CN102565703A - Method for on-line recognizing and obtaining characteristic parameters of direct-drive permanent magnet synchronous wind turbine - Google Patents
Method for on-line recognizing and obtaining characteristic parameters of direct-drive permanent magnet synchronous wind turbine Download PDFInfo
- Publication number
- CN102565703A CN102565703A CN2012100026110A CN201210002611A CN102565703A CN 102565703 A CN102565703 A CN 102565703A CN 2012100026110 A CN2012100026110 A CN 2012100026110A CN 201210002611 A CN201210002611 A CN 201210002611A CN 102565703 A CN102565703 A CN 102565703A
- Authority
- CN
- China
- Prior art keywords
- identification
- parameter
- data
- unit
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Wind Motors (AREA)
Abstract
本发明公开一种直驱永磁同步风电机组特性参数在线辨识获取的方法。通过与控制系统桥接并联的辨识器,从控制系统直接获取其固有状态信息,包括机组实际运行状态数据和控制信号数据,运用先进的辨识算法,辨识计算得到机组的特性参数。
The invention discloses a method for online identification and acquisition of characteristic parameters of a direct-drive permanent magnet synchronous wind turbine. Through the identifier connected in parallel with the control system, the inherent state information of the control system is obtained directly from the control system, including the actual operating state data and control signal data of the unit, and the characteristic parameters of the unit are obtained through identification and calculation using advanced identification algorithms.
Description
技术领域 technical field
本发明的直驱永磁同步风电机组特性参数在线辨识获取方法,属于风力发电机组运行控制技术基础理论和方法的研究领域。 The method for online identification and acquisition of the characteristic parameters of the direct-drive permanent magnet synchronous wind generator set of the present invention belongs to the research field of the basic theory and method of the operation control technology of the wind generator set.
背景技术 Background technique
风能是清洁的可再生能源,由于工程技术的日趋成熟和商业化运行,风电事业在世界各国受到重视和大力发展。对风电机组辨识建模,特别是辨识获取其特性参数,既可以校验现行设计是否科学,还可以优化机组特性参数,更可以为系统分析提供准确的参数,选择科学的运行方式,提高机组发电效益。总之,辨识获取风电机组的特性参数,成为风电机组运行控制技术优化的前提及关键。 Wind energy is a clean and renewable energy. Due to the increasingly mature engineering technology and commercial operation, the wind power industry has been valued and vigorously developed in countries all over the world. The identification and modeling of wind turbines, especially the identification and acquisition of their characteristic parameters, can not only verify whether the current design is scientific, but also optimize the characteristic parameters of the unit, and provide accurate parameters for system analysis, choose a scientific operation mode, and improve the power generation of the unit. benefit. In short, the identification and acquisition of the characteristic parameters of the wind turbine has become the premise and key to the optimization of the operation control technology of the wind turbine.
为辨识获取风电机组的特性参数,专家和学者给出了不同的方法和实现技术,典型的做法是:在现有机组上附加很多测量设备,获取机组运行状态数据,结合先进的辨识算法,辨识计算得到机组的特性参数。该方法的合理性在于:操作思路清晰,便于工程实现。该方法的工程化缺陷在于:附加测量设备的测量数据,或多或少附带了噪声和谐波污染,这大大影响了参数辨识的精度;另外,机组的各模块参数,与运行状态有很强的关联性,某状态数据辨识的参数,不一定完全能反映另一状态的工程特性。本质上来说,此辨识方法是离线辨识的特征,无法真实反映机组的特性。 In order to identify and obtain the characteristic parameters of wind turbines, experts and scholars have given different methods and implementation technologies. The typical method is: add a lot of measuring equipment to the existing units to obtain the operating status data of the units, combined with advanced identification algorithms, identify Calculate the characteristic parameters of the unit. The rationality of this method lies in: the operation idea is clear, and it is convenient for engineering realization. The engineering defect of this method is: the measurement data of the additional measurement equipment is more or less accompanied by noise and harmonic pollution, which greatly affects the accuracy of parameter identification; in addition, the parameters of each module of the unit have a strong relationship with the operating state. The relevance of the data in a certain state may not fully reflect the engineering characteristics of another state. Essentially, this identification method is a feature of offline identification and cannot truly reflect the characteristics of the unit.
发明内容 Contents of the invention
本发明所要解决的技术问题在于:运用对象系统真实的运行状态数据,在此基础上,快速在线辨识机组的特性参数,提供精确度高的直驱永磁同步风电机组特性参数辨识获取的方法。该方法利用机组控制系统必须连接使用各环节的状态特性的特点,直接引接应用状态信息,避免了测量误差,又适时快速跟踪机组的运行状态,实现了特性参数快速、在线、高精度的辨识。 The technical problem to be solved by the present invention is to use the real operating state data of the target system, on this basis, quickly identify the characteristic parameters of the unit on-line, and provide a method for identifying and obtaining the characteristic parameters of the direct-drive permanent magnet synchronous wind turbine with high accuracy. This method takes advantage of the fact that the unit control system must be connected with the status characteristics of each link, directly leads to the application status information, avoids measurement errors, and quickly tracks the operating status of the unit in a timely manner, and realizes fast, online, and high-precision identification of characteristic parameters.
本方法的具体辨识实现过程如下: The specific identification process of this method is as follows:
(1)分模块分析其参数的可辨识性,分别有机械传动模块、发电机模块、变频器模块、控制器模块,其中控制器模块又分为对上述四大模块进行相应功能实现控制的子模块,如此明了辨识目标,同时确定辨识某目标参数所需要的已知条件; (1) Analyze the identifiability of its parameters by module. There are mechanical transmission module, generator module, frequency converter module, and controller module. Module, so clearly identify the target, and at the same time determine the known conditions required to identify a certain target parameter;
(2)可辨识分析的结论,分别对应于四大模块和控制系统四个子模块,对控制器输入输出量进行分类,为参数辨识明确所需要的测量量; (2) The conclusion of the identifiable analysis corresponds to the four major modules and the four sub-modules of the control system, classifying the input and output of the controller, and clarifying the required measurement for parameter identification;
(3)对分组测量量的变化数量级进行估计,设定不同状态区分的大致限值; (3) Estimate the order of magnitude of the change in grouped measurement quantities, and set approximate limits for different state distinctions;
(4)按照不同限值,将控制系统的分组测量量进行状态区分,分别同时标记录相应的数据; (4) According to different limit values, the group measurement quantities of the control system are classified according to the state, and the corresponding data are marked and recorded at the same time;
(5)根据记录的不同组数据,按照由简到繁的原则,将四大模块及控制系统的四个子模块需要辨识的参数,运用优选初值—微变搜索法进行分步辨识; (5) According to the different sets of recorded data, according to the principle of from simple to complex, the parameters to be identified for the four major modules and the four sub-modules of the control system are identified step by step by using the optimal initial value-micro-variation search method;
(6)用各模块的模型方程结合辨识的参数,计算输出,比较计算输出和实际输出之间的符合度,如果符合度好,则输出结果,如果符合度不好,则重复辨识过程; (6) Combine the identified parameters with the model equations of each module to calculate the output, compare the coincidence between the calculated output and the actual output, if the conformity is good, output the result, if the conformity is not good, repeat the identification process;
(7)按照需要的格式,输出满足精度要求的辨识参数结果; (7) According to the required format, output the identification parameter results that meet the accuracy requirements;
(8)如此动态在线辨识参数,按照工程需要的时间跨度,适时输出结果。 (8) Such dynamic online identification parameters can output results in a timely manner according to the time span required by the project.
本方法采取直接引用控制系统的输入输出信息,解决了一般辨识系统测量数据噪声污染问题,并适时引用其输入输出信息,实现了机组特性参数在线适时高精度辨识。 This method uses the input and output information of the control system directly to solve the problem of noise pollution in the measurement data of the general identification system, and uses its input and output information in a timely manner to realize the online timely and high-precision identification of unit characteristic parameters.
本方法的优点是:实施的步骤清晰,与机组控制系统的调节环节保持独立,与控制器环节的接口简单,在工程上易于实现,不影响机组其他调节功能的实现和运行。既可以与机组现有控制器并联运行,又可以植入现有控制器的相应环节,能实现永磁同步风电机组的特性参数的准确获取。 The advantages of this method are: the implementation steps are clear, independent from the adjustment link of the unit control system, the interface with the controller link is simple, easy to implement in engineering, and does not affect the realization and operation of other adjustment functions of the unit. It can not only run in parallel with the existing controller of the unit, but also can be implanted into the corresponding link of the existing controller, and can realize the accurate acquisition of the characteristic parameters of the permanent magnet synchronous wind turbine.
说明书附图Instructions attached
图1为控制过程框图。 Figure 1 is a block diagram of the control process.
图2为控制算法实现的程序框图。 Figure 2 is a block diagram of the implementation of the control algorithm.
具体实现方式Specific implementation
如图1和2所示,本发明直驱永磁同步风电机组特性参数在线辨识获取方法的具体实现步骤如下: As shown in Figures 1 and 2, the specific implementation steps of the online identification and acquisition method for the characteristic parameters of the direct-drive permanent magnet synchronous wind turbine in the present invention are as follows:
第一步:将控制器输入输出数据进行数据集中; Step 1: Centralize the input and output data of the controller;
第二步:将集中的数据,按照需要辨识的四大模块和控制器的四个子模块进行分类; Step 2: Classify the centralized data according to the four major modules to be identified and the four sub-modules of the controller;
第三步:将分类数据进行格式转换,成为参数辨识可能直接使用的数据; Step 3: Convert the classified data into format and become the data that may be directly used for parameter identification;
第四步:以机组数据所反映的状态信息是否超越限值,来区分机组运行状态是否突变,如果状态突变,则记录相应状态的数据信息; Step 4: Use whether the state information reflected by the unit data exceeds the limit value to distinguish whether the operating state of the unit changes suddenly. If the state changes suddenly, record the data information of the corresponding state;
第五步:判断记录数据是否满足参数辨识的状态信息需求,如满足,则转第六步,如不满足,则转第一步; Step 5: Determine whether the recorded data meets the status information requirements of parameter identification. If yes, go to step 6. If not, go to step 1;
第六步:存储记录状态数据; Step 6: Store and record state data;
第七步:判断状态数据是否够用,如够用,则转第七步,如不够用,则转第四步; Step 7: Determine whether the status data is sufficient, if it is enough, go to step 7, if not enough, go to step 4;
第八步:用足够的状态数据,结合优选初值—微变搜索算法,进行特性参数的分组辨识; Step 8: Use sufficient state data, combined with the optimal initial value-micro-variation search algorithm, to perform group identification of characteristic parameters;
第九步:用模型方程和已辨识参数计算模块的输出,以模块的计算输出和实测输出的符合度检验参数的辨识精度,如符合多好,则转第十步,如符合度不好,则转第八步; Step 9: Use the model equation and the identified parameters to calculate the output of the module, and check the identification accuracy of the parameters by the coincidence of the calculated output of the module and the measured output. If the conformity is good, go to step 10. If the conformity is not good, Then turn to the eighth step;
第十步:输出辨识结果; Step 10: output the identification result;
第十一步:在线继续重复上述过程,不断适时刷新和输出辨识结果。 Step 11: Continue to repeat the above process online, constantly refreshing and outputting the identification results in due course.
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2012100026110A CN102565703A (en) | 2011-06-17 | 2012-01-06 | Method for on-line recognizing and obtaining characteristic parameters of direct-drive permanent magnet synchronous wind turbine |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201110163399.1 | 2011-06-17 | ||
| CN201110163399 | 2011-06-17 | ||
| CN2012100026110A CN102565703A (en) | 2011-06-17 | 2012-01-06 | Method for on-line recognizing and obtaining characteristic parameters of direct-drive permanent magnet synchronous wind turbine |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN102565703A true CN102565703A (en) | 2012-07-11 |
Family
ID=46411608
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2012100026110A Pending CN102565703A (en) | 2011-06-17 | 2012-01-06 | Method for on-line recognizing and obtaining characteristic parameters of direct-drive permanent magnet synchronous wind turbine |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102565703A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113098342A (en) * | 2021-04-06 | 2021-07-09 | 湖南工业大学 | Online parameter identification method for permanent magnet synchronous wind driven generator |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH11295403A (en) * | 1998-04-06 | 1999-10-29 | Matsushita Electric Ind Co Ltd | Evaluation device for permanent magnet |
| CN1487268A (en) * | 2003-08-12 | 2004-04-07 | 上海交通大学 | A structured closed-loop identification method for multivariable systems based on step response testing |
| US20040189279A1 (en) * | 2003-03-31 | 2004-09-30 | Rao Kotesh Kummamuri | Online detection of shorted turns in a generator field winding |
| CN101430365A (en) * | 2008-12-12 | 2009-05-13 | 南京工程学院 | Identification system and method for actually measured electric parameter of synchronous generator |
| CN101629990A (en) * | 2009-08-17 | 2010-01-20 | 南车株洲电力机车研究所有限公司 | Full power test method and test device for whole wind turbine |
-
2012
- 2012-01-06 CN CN2012100026110A patent/CN102565703A/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH11295403A (en) * | 1998-04-06 | 1999-10-29 | Matsushita Electric Ind Co Ltd | Evaluation device for permanent magnet |
| US20040189279A1 (en) * | 2003-03-31 | 2004-09-30 | Rao Kotesh Kummamuri | Online detection of shorted turns in a generator field winding |
| CN1487268A (en) * | 2003-08-12 | 2004-04-07 | 上海交通大学 | A structured closed-loop identification method for multivariable systems based on step response testing |
| CN101430365A (en) * | 2008-12-12 | 2009-05-13 | 南京工程学院 | Identification system and method for actually measured electric parameter of synchronous generator |
| CN101629990A (en) * | 2009-08-17 | 2010-01-20 | 南车株洲电力机车研究所有限公司 | Full power test method and test device for whole wind turbine |
Non-Patent Citations (2)
| Title |
|---|
| 张仰飞等: "数字PI控制器的参数辨识及实验验证", 《电力自动化设备》, vol. 30, no. 11, 30 November 2010 (2010-11-30), pages 40 - 42 * |
| 张涛: "基于信号量化的系统参数辨识方法研究", 《中国优秀硕士学位论文全文数据库》, 31 December 2009 (2009-12-31), pages 2 - 40 * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113098342A (en) * | 2021-04-06 | 2021-07-09 | 湖南工业大学 | Online parameter identification method for permanent magnet synchronous wind driven generator |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103925155B (en) | The self-adapting detecting method that a kind of Wind turbines output is abnormal | |
| CN102684223B (en) | Optimal evaluation method of wind power output power under multi-constraint conditions with the goal of reducing grid loss | |
| CN110363334B (en) | Grid line loss prediction method for photovoltaic grid-connected based on gray neural network model | |
| CN103257314A (en) | Power grid adaptability testing system of mobile wind turbine generator | |
| CN106058937B (en) | A kind of power distribution network broad sense load modeling method of the wind power plant containing direct-drive permanent-magnetism | |
| CN102521677B (en) | Optimal identification method of node equivalent transmission parameters based on single PMU measurement section | |
| CN107632258A (en) | A kind of fan converter method for diagnosing faults based on wavelet transformation and DBN | |
| CN104808587A (en) | Utilization statistical approach based on operation states of machining equipment | |
| CN105590144A (en) | Wind speed prediction method and apparatus based on NARX neural network | |
| CN103366064A (en) | Test method for parameters of wind farm dynamic model | |
| CN102253338A (en) | Intelligent failure diagnosis method for frequency converter of wind power unit | |
| CN104794492A (en) | Online machine tool equipment machining and running state recognizing method based on power feature models | |
| CN104297685A (en) | Method for detecting parameters of double-fed wind generating set | |
| CN109583075A (en) | Permanent magnet direct-drive wind-force machine military service quality evaluating method based on temperature parameter prediction | |
| CN118199146A (en) | Dynamic simulation method of grid-connected converter based on time-varying impedance characteristics of renewable energy stations | |
| CN115202328A (en) | Multi-field coupling considered grid-connected performance analysis method for large-capacity offshore wind turbine generator | |
| CN105867161A (en) | Wind-power-generation digital physical hybrid simulation system based on RTDS and method thereof | |
| CN104574221B (en) | A kind of photovoltaic plant running status discrimination method based on loss electricity characteristic parameter | |
| CN108071562A (en) | A kind of Wind turbines energy efficiency state diagnostic method based on energy stream | |
| CN202348549U (en) | Intelligent water turbine microcomputer speed regulating system | |
| CN108460228B (en) | A method of wind farm equivalence based on multi-objective optimization algorithm | |
| CN114218690A (en) | Blade breakage early warning method and device for wind turbine generator | |
| CN117578578A (en) | Method for identifying high-voltage ride through parameters of transient model of direct-drive wind turbine generator | |
| CN116505599A (en) | Wind-solar energy storage station active response time delay estimation method | |
| CN203689807U (en) | Wind power generator simulation training management system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120711 |