011-11-10 2011-11-10 Face image recognition method and device

Publications (2)

Publication Number Publication Date
CN103106385A CN103106385A (en) 2013-05-15
CN103106385B true CN103106385B (en) 2016-06-01

Family

ID=48314235

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110355062.0A Active CN103106385B (en) 2011-11-10 2011-11-10 Face image recognition method and device

Country Status (1)

Country Link
CN (1) CN103106385B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107205104A (en) * 2017-04-24 2017-09-26 奇鋐科技股份有限公司 face recognition module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101216887A (en) * 2008-01-04 2008-07-09 浙江大学 Computer Automatic Discrimination Method of Photographic Face and Live Human Face
CN101999900A (en) * 2009-08-28 2011-04-06 南京壹进制信息技术有限公司 Living body detecting method and system applied to human face recognition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8260008B2 (en) * 2005-11-11 2012-09-04 Eyelock, Inc. Methods for performing biometric recognition of a human eye and corroboration of same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101216887A (en) * 2008-01-04 2008-07-09 浙江大学 Computer Automatic Discrimination Method of Photographic Face and Live Human Face
CN101999900A (en) * 2009-08-28 2011-04-06 南京壹进制信息技术有限公司 Living body detecting method and system applied to human face recognition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Live Face Detection Based on the Analysis of Fourier Spectra;Li Jiangwei,et al.;《Biometric Technology for Human Identification,Proc.of SPIE,2004》;20040825;296-303 *

Also Published As

Publication number Publication date
CN103106385A (en) 2013-05-15

Similar Documents

Publication Publication Date Title
JP5567853B2 (en) Image recognition apparatus and method
CN111274928A (en) Living body detection method and device, electronic equipment and storage medium
CN108711161A (en) Image segmentation method, image segmentation device and electronic equipment
JP2020184331A (en) Liveness inspection method and device, face recognition method and device
JP6157165B2 (en) Gaze detection device and imaging device
WO2016197389A1 (en) Method and device for detecting living object, and mobile terminal
JP6028453B2 (en) Image processing apparatus, image processing method, and image processing program
Safaa El‐Din et al. Deep convolutional neural networks for face and iris presentation attack detection: Survey and case study
CN114387548A (en) Video and living body detection methods, systems, devices, storage media, and program products
CN110348385B (en) Living body face recognition method and device
RU2556417C2 (en) Detecting body movements using digital colour rear projection
TWI455041B (en) Human face recognition method and apparatus
CN118657783B (en) Screen image anomaly detection system based on image recognition
CN105229700A (en) For extracting equipment and the method for peak image from multiple continuously shot images
CN111767829B (en) Living body detection method, device, system and storage medium
CN103106385B (en) Face image recognition method and device
CN110533809B (en) Method and device for determining performance of non-inductive passing system and computing equipment
JPWO2018179119A1 (en) Video analysis device, video analysis method, and program
US12307819B2 (en) Identification model generation apparatus, identification apparatus, identification model generation method, identification method, and storage medium
CN102314612B (en) The recognition methods of a kind of smiling face's image, identification device and image acquisition equipment
KR20110124644A (en) Environmental Variable Measurement Method for Multi-Modal Fusion
CN116473520A (en) Electronic equipment and its skin quality analysis method and device
CN111275045B (en) Image subject recognition methods, devices, electronic equipment and media
CN116670776A (en) Apparatus and method for adjusting skin injury detection model
CN118379781B (en) Damping-off face recognition method and device based on damping-off face recognition model

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant