CN103095533A - Timed monitoring method in cloud calculating system platform - Google Patents
Timed monitoring method in cloud calculating system platform Download PDFInfo
- Publication number
- CN103095533A CN103095533A CN2013100566791A CN201310056679A CN103095533A CN 103095533 A CN103095533 A CN 103095533A CN 2013100566791 A CN2013100566791 A CN 2013100566791A CN 201310056679 A CN201310056679 A CN 201310056679A CN 103095533 A CN103095533 A CN 103095533A
- Authority
- CN
- China
- Prior art keywords
- cloud computing
- monitoring
- computing system
- module
- system platform
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Debugging And Monitoring (AREA)
Abstract
本发明提供一种云计算系统平台中的定时监控方法,该方法是在云计算系统中为定时监控系统提供一种预测机制,使云计算系统平台更加稳定和持续的提供服务,该系统是以云计算系统平台中存储的历史性能数据为基础,结合监控调度模块,实现对云计算系统平台中定时任务的监控,云计算系统平台中的数据采集模块负责收集各个业务模块的性能参数和报警日志采集,通过系统的故障预测模块,对各个监控的节点组收集的信息进行统计分析,生成系统性能预测分析报送到系统管理员,系统管理员可以依据分析进行系统的优化来避免故障的产生,从而为云计算系统平台的持续运行提供良好的预警防范措施。
The invention provides a timing monitoring method in a cloud computing system platform. The method is to provide a prediction mechanism for the timing monitoring system in the cloud computing system, so that the cloud computing system platform can provide services more stably and continuously. The system is based on Based on the historical performance data stored in the cloud computing system platform, combined with the monitoring and scheduling module, the monitoring of scheduled tasks in the cloud computing system platform is realized. The data acquisition module in the cloud computing system platform is responsible for collecting the performance parameters and alarm logs of each business module Acquisition, through the fault prediction module of the system, statistical analysis is performed on the information collected by each monitored node group, and the system performance prediction analysis is generated and reported to the system administrator. The system administrator can optimize the system based on the analysis to avoid the occurrence of faults. So as to provide good early warning and preventive measures for the continuous operation of the cloud computing system platform.
Description
技术领域 technical field
本发明涉及一种云计算系统平台中的定时监控策略,具体涉及一种云计算系统平台中的定时监控方法。 The invention relates to a timing monitoring strategy in a cloud computing system platform, in particular to a timing monitoring method in a cloud computing system platform.
背景技术 Background technique
云计算是一种以虚拟化技术为进程,网络为载体,并提供基础构架、平台和软件等服务为形式,通过廉价的计算机资源为用户提供快捷、可靠和高效的服务。云计算平台系统是对云计算平台上的各种资源进行管理的系统,云计算系统平台把庞大的基础设施、数据存储、软件组成相互共享与协作的资源池,并在此基础上抽象出层次化服务。云服务使人们不必关心底层的具体实现细节,只是把计算和存储放到云端来处理,就像用水和电一样便利。 Cloud computing is a process that takes virtualization technology as the process, network as the carrier, and provides services such as infrastructure, platform and software as the form, and provides users with fast, reliable and efficient services through cheap computer resources. The cloud computing platform system is a system that manages various resources on the cloud computing platform. The cloud computing system platform forms a resource pool that shares and cooperates with each other with huge infrastructure, data storage, and software, and abstracts out layers on this basis. services. Cloud services make people don't have to care about the specific implementation details of the underlying layer, but put computing and storage in the cloud for processing, which is as convenient as water and electricity.
定时监控是云计算系统平台的重要组成部分,它是云计算系统平台中如系统管理、资源的调度、网络的分析和故障检测等操作的前提,而监控技术中的任务调度本身涉及到多线程并发、运行的时间规则产生和解析、各种场景的保持与恢复和线程池维护等很多方面的工作。 Timing monitoring is an important part of the cloud computing system platform. It is the premise of operations such as system management, resource scheduling, network analysis, and fault detection in the cloud computing system platform. The task scheduling in monitoring technology itself involves multi-threading. Concurrency, running time rule generation and analysis, maintenance and recovery of various scenarios, thread pool maintenance and many other aspects of work.
综上所述,云计算系统平台中的监控对于提高云计算系统平台的服务质量发挥重要的作用。 To sum up, the monitoring in the cloud computing system platform plays an important role in improving the service quality of the cloud computing system platform.
发明内容 Contents of the invention
本发明的目的是提供一种云计算系统平台中的定时监控方法。 The purpose of the present invention is to provide a timing monitoring method in a cloud computing system platform.
现在大多数的云计算系统中的监控先对采集到的数据进行分析,并存储到数据库中。然而这些都是在事件发生之后的处理,具有延后性,易影响到云计算服务的正常使用。 Most of the monitoring in cloud computing systems now analyzes the collected data and stores them in the database. However, these are all processed after the event occurs, which is delayed and can easily affect the normal use of cloud computing services.
本发明的目的是按以下方式实现的,在云计算系统中为定时监控系统提供一种预测机制,使云计算系统平台更加稳定和持续的提供服务,该系统是以云计算系统平台中存储的历史性能数据为基础,结合监控调度模块,实现对云计算系统平台中定时任务的监控,系统包括:1)数据采集模块 2)故障预测监控模块,其中: The purpose of the present invention is achieved in the following manner, in the cloud computing system, a predictive mechanism is provided for the timing monitoring system, so that the cloud computing system platform can provide services more stably and continuously, and the system is stored in the cloud computing system platform Based on historical performance data, combined with the monitoring and scheduling module, the monitoring of timing tasks in the cloud computing system platform is realized. The system includes: 1) data acquisition module 2) fault prediction and monitoring module, of which:
1)数据采集模块,是云计算系统平台中的各个定时业务模块进行数据的采集; 1) The data collection module is the data collection of each timing business module in the cloud computing system platform;
2)故障预测监控模块,采用层级式结构设计,监控被分成具有关联的若干个组,每个监控子节点属于上层父节点的子分支,而每个子节点不仅坑处理本组内的监控事物,同时向上层的父节点反馈监控情况和向下层叶子节点传递监控命令,故障监控预测模块对各个子监控节点的采集信息经过统计分析后,并预测系统可能发生的故障的某些业务模块和具体的时间点,将预测结果反馈于根监控节点对系统管理员进行预警提示,从而确保云计算系统平台的提供持续、高质量的服务。 2) The fault prediction and monitoring module adopts a hierarchical structure design, and the monitoring is divided into several groups with associations. Each monitoring sub-node belongs to the sub-branch of the upper parent node, and each sub-node not only handles the monitoring items in this group, but also At the same time, the monitoring situation is fed back to the parent node of the upper layer and the monitoring command is transmitted to the lower leaf node. After the fault monitoring and prediction module collects the information collected by each sub-monitoring node through statistical analysis, it predicts some business modules and specific faults that may occur in the system. At the time point, the prediction result is fed back to the root monitoring node to give an early warning to the system administrator, so as to ensure that the cloud computing system platform provides continuous and high-quality services.
云计算系统平台中的数据采集模块负责收集各个业务模块的性能参数和报警日志采集。 The data acquisition module in the cloud computing system platform is responsible for collecting the performance parameters and alarm log collection of each business module.
通过系统的故障预测模块,对各个监控的节点组收集的信息进行统计分析,生成系统性能预测分析报送到系统管理员,系统管理员可以依据分析进行系统的优化来避免故障的产生,从而为云计算系统平台的持续运行提供良好的预警防范措施。 Through the fault prediction module of the system, the information collected by each monitored node group is statistically analyzed, and the system performance prediction analysis is generated and reported to the system administrator. The system administrator can optimize the system based on the analysis to avoid the occurrence of faults, so as to provide The continuous operation of the cloud computing system platform provides good early warning and preventive measures.
本发明的有益效果是: The beneficial effects of the present invention are:
(1)异常故障的隔离。当其中的一个监控节点发生异常,可以把故障局限在一定的范围之内,不会影响其他业务模块的运行,提高了系统的可用性; (1) Isolation of abnormal faults. When an abnormality occurs in one of the monitoring nodes, the failure can be limited to a certain range without affecting the operation of other business modules and improving the availability of the system;
(2)故障预测分析。通过对系统平台的历史性能数据的分析,对系统可能发生的问题进行预警提示。 (2) Fault prediction analysis. Through the analysis of the historical performance data of the system platform, early warning and reminders of possible problems in the system are given.
附图说明 Description of drawings
图1是云计算系统平台传统监控的体系结构示意图; Fig. 1 is a schematic diagram of the system structure of the traditional monitoring of the cloud computing system platform;
图2是云计算系统平台中的定时监控体系结构示意图。 Fig. 2 is a schematic diagram of the timing monitoring architecture in the cloud computing system platform.
具体实施方式 Detailed ways
参照说明书附图对本发明的方法作以下详细地说明。 The method of the present invention is described in detail below with reference to the accompanying drawings.
在云计算系统中为定时监控体系结构提供一种预测机制,使云计算系统平台可以更加稳定和持续的提供服务。 In the cloud computing system, a predictive mechanism is provided for the timing monitoring architecture, so that the cloud computing system platform can provide services more stably and continuously.
本方法是以云计算系统平台中存储的历史性能数据为基础,结合监控调度模块,实现对云计算系统平台中定时任务的监控。该策略包括:1、数据采集模块 2、故障预测监控模块; The method is based on the historical performance data stored in the cloud computing system platform, combined with the monitoring and dispatching module, to realize the monitoring of the scheduled tasks in the cloud computing system platform. The strategy includes: 1. Data acquisition module 2. Fault prediction and monitoring module;
(1)数据采集模块,数据采集模块主要是云计算系统平台中的各个定时业务模块进行数据的采集; (1) Data acquisition module, the data acquisition module is mainly used for data acquisition by each timing business module in the cloud computing system platform;
(2)故障预测监控模块, 故障预测监控模块,采用层级式的体系结构,监控被分成具有关联的若干个组,每个监控子节点属于上层父节点的子分支。而每个子节点不仅可以处理本组内的监控事物,同时向上层的父节点反馈监控情况和向下层叶子节点传递监控命令。故障监控预测模块对各个子监控节点的采集信息经过统计分析后,并预测系统可能发生的故障的某些业务模块和具体的时间点,将预测结果反馈于根监控节点对系统管理员进行预警提示。从而确保云计算系统平台的提供持续、高质量的服务。 (2) Fault prediction and monitoring module. The fault prediction and monitoring module adopts a hierarchical architecture. Monitoring is divided into several groups with associations. Each monitoring sub-node belongs to the sub-branch of the upper-level parent node. And each child node can not only process the monitoring things in this group, but also feed back the monitoring situation to the parent node of the upper layer and transmit the monitoring command to the leaf node of the lower layer. After statistical analysis of the collected information of each sub-monitoring node, the fault monitoring and prediction module predicts some business modules and specific time points of possible faults in the system, and feeds back the prediction results to the root monitoring node to give early warning prompts to the system administrator . In order to ensure that the cloud computing system platform provides continuous and high-quality services.
实施例: Example:
下面对本发明内容以一个具体例子来描述这一过程: Describe this process with a concrete example below to content of the present invention:
云计算系统平台运行在一个基础平台之上,而该基础平台中拥有一个虚拟数据中心,虚拟数据中心下有十台虚拟机。云计算系统平台的数据采集模块负责虚拟数据中心相关定时任务的信息采集并存储数据库形成历史记录,监控模块依据采集数据经过预测模板的分析,对系统中即将发生的定时业务模块和时间发生点进行预测,并发送给系统管理员,系统管理员可以根据预测做出及时的响应调整,而不影响整个云计算系统平台的定时监控服务。 The cloud computing system platform runs on a basic platform, and the basic platform has a virtual data center, and there are ten virtual machines under the virtual data center. The data acquisition module of the cloud computing system platform is responsible for the information collection of timing tasks related to the virtual data center and stores the database to form historical records. The monitoring module analyzes the timing business modules and time occurrence points that will occur in the system based on the collected data and the analysis of the prediction template. The system administrator can make timely response adjustments based on the prediction without affecting the timing monitoring service of the entire cloud computing system platform.
除说明书所述的技术特征外,均为本专业技术人员的已知技术。 Except for the technical features described in the instructions, all are known technologies by those skilled in the art.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013100566791A CN103095533A (en) | 2013-02-22 | 2013-02-22 | Timed monitoring method in cloud calculating system platform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013100566791A CN103095533A (en) | 2013-02-22 | 2013-02-22 | Timed monitoring method in cloud calculating system platform |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103095533A true CN103095533A (en) | 2013-05-08 |
Family
ID=48207691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013100566791A Pending CN103095533A (en) | 2013-02-22 | 2013-02-22 | Timed monitoring method in cloud calculating system platform |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103095533A (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103346906A (en) * | 2013-06-19 | 2013-10-09 | 华南师范大学 | Intelligent operation and maintenance method and system based on cloud computing |
CN103401699A (en) * | 2013-07-18 | 2013-11-20 | 深圳先进技术研究院 | Cloud data center security monitoring early warning system and method |
CN103475696A (en) * | 2013-08-23 | 2013-12-25 | 汉柏科技有限公司 | System and method for monitoring state of cloud computing cluster server |
CN103744977A (en) * | 2014-01-13 | 2014-04-23 | 浪潮(北京)电子信息产业有限公司 | Monitoring method and monitoring system for cloud computing system platform |
CN103825779A (en) * | 2014-02-21 | 2014-05-28 | 南京邮电大学 | Method for monitoring state of cloud data center |
CN103957116A (en) * | 2014-03-31 | 2014-07-30 | 昆明理工大学 | Decision-making method and system of cloud failure data |
CN104184819A (en) * | 2014-08-29 | 2014-12-03 | 城云科技(杭州)有限公司 | Multi-hierarchy load balancing cloud resource monitoring method |
CN104301159A (en) * | 2014-11-13 | 2015-01-21 | 中国建设银行股份有限公司 | Monitoring method and system of server cluster |
CN104378262A (en) * | 2013-12-13 | 2015-02-25 | 国家计算机网络与信息安全管理中心 | Intelligent monitoring analyzing method and system under cloud computing |
CN104486445A (en) * | 2014-12-30 | 2015-04-01 | 北京天云融创软件技术有限公司 | Distributed extendable resource monitoring system and method based on cloud platform |
CN104796294A (en) * | 2015-05-07 | 2015-07-22 | 上海逸云信息科技发展有限公司 | Cloud acceleration network monitoring system and method |
CN104866380A (en) * | 2015-06-18 | 2015-08-26 | 北京搜狐新媒体信息技术有限公司 | Method and device for processing state transition of cluster management system |
CN105099815A (en) * | 2015-06-26 | 2015-11-25 | 北京奇虎科技有限公司 | Cloud disk monitoring method and cloud disk monitoring device |
CN105119765A (en) * | 2015-09-30 | 2015-12-02 | 浪潮(北京)电子信息产业有限公司 | Intelligent processing fault system architecture |
CN105184886A (en) * | 2015-09-01 | 2015-12-23 | 浪潮集团有限公司 | Cloud data center intelligence inspection system and cloud data center intelligence inspection method |
WO2015196885A1 (en) * | 2014-06-27 | 2015-12-30 | 阿里巴巴集团控股有限公司 | Method and apparatus for acquiring and storing performance data of cloud computing system |
US9385934B2 (en) | 2014-04-08 | 2016-07-05 | International Business Machines Corporation | Dynamic network monitoring |
CN106357478A (en) * | 2016-09-30 | 2017-01-25 | 郑州云海信息技术有限公司 | Server cluster monitoring method and system |
CN107251485A (en) * | 2014-12-30 | 2017-10-13 | 康博泰公司 | The service quality of the raising of cellular radio access networks |
CN108196985A (en) * | 2017-12-29 | 2018-06-22 | 中国电子科技集团公司信息科学研究院 | A kind of storage system failure prediction method and device based on intelligent predicting |
US10043194B2 (en) | 2014-04-04 | 2018-08-07 | International Business Machines Corporation | Network demand forecasting |
CN109726077A (en) * | 2018-12-21 | 2019-05-07 | 中冶建筑研究总院有限公司 | A kind of Enterprise Project lightweight safety management control data platform |
US10361924B2 (en) | 2014-04-04 | 2019-07-23 | International Business Machines Corporation | Forecasting computer resources demand |
US10439891B2 (en) | 2014-04-08 | 2019-10-08 | International Business Machines Corporation | Hyperparameter and network topology selection in network demand forecasting |
CN111026056A (en) * | 2019-12-13 | 2020-04-17 | 上海谱翱数据科技有限公司 | A cloud computing system for advanced process control and its operation method |
US10713574B2 (en) | 2014-04-10 | 2020-07-14 | International Business Machines Corporation | Cognitive distributed network |
CN115589368A (en) * | 2022-10-08 | 2023-01-10 | 中国农业银行股份有限公司 | Disaster recovery drilling method and device for business processing and electronic equipment |
CN117527523A (en) * | 2023-11-23 | 2024-02-06 | 广东堡塔安全技术有限公司 | Cloud computing-based server security monitoring system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110145836A1 (en) * | 2009-12-12 | 2011-06-16 | Microsoft Corporation | Cloud Computing Monitoring and Management System |
CN102420869A (en) * | 2011-12-02 | 2012-04-18 | 浪潮集团有限公司 | A cloud data center security monitoring method |
CN102868736A (en) * | 2012-08-30 | 2013-01-09 | 浪潮(北京)电子信息产业有限公司 | Design and implementation method of cloud computing monitoring framework, and cloud computing processing equipment |
CN102882909A (en) * | 2011-07-15 | 2013-01-16 | 易云捷讯科技(北京)有限公司 | Cloud computing service monitoring system and method thereof |
-
2013
- 2013-02-22 CN CN2013100566791A patent/CN103095533A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110145836A1 (en) * | 2009-12-12 | 2011-06-16 | Microsoft Corporation | Cloud Computing Monitoring and Management System |
CN102882909A (en) * | 2011-07-15 | 2013-01-16 | 易云捷讯科技(北京)有限公司 | Cloud computing service monitoring system and method thereof |
CN102420869A (en) * | 2011-12-02 | 2012-04-18 | 浪潮集团有限公司 | A cloud data center security monitoring method |
CN102868736A (en) * | 2012-08-30 | 2013-01-09 | 浪潮(北京)电子信息产业有限公司 | Design and implementation method of cloud computing monitoring framework, and cloud computing processing equipment |
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103346906A (en) * | 2013-06-19 | 2013-10-09 | 华南师范大学 | Intelligent operation and maintenance method and system based on cloud computing |
CN103346906B (en) * | 2013-06-19 | 2016-07-13 | 华南师范大学 | A cloud computing-based intelligent operation and maintenance method and system |
CN103401699A (en) * | 2013-07-18 | 2013-11-20 | 深圳先进技术研究院 | Cloud data center security monitoring early warning system and method |
CN103475696A (en) * | 2013-08-23 | 2013-12-25 | 汉柏科技有限公司 | System and method for monitoring state of cloud computing cluster server |
CN104378262A (en) * | 2013-12-13 | 2015-02-25 | 国家计算机网络与信息安全管理中心 | Intelligent monitoring analyzing method and system under cloud computing |
CN103744977A (en) * | 2014-01-13 | 2014-04-23 | 浪潮(北京)电子信息产业有限公司 | Monitoring method and monitoring system for cloud computing system platform |
CN103825779A (en) * | 2014-02-21 | 2014-05-28 | 南京邮电大学 | Method for monitoring state of cloud data center |
CN103825779B (en) * | 2014-02-21 | 2016-10-05 | 南京邮电大学 | A kind of cloud data center method for monitoring state |
CN103957116A (en) * | 2014-03-31 | 2014-07-30 | 昆明理工大学 | Decision-making method and system of cloud failure data |
CN103957116B (en) * | 2014-03-31 | 2017-12-01 | 昆明理工大学 | A kind of decision-making technique and system of cloud fault data |
US11082301B2 (en) | 2014-04-04 | 2021-08-03 | International Business Machines Corporation | Forecasting computer resources demand |
US10043194B2 (en) | 2014-04-04 | 2018-08-07 | International Business Machines Corporation | Network demand forecasting |
US10361924B2 (en) | 2014-04-04 | 2019-07-23 | International Business Machines Corporation | Forecasting computer resources demand |
US10650396B2 (en) | 2014-04-04 | 2020-05-12 | International Business Machines Corporation | Network demand forecasting |
US10257071B2 (en) | 2014-04-08 | 2019-04-09 | International Business Machines Corporation | Dynamic network monitoring |
US10439891B2 (en) | 2014-04-08 | 2019-10-08 | International Business Machines Corporation | Hyperparameter and network topology selection in network demand forecasting |
US11848826B2 (en) | 2014-04-08 | 2023-12-19 | Kyndryl, Inc. | Hyperparameter and network topology selection in network demand forecasting |
US9385934B2 (en) | 2014-04-08 | 2016-07-05 | International Business Machines Corporation | Dynamic network monitoring |
US10771371B2 (en) | 2014-04-08 | 2020-09-08 | International Business Machines Corporation | Dynamic network monitoring |
US10693759B2 (en) | 2014-04-08 | 2020-06-23 | International Business Machines Corporation | Dynamic network monitoring |
US10250481B2 (en) | 2014-04-08 | 2019-04-02 | International Business Machines Corporation | Dynamic network monitoring |
US9722907B2 (en) | 2014-04-08 | 2017-08-01 | International Business Machines Corporation | Dynamic network monitoring |
US9705779B2 (en) | 2014-04-08 | 2017-07-11 | International Business Machines Corporation | Dynamic network monitoring |
US10713574B2 (en) | 2014-04-10 | 2020-07-14 | International Business Machines Corporation | Cognitive distributed network |
CN105242873A (en) * | 2014-06-27 | 2016-01-13 | 阿里巴巴集团控股有限公司 | Method and apparatus for acquiring and storing performance data of cloud computing system |
CN105242873B (en) * | 2014-06-27 | 2018-06-01 | 阿里巴巴集团控股有限公司 | The acquisition of the performance data of cloud computing system and storage method and device |
WO2015196885A1 (en) * | 2014-06-27 | 2015-12-30 | 阿里巴巴集团控股有限公司 | Method and apparatus for acquiring and storing performance data of cloud computing system |
CN104184819B (en) * | 2014-08-29 | 2017-12-05 | 城云科技(中国)有限公司 | Multi-layer load balancing cloud resource monitoring method |
CN104184819A (en) * | 2014-08-29 | 2014-12-03 | 城云科技(杭州)有限公司 | Multi-hierarchy load balancing cloud resource monitoring method |
CN104301159A (en) * | 2014-11-13 | 2015-01-21 | 中国建设银行股份有限公司 | Monitoring method and system of server cluster |
CN104301159B (en) * | 2014-11-13 | 2019-01-25 | 中国建设银行股份有限公司 | A kind of monitoring method and system of server cluster |
CN104486445B (en) * | 2014-12-30 | 2017-03-22 | 北京天云融创软件技术有限公司 | Distributed extendable resource monitoring system based on cloud platform |
CN107251485A (en) * | 2014-12-30 | 2017-10-13 | 康博泰公司 | The service quality of the raising of cellular radio access networks |
CN104486445A (en) * | 2014-12-30 | 2015-04-01 | 北京天云融创软件技术有限公司 | Distributed extendable resource monitoring system and method based on cloud platform |
CN104796294A (en) * | 2015-05-07 | 2015-07-22 | 上海逸云信息科技发展有限公司 | Cloud acceleration network monitoring system and method |
CN104866380A (en) * | 2015-06-18 | 2015-08-26 | 北京搜狐新媒体信息技术有限公司 | Method and device for processing state transition of cluster management system |
CN104866380B (en) * | 2015-06-18 | 2018-07-06 | 北京搜狐新媒体信息技术有限公司 | A kind for the treatment of method and apparatus of the state conversion of cluster management system |
CN105099815A (en) * | 2015-06-26 | 2015-11-25 | 北京奇虎科技有限公司 | Cloud disk monitoring method and cloud disk monitoring device |
CN105099815B (en) * | 2015-06-26 | 2019-02-26 | 北京奇虎科技有限公司 | Cloud disk monitoring method and device |
CN105184886A (en) * | 2015-09-01 | 2015-12-23 | 浪潮集团有限公司 | Cloud data center intelligence inspection system and cloud data center intelligence inspection method |
CN105119765A (en) * | 2015-09-30 | 2015-12-02 | 浪潮(北京)电子信息产业有限公司 | Intelligent processing fault system architecture |
CN105119765B (en) * | 2015-09-30 | 2018-06-29 | 浪潮(北京)电子信息产业有限公司 | A kind of Intelligent treatment fault system framework |
CN106357478B (en) * | 2016-09-30 | 2019-08-02 | 郑州云海信息技术有限公司 | A kind of server cluster monitoring method and system |
CN106357478A (en) * | 2016-09-30 | 2017-01-25 | 郑州云海信息技术有限公司 | Server cluster monitoring method and system |
CN108196985A (en) * | 2017-12-29 | 2018-06-22 | 中国电子科技集团公司信息科学研究院 | A kind of storage system failure prediction method and device based on intelligent predicting |
CN109726077A (en) * | 2018-12-21 | 2019-05-07 | 中冶建筑研究总院有限公司 | A kind of Enterprise Project lightweight safety management control data platform |
CN111026056A (en) * | 2019-12-13 | 2020-04-17 | 上海谱翱数据科技有限公司 | A cloud computing system for advanced process control and its operation method |
CN115589368A (en) * | 2022-10-08 | 2023-01-10 | 中国农业银行股份有限公司 | Disaster recovery drilling method and device for business processing and electronic equipment |
CN117527523A (en) * | 2023-11-23 | 2024-02-06 | 广东堡塔安全技术有限公司 | Cloud computing-based server security monitoring system |
CN117527523B (en) * | 2023-11-23 | 2024-10-29 | 上海微瑆科技有限公司 | Cloud computing-based server security monitoring system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103095533A (en) | Timed monitoring method in cloud calculating system platform | |
CN103400246B (en) | A kind of nuclear power plant's risk monitoring system based on cloud framework and monitoring method | |
Saxena et al. | OFP-TM: an online VM failure prediction and tolerance model towards high availability of cloud computing environments | |
CN103825755B (en) | Power secondary system modeling method and system | |
CN105046327B (en) | A kind of intelligent grid information system and method based on machine learning techniques | |
CN105731209A (en) | Intelligent prediction, diagnosis and maintenance method for elevator faults on basis of Internet of Things | |
CN102903011A (en) | Mass data processing system used for safety production cloud service platform facing industrial and mining enterprises | |
CN108092813A (en) | Data center's total management system server hardware Governance framework and implementation method | |
CN102917032A (en) | Safety production cloud service platform for industrial and mining enterprises | |
CN102903010A (en) | Support vector machine-based abnormal judgment method for safety production cloud service platform orientating industrial and mining enterprises | |
CN103744977A (en) | Monitoring method and monitoring system for cloud computing system platform | |
CN102930372A (en) | Data analysis method for association rule of cloud service platform system orienting to safe production of industrial and mining enterprises | |
CN102929827A (en) | Wireless sensor data acquisition cluster for industrial-and-mining-enterprise-oriented safety production cloud service platform | |
CN112785108A (en) | Power grid operation data correlation analysis method and system based on regulation cloud | |
CN112579288A (en) | Cloud computing-based intelligent security data management system | |
CN117634801A (en) | Task scheduling and analyzing method of unmanned inspection vehicle in complex mine environment | |
CN102915482A (en) | Safety production process control and management method for cloud service platforms of industrial and mining enterprises | |
Sharma et al. | Dynamic resource provisioning for sustainable cloud computing systems in the presence of correlated failures | |
Dazzi et al. | Urgent edge computing | |
CN102903009A (en) | Malfunction diagnosis method based on generalized rule reasoning and used for safety production cloud service platform facing industrial and mining enterprises | |
Singh et al. | Scalable and Reliable Data Framework for Sensor-enabled Virtual Power Plant Digital Twin | |
CN119440849A (en) | An efficient deployment method and system for privatized large language model ecosystem services | |
CN116346823A (en) | A large data heterogeneous task scheduling method and system based on message queue | |
CN116721485B (en) | Automobile hub bearing monitoring system flow computing platform based on container technology | |
CN107748943A (en) | A kind of grid power load management Forecasting Methodology based on cloud computing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130508 |