CN102316167B - Website recommending method, system thereof and network server - Google Patents
Website recommending method, system thereof and network server Download PDFInfo
- Publication number
- CN102316167B CN102316167B CN201110289037.7A CN201110289037A CN102316167B CN 102316167 B CN102316167 B CN 102316167B CN 201110289037 A CN201110289037 A CN 201110289037A CN 102316167 B CN102316167 B CN 102316167B
- Authority
- CN
- China
- Prior art keywords
- user
- website
- information
- characteristic information
- users
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 58
- 230000004044 response Effects 0.000 claims abstract description 17
- 238000007621 cluster analysis Methods 0.000 claims description 14
- 238000012545 processing Methods 0.000 claims description 10
- 238000005259 measurement Methods 0.000 claims description 4
- 238000013517 stratification Methods 0.000 claims 2
- 230000008569 process Effects 0.000 description 8
- 230000006399 behavior Effects 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011524 similarity measure Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/02—Protocols based on web technology, e.g. hypertext transfer protocol [HTTP]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/535—Tracking the activity of the user
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Information Transfer Between Computers (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
本发明提供一种网站推荐方法和系统以及网络服务器,其中,该方法包括:网络服务器根据预设时间段内用户的上网信息获取用户访问的网站的特征信息,根据特征信息对用户进行聚类获取多个用户簇,以便在接收用户终端发送的包括用户标识的网络访问请求时,判断用户是否包括与用户标识对应的第一用户,若是,则根据第一用户所在的用户簇中的其余用户的特征信息确定向第一用户推荐的网站,并将推荐的网站的网址嵌入到网络访问响应中返回给用户终端,实现了网络服务器能够基于全局的用户网络访问行为向进行网络访问的用户推荐更多的网站,从而使用户获取更多感兴趣的资讯。
The present invention provides a website recommendation method and system and a network server, wherein the method includes: the network server obtains the characteristic information of the website visited by the user according to the user's Internet access information within a preset time period, and clusters and acquires the users according to the characteristic information Multiple user clusters, so that when receiving a network access request including a user ID sent by a user terminal, it is judged whether the user includes the first user corresponding to the user ID, and if so, according to the other users in the user cluster where the first user is located The feature information determines the website recommended to the first user, and embeds the website address of the recommended website into the network access response and returns it to the user terminal, realizing that the network server can recommend to the user who conducts network access based on the global user network access behaviorMore website, so that users can obtain more interesting information.
Description
技术领域 technical field
本发明涉及通信技术,尤其涉及一种网站推荐方法和系统以及网络服务器。The invention relates to communication technology, in particular to a website recommendation method and system and a network server.
背景技术 Background technique
随着电子信息技术的发展,网络已经改变了人们的生活方式,举例来说,人们可以利用网络获取自己感兴趣的书籍、电影、音乐、甚至商品,因此,网络带给了我们高效便捷的生活,人们已经习惯利用计算机、手机等具有上网功能的设备,通过浏览自己感兴趣的网页进行学习、娱乐、购物来满足自身多方位的需求。With the development of electronic information technology, the network has changed people's way of life. For example, people can use the network to obtain books, movies, music, and even commodities that they are interested in. Therefore, the network has brought us an efficient and convenient life. , People have become accustomed to using computers, mobile phones and other devices with Internet access capabilities to browse the web pages they are interested in for learning, entertainment, and shopping to meet their own multi-faceted needs.
人们利用网络可以更加高效的获取丰富的信息进行学习和娱乐,具体地,网络服务器会根据用户访问的网站的类型向其推荐同一种类型的相关网站供用户参考,比如用户访问的是属于信息技术类型的网站,网络服务器会向用户推荐信息技术类型中的其他网站供用户参考,网络服务器会记录用户经常访问的网站并获取相关的网站推荐给用户,从而使用户可以获取更多感兴趣的资讯。People can use the Internet to obtain rich information more efficiently for learning and entertainment. Specifically, the web server will recommend related websites of the same type to the user according to the type of website visited by the user for the user's reference. For the type of website, the web server will recommend other websites in the information technology category to the user for reference, and the web server will record the websites frequently visited by the user and obtain relevant website recommendations to the user, so that the user can obtain more interesting information .
但是,现有技术中的网络服务器只是根据用户自身的网络访问行为向用户推荐相关的网站供用户参考,使用户获得的信息有限,具有一定的局限性。However, the network server in the prior art only recommends relevant websites to the user for reference according to the user's own network access behavior, so that the information obtained by the user is limited and has certain limitations.
发明内容 Contents of the invention
针对现有技术的上述缺陷,本发明实施例提供一种网站推荐方法和系统以及网络服务器。Aiming at the above-mentioned defects in the prior art, embodiments of the present invention provide a website recommendation method and system and a web server.
本发明实施例提供一种网站推荐方法,包括:An embodiment of the present invention provides a website recommendation method, including:
网络服务器根据本地存储的上网信息获取预设时间段内进行网络访问的用户访问网站的特征信息;The network server obtains the characteristic information of the website visited by the user who accesses the network within the preset time period according to the locally stored Internet access information;
所述网络服务器根据所述特征信息对所述用户进行聚类分析获取多个用户簇,以便在接收用户终端发送的包括用户标识的网络访问请求时,判断所述用户是否包括与所述用户标识对应的第一用户,若是,则根据所述第一用户所在的用户簇中用户的所述特征信息确定向所述第一用户推荐的网站,并将所述推荐的网站的网址嵌入到网络访问响应中返回给所述用户终端。The network server performs clustering analysis on the users according to the feature information to obtain multiple user clusters, so as to determine whether the user includes a user ID related to the user ID when receiving a network access request sent by the user terminal. For the corresponding first user, if yes, determine the website recommended to the first user according to the feature information of the users in the user cluster where the first user is located, and embed the website address of the recommended website into the network access The response is returned to the user terminal.
本发明实施例提供一种网络服务器,包括:An embodiment of the present invention provides a network server, including:
第一获取模块,用于根据本地存储的上网信息获取预设时间段内进行网络访问的用户访问网站的特征信息;The first obtaining module is used to obtain the characteristic information of the website visited by the user who visits the network within a preset time period according to the locally stored online information;
第二获取模块,用于根据所述特征信息对所述用户进行聚类分析获取多个用户簇;The second acquisition module is configured to perform cluster analysis on the users according to the feature information to acquire multiple user clusters;
判断模块,用于在接收用户终端发送的包括用户标识的网络访问请求时,判断所述用户是否包括与所述用户标识对应的第一用户;A judging module, configured to judge whether the user includes a first user corresponding to the user identifier when receiving a network access request including the user identifier sent by the user terminal;
处理模块,用于若判断获知所述用户包括与所述用户标识对应的第一用户,则根据所述第一用户所在的用户簇中用户的所述特征信息确定向所述第一用户推荐的网站,并将所述推荐的网站的网址嵌入到网络访问响应中返回给所述用户终端。A processing module, configured to determine, according to the characteristic information of the users in the user cluster where the first user is located, which user is recommended to the first user, if it is determined that the user includes the first user corresponding to the user identifier. website, and embed the URL of the recommended website into the network access response and return it to the user terminal.
本发明实施例提供一种网站推荐系统,包括上述的网络服务器以及用户终端。An embodiment of the present invention provides a website recommendation system, including the above-mentioned network server and a user terminal.
本发明实施例提供的网站推荐方法和系统以及网络服务器,通过网络服务器根据预设时间段内用户的上网信息获取用户访问的网站对应的特征信息,根据特征信息对用户进行聚类获取多个用户簇,以便在接收用户终端发送的包括用户标识的网络访问请求时,若判断获知用户包括与用户标识对应的第一用户,则根据第一用户所在的用户簇中的其余用户的特征信息确定向第一用户推荐的网站,并将推荐的网站的网址嵌入到网络访问响应中返回给用户终端,实现了网络服务器能够基于全局的用户网络访问行为向进行网络访问的用户推荐更多的网站,从而使用户获取更多感兴趣的资讯。In the website recommendation method and system and the web server provided by the embodiments of the present invention, the web server obtains the characteristic information corresponding to the website visited by the user according to the user's Internet access information within a preset time period, and clusters the users according to the characteristic information to obtain multiple users. cluster, so that when receiving a network access request including a user ID sent by a user terminal, if it is determined that the user includes the first user corresponding to the user ID, then according to the feature information of the remaining users in the user cluster where the first user is located, determine the direction to The website recommended by the first user, and the website address of the recommended website is embedded in the network access response and returned to the user terminal, so that the network server can recommend more websites to the user who conducts network access based on the overall network access behavior of the user, thereby To enable users to obtain more interesting information.
附图说明 Description of drawings
图1为本发明网站推荐方法一个实施例的流程图;Fig. 1 is the flowchart of an embodiment of website recommendation method of the present invention;
图2为本发明网站推荐方法另一实施例的流程图;Fig. 2 is a flowchart of another embodiment of the website recommendation method of the present invention;
图3为本发明网络服务器一个实施例的结构示意图;Fig. 3 is a schematic structural diagram of an embodiment of the network server of the present invention;
图4为本发明网站推荐系统一个实施例的结构示意图。FIG. 4 is a schematic structural diagram of an embodiment of the website recommendation system of the present invention.
具体实施方式 Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
图1为本发明网站推荐方法一个实施例的流程图,如图1所示,该方法包括:Fig. 1 is the flow chart of an embodiment of website recommendation method of the present invention, as shown in Fig. 1, this method comprises:
步骤100,网络服务器根据本地存储的上网信息获取预设时间段内进行网络访问的用户访问网站的特征信息;Step 100, the network server obtains the feature information of the website visited by the user who visits the network within a preset time period according to the locally stored online information;
用户可以通过手机、计算机等具有上网功能的用户终端向网络服务器发送网络访问请求进行网络访问,网络服务器能够按照预设的刷新时间存储一段时间内进行网络访问的用户的上网信息。可以理解的是,本实施例中网络服务器的刷新时间是根据具体的应用需要进行设置的比如三天或者一个星期。网络服务器存储的用户的上网信息具体包括:用户的用户标识、每次访问的网站和对应的开始时间和结束时间。Users can send network access requests to the network server through mobile phones, computers and other user terminals with Internet access functions. It can be understood that, in this embodiment, the refresh time of the network server is set according to specific application needs, such as three days or one week. The user's online information stored by the web server specifically includes: the user's user ID, the website visited each time, and the corresponding start time and end time.
需要说明的是,本实施例中的用户标识用于对不同的用户进行区别,本领域的技术人员可以理解的根据不同的应用场景和不同的信息处理手段用户标识的表现形式有很多,本实施例对用户标识的具体表现形式不作限制。比如在一个局域网中,每个用户所用的用户终端具有固定的IP地址可以标识不同的用户,该局域网的网络服务器上存储的用户的上网信息中的用户标识就是用户终端的IP地址;或者该局域网为了确保用户进行网络访问的安全性,要求用户进行网络访问时需要通过外插的电子设备进行身份信息认证后才能进行访问,因此,该局域网的网络服务器上存储的用户的上网信息中的用户标识可以是用户的身份信息。It should be noted that the user identification in this embodiment is used to distinguish different users. Those skilled in the art can understand that there are many forms of user identification according to different application scenarios and different information processing methods. This example does not limit the specific form of user identification. For example, in a local area network, the user terminal used by each user has a fixed IP address to identify different users, and the user identification in the user's online information stored on the network server of the local area network is the IP address of the user terminal; or the local area network In order to ensure the security of users’ network access, users are required to access the network only after identity information authentication through an external electronic device. Therefore, the user ID in the user’s online information stored on the network server of the local area network Can be the user's identity information.
网络服务器根据本地存储的上网信息获取预设时间段内进行网络访问的用户访问的网站对应的特征信息,需要说明的是,本实施例中的特征信息反映了在预设的时间段内进行网络访问的用户访问网站的行为特征,具体可以包括每个用户在预设时间段内访问每个网站的频率特征和/或每次访问的时段特征。其中,本实施例中预设时间段可以根据具体的应用情况预先在网络服务器进行设置,举例来说,若预先设置的时间段为每天的零点到24点,即网络服务器在每天的24点根据存储的上网信息进行统计获取在之前24小时内进行网络访问的每个用户访问每个网站的频率特征和/或每次访问的时段特征。在具体的实现过程中,网络服务器会将获取的频率特征或时段特征进行模数转换,若特征信息包括频率特征和时段特征,则对两者的数字量进行加权获取对应的特征信息。值得注意的是,本实施例中的特征信息并不局限于频率特征和时段特征,还可以根据获取的具体上网信息进行调整从而获取其他的特征信息,具体的处理过程如上,此处不再赘述。为了更清楚的说明特征信息含义,举例说明如表1所示,表1表示了在预设的时间段内进行网络访问的用户访问的网站对应的特征信息,特征信息是对每个用户在预设时间段内访问每个网站的频率特征和时段特征的进行模数转换加权后获取的数值。The network server obtains the feature information corresponding to the website accessed by the user who accesses the network within the preset time period according to the locally stored Internet access information. It should be noted that the feature information in this embodiment reflects The behavior characteristics of visited users visiting websites may specifically include the frequency characteristics of each user visiting each website within a preset time period and/or the time period characteristics of each visit. Wherein, the preset time period in this embodiment can be set in advance on the network server according to specific application conditions. For example, if the preset time period is from 0:00 to 24:00 every day, that is, the network server will The stored surfing information is statistically obtained to obtain the frequency characteristics of each website visited by each user who has accessed the network within the previous 24 hours and/or the time period characteristics of each visit. In the specific implementation process, the network server will perform analog-to-digital conversion on the obtained frequency feature or time period feature, and if the feature information includes the frequency feature and time period feature, weight the digital quantities of the two to obtain the corresponding feature information. It is worth noting that the feature information in this embodiment is not limited to the frequency feature and time period feature, and can also be adjusted according to the obtained specific online information to obtain other feature information. The specific processing process is as above, and will not be repeated here. . In order to illustrate the meaning of feature information more clearly, an example is shown in Table 1. Table 1 shows the feature information corresponding to the website visited by users who access the network within a preset time period. The feature information is for each user in the preset time period. Set the value obtained after the weighted modulus conversion of the frequency characteristics and time period characteristics of visiting each website within the time period.
表1Table 1
步骤101,所述网络服务器根据所述特征信息对所述用户进行聚类获取多个用户簇;Step 101, the network server clusters the users according to the feature information to obtain multiple user clusters;
网络服务器根据获取的在预设时间段内进行网络访问的用户访问的网站对应的特征信息,对该时间段内在该网络服务器上进行网络访问的所有用户进行聚类分析获取多个用户簇。聚类分析(Cluster Analysis)又称群分析,是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。聚类分析的计算方法主要包括分裂法(partitioning methods)、层次法(hierarchical methods)、基于密度的方法(density-based methods)、基于网格的方法(grid-basedmethods)和基于模型的方法(model-based methods)。每一种聚类方法的具体实施过程属于现有技术,为了更清楚的说明聚类分析的过程,以分裂法中的K-均值为例进行具体说明,其余的聚类方法不再一一赘述。The network server performs cluster analysis on all users who access the network on the network server within the time period according to the obtained feature information corresponding to the websites accessed by the users who access the network within the preset time period to obtain multiple user clusters. Cluster Analysis, also known as group analysis, is a process of classifying data into different classes or clusters, so objects in the same cluster have great similarity, while objects in different clusters have great similarity. dissimilarity. The calculation methods of cluster analysis mainly include partitioning methods, hierarchical methods, density-based methods, grid-based methods and model-based methods. -based methods). The specific implementation process of each clustering method belongs to the existing technology. In order to explain the process of clustering analysis more clearly, the K-means in the splitting method is used as an example to explain in detail, and the rest of the clustering methods will not be repeated one by one. .
结合上述表1中介绍K-均值的算法如下:The algorithm of K-means introduced in Table 1 above is as follows:
步骤(1):当用户簇k=2为例作说明,在用户1至用户4中随机选择2个用户作为初始质心(类别的中心),假设选择用户1和用户2;Step (1): When the user cluster k=2 is taken as an example, two users are randomly selected from
步骤(2):对于剩下的每一个用户计算其到每个质心的距离:假设用户3到用户1的计算结果为a;假设用户3到用户2的计算结果为b,若a<b,则用户3到用户1的距离更近,用户3和用户1被划分到一个类中;对剩下的用户依次类推,最终可以将所有的用户划分到以用户1和用户2为质心的两个类中;Step (2): For each remaining user, calculate its distance to each centroid: suppose the calculation result from user 3 to
步骤(3):对每一个类重新计算质心,计算方法为将各用户的权重求平均,计算出每个类的新质心后,对于所有的用户,计算其到每个质心的距离,如此反复,直到质心不再发生变化。Step (3): Recalculate the centroid for each class. The calculation method is to average the weights of each user. After calculating the new centroid of each class, for all users, calculate the distance to each centroid, and so on. , until the center of mass no longer changes.
步骤(4):对于每一个类计算类内均方误差,即类内所有用户到质心的距离,比较它们的均方误差,趋势应该为逐渐减小,当均方误差值由显著下降到不那么显著下降的K值就可以作为最终的K,即用户簇的个数。Step (4): For each class, calculate the mean square error within the class, that is, the distance from all users in the class to the centroid, and compare their mean square errors. The trend should be gradually decreasing. When the mean square error value drops significantly to no Then the significantly decreased K value can be used as the final K, that is, the number of user clusters.
步骤102,在接收用户终端发送的包括用户标识的网络访问请求时,判断所述用户是否包括与所述用户标识对应的第一用户,若是,则根据所述第一用户所在的用户簇中的其余用户的所述特征信息确定向所述第一用户推荐的网站,并将所述推荐的网站的网址嵌入到网络访问响应中返回给所述用户终端。Step 102, when receiving a network access request including a user ID sent by a user terminal, determine whether the user includes a first user corresponding to the user ID, and if so, then according to the user cluster in which the first user is located The feature information of the remaining users determines the recommended website to the first user, and embeds the website address of the recommended website into a network access response and returns it to the user terminal.
网络服务器接收到用户终端发送的包括用户标识的网络访问请求时,根据用户标识查询经过聚类的用户判断是否包括与该用户标识对应的第一用户。若判断获知经过聚类的用户中包括该第一用户,说明该第一用户也经过了聚类分析,根据用户标识查询步骤101中获取的用户簇并确定第一用户所在的用户簇,基于上述可以获知该用户簇中的用户与第一用户具有相似的网络访问行为。获取第一用户所在的用户簇中的用户的特征信息,并根据特征信息按照设置的推荐规则确定向第一用户推荐的网站,举例来说,可以根据该用户簇中用户的特征信息获取用户在预设的时间段内所访问的网站,将除第一用户之外的其余用户所访问过且第一用户没有访问过的网站推荐给第一用户。需要说明的是,推荐规则根据具体的应用场景进行具体设置,本实施例不对具体的推荐规则作限制。When the network server receives the network access request including the user ID sent by the user terminal, it queries the clustered users according to the user ID to determine whether the first user corresponding to the user ID is included. If it is determined that the first user is included in the clustered users, it means that the first user has also undergone cluster analysis, and the user cluster obtained in step 101 is queried according to the user ID and the user cluster where the first user is located is determined. Based on the above It can be learned that the users in the user cluster have similar network access behaviors to the first user. Obtain the feature information of the users in the user cluster where the first user is located, and determine the website recommended to the first user according to the set recommendation rules according to the feature information. Websites visited within a preset time period, and websites visited by other users except the first user but not visited by the first user are recommended to the first user. It should be noted that the recommendation rules are specifically set according to specific application scenarios, and this embodiment does not limit the specific recommendation rules.
网络服务器将向第一用户推荐的网站的网址嵌入到网络访问响应中返回给用户终端。其中,网站的网址包括域名和/或IP地址,网络服务器上存储的上网信息中用户访问的网站的网址是用域名或IP地址来表示的,若根据上网信息判断获知向第一用户推荐的网站的网址是IP地址,网络服务器可以直接将IP地址嵌入到网络访问响应中返回给用户终端,也可以向域名服务器发送包括IP地址的域名反查询请求,域名服务器通过PTR类型的域名解析向网络服务器返回与IP地址对应的域名,网络服务器将网站的IP地址和对应的域名都嵌入到网络访问响应中返回给用户终端供第一用户进行参考,向用户终端返回域名,方便用户记忆和书写,从而使用户更加方便的对推荐的网站进行检索和访问。若根据上网信息判断获知向第一用户推荐的网站的网址是域名,网络服务器可以直接将域名嵌入到网络访问响应中返回给用户终端,也可以向域名服务器发送包括域名的域名查询请求,域名服务器通过A类型的域名解析向网络服务器返回与域名对应的IP地址,网络服务器将网站的IP地址和对应的域名都嵌入到网络访问响应中返回给用户终端供第一用户进行参考,向用户终端返回IP地址,从而使用户更加直接的对推荐的网站进行检索和访问,不需要向域名服务器发起域名查询请求。The web server embeds the web address of the website recommended to the first user into the web access response and returns it to the user terminal. Wherein, the URL of the website includes domain name and/or IP address, and the URL of the website visited by the user in the online information stored on the network server is represented by the domain name or IP address. The URL is an IP address, and the web server can directly embed the IP address into the network access response and return it to the user terminal, or send a domain name reverse query request including the IP address to the domain name server, and the domain name server sends a query to the web server through PTR domain name resolution. The domain name corresponding to the IP address is returned, and the network server embeds the IP address and the corresponding domain name of the website into the network access response and returns it to the user terminal for the first user's reference, and returns the domain name to the user terminal, which is convenient for the user to remember and write, thereby Make it easier for users to search and visit recommended websites. If it is determined based on Internet access information that the website address recommended to the first user is a domain name, the network server may directly embed the domain name into the network access response and return it to the user terminal, or may send a domain name query request including the domain name to the domain name server, and the domain name server The IP address corresponding to the domain name is returned to the network server through A-type domain name resolution, and the network server embeds the IP address of the website and the corresponding domain name into the network access response and returns it to the user terminal for reference by the first user, and returns to the user terminal IP address, so that users can search and access recommended websites more directly, without initiating a domain name query request to the domain name server.
本实施例提供的网站推荐方法,通过网络服务器根据用户的上网信息获取预设时间段内进行网络访问的用户访问的网站对应的特征信息,并根据特征信息对用户进行聚类分析获取多个用户簇,当网络服务器接收到包括用户标识的网络访问请求时,若判断获知经过聚类的用户包括与用户标识对应的第一用户,则根据第一用户所在的用户簇中用户的特征信息确定向第一用户推荐的网站,并将推荐的网站的网址嵌入到网络访问响应中返回给用户终端,实现了网络服务器能够基于全局的用户网络访问行为向进行网络访问的用户推荐更多的网站,从而使用户获取更多感兴趣的资讯。In the website recommendation method provided in this embodiment, the network server obtains the feature information corresponding to the website visited by the user who accesses the network within a preset time period according to the user's Internet access information, and performs cluster analysis on the user according to the feature information to obtain multiple users. cluster, when the network server receives a network access request including a user ID, if it is judged that the clustered users include the first user corresponding to the user ID, then according to the feature information of the user in the user cluster where the first user is located, determine the direction to The website recommended by the first user, and the website address of the recommended website is embedded in the network access response and returned to the user terminal, so that the network server can recommend more websites to the user who conducts network access based on the overall network access behavior of the user, thereby To enable users to obtain more interesting information.
图2为本发明网站推荐方法另一实施例的流程图,如图2所示,该方法包括:Fig. 2 is a flowchart of another embodiment of the website recommendation method of the present invention, as shown in Fig. 2, the method includes:
步骤200,网络服务器根据本地存储的上网信息获取预设时间段内进行网络访问的用户访问网站的特征信息;
步骤201,所述网络服务器根据所述特征信息对所述用户进行聚类获取多个用户簇;
步骤202,所述网络服务器在接收用户终端发送的包括用户标识的网络访问请求时,判断所述用户是否包括与所述用户标识对应的第一用户,若不是,则向其余网络服务器广播包括所述用户标识和所述预设时间段的上网信息查询请求,若接收到所述其余网络服务器返回的所述第一用户在所述预设时间段内的上网信息,根据所述上网信息获取所述第一用户访问的网站对应的特征信息;
网络服务器接收到用户终端发送的包括用户标识的网络访问请求时,根据用户标识查询经过聚类的用户判断是否包括与该用户标识对应的第一用户。若判断获知经过聚类的用户中不包括该第一用户,说明该第一用户没有在预设的时间段内通过该网络服务器进行过网络访问,也就是说该网络服务器在预设的时间段内的进行网络访问的用户不包括该第一用户。When the network server receives the network access request including the user ID sent by the user terminal, it queries the clustered users according to the user ID to determine whether the first user corresponding to the user ID is included. If it is determined that the clustered users do not include the first user, it means that the first user has not accessed the network through the network server within the preset time period, that is to say, the network server has not accessed the network within the preset time period. The users performing network access in excluding the first user.
网络服务器向互联网系统中的其余网络服务器广播包括第一用户的用户标识和预设时间段的上网信息查询请求,其余的网络服务器根据接收到的上网信息查询请求,各网络服务器均根据第一用户的用户标识从本地存储的预设时间段内的上网信息中查询是否包括该第一用户的上网信息,若该网络服务器能够接收到其余网络服务器返回的第一用户在预设时间段内的上网信息,根据第一用户的上网信息获取该第一用户访问的网站对应的特征信息,具体的特征信息获取过程参见上述实施例一中的步骤100,此处不再赘述。The network server broadcasts to other network servers in the Internet system an online information query request including the user ID of the first user and a preset time period. If the network server can receive the first user's Internet access information returned by other network servers within the preset time period from the locally stored online information within the preset time period information, according to the online information of the first user, the characteristic information corresponding to the website visited by the first user is obtained. For the specific characteristic information acquisition process, refer to step 100 in the first embodiment above, which will not be repeated here.
步骤203,所述网络服务器根据每个用户簇中用户的所述特征信息获取对应的聚集轮廓信息,并根据所述第一用户的所述特征信息和所述聚集轮廓信息通过相似性度量确定所述第一用户所属的用户簇;
网络服务器根据上述步骤201中获取的每个用户簇中用户的特征信息获取对应的聚集轮廓信息,聚集轮廓信息即每一个用户簇中的用户访问的网站对应的特征信息的平均权重;The web server obtains corresponding aggregated profile information according to the feature information of users in each user cluster obtained in the
网络服务器根据第一用户的特征信息和获取的聚集轮廓信息进行相似性度量,值得注意的是,相似性度量的方法很多例如皮尔森相关系数或者余弦系数等,本实施例不作具体限制。通过相似性度量获取第一用户访问的网站对应的特征信息与各个聚集轮廓信息的匹配分数以确定第一用户所属的用户簇,匹配分数越大,说明第一用户与该用户簇中的用户的相似度越高,选择最大匹配分数的用户簇确定为第一用户所属的用户簇。The network server performs similarity measurement according to the feature information of the first user and the acquired aggregated profile information. It should be noted that there are many methods for similarity measurement, such as Pearson correlation coefficient or cosine coefficient, which are not specifically limited in this embodiment. The matching score between the feature information corresponding to the website visited by the first user and each aggregated profile information is obtained through the similarity measure to determine the user cluster to which the first user belongs. The larger the matching score, the better the relationship between the first user and the users in the user cluster. The higher the similarity, the user cluster with the largest matching score is selected as the user cluster to which the first user belongs.
步骤204,根据所述第一用户所在的用户簇中的用户的所述特征信息确定向所述第一用户推荐的网站,并将所述推荐的网站的网址嵌入到网络访问响应中返回给所述用户终端。Step 204: Determine the website recommended to the first user according to the characteristic information of the users in the user cluster where the first user belongs, and embed the website address of the recommended website into the network access response and return to the the user terminal.
获取第一用户所在的用户簇中的用户的特征信息,并根据特征信息按照设置的推荐规则确定向第一用户推荐的网站,具体地,可以对第一用户所在的用户簇中的其余用户的特征信息进行加权平均获取其余用户访问的网站的推荐分数,根据其余用户访问的每个网站的推荐分数按照预设的推荐准则确定向第一用户推荐的网站,比如根据每个网站的推荐分数从高往低进行排列并且这些网站没有被第一用户访问过,直到预设的推荐网站的数量为止,将选出来的网站作为向第一用户推荐的网站。网络服务器将推荐的网站的网址嵌入到网络访问响应中返回给用户终端供第一用户进行参考,具体过程参见上述实施例,此处不再赘述。Obtain the feature information of the users in the user cluster where the first user is located, and determine the website recommended to the first user according to the set recommendation rules according to the feature information, specifically, the remaining users in the user cluster where the first user is located The feature information is weighted and averaged to obtain the recommendation scores of the websites visited by other users. According to the recommendation scores of each website visited by other users, the website recommended to the first user is determined according to the preset recommendation criteria. For example, according to the recommendation score of each website from The websites are arranged from high to low and these websites have not been visited by the first user, until the number of preset recommended websites is reached, and the selected websites are used as the websites recommended to the first user. The web server embeds the web address of the recommended website into the web access response and returns it to the user terminal for reference by the first user. Refer to the above-mentioned embodiment for the specific process, which will not be repeated here.
本实施例中的步骤201和步骤202的具体实施过程参见图1所示的实施例,此处不再赘述。For the specific implementation process of
本实施例提供的网站推荐方法,通过网络服务器根据用户的上网信息获取预设时间段内进行网络访问的用户访问的网站对应的特征信息,并根据特征信息对用户进行聚类分析获取多个用户簇,当网络服务器接收到包括用户标识的网络访问请求时,若判断获知经过聚类的用户不包括与用户标识对应的第一用户,则向其余网络服务器进行广播查询,若接收到其余网络服务器返回的第一用户的上网信息,则确定第一用户所在的用户簇,并根据第一用户所在的用户簇中用户的特征信息确定向第一用户推荐的网站,并将推荐的网站的网址嵌入到网络访问响应中返回给用户终端,实现了网络服务器能够进一步地基于全局的用户网络访问行为向进行网络访问的用户推荐更多的网站,从而使用户获取更多感兴趣的资讯。In the website recommendation method provided in this embodiment, the network server obtains the feature information corresponding to the website visited by the user who accesses the network within a preset time period according to the user's Internet access information, and performs cluster analysis on the user according to the feature information to obtain multiple users. Clustering, when the network server receives a network access request that includes a user ID, if it is judged that the clustered users do not include the first user corresponding to the user ID, it broadcasts queries to other network servers, and if the other network servers receive The returned online information of the first user determines the user cluster where the first user is located, and determines the website recommended to the first user according to the feature information of the user in the user cluster where the first user is located, and embeds the website address of the recommended website The network access response is returned to the user terminal, so that the network server can further recommend more websites to the network accessing user based on the overall user network access behavior, so that the user can obtain more interesting information.
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。Those of ordinary skill in the art can understand that all or part of the steps for realizing the above-mentioned method embodiments can be completed by hardware related to program instructions, and the aforementioned program can be stored in a computer-readable storage medium. When the program is executed, the It includes the steps of the above method embodiments; and the aforementioned storage medium includes: ROM, RAM, magnetic disk or optical disk and other various media that can store program codes.
图3为本发明网络服务器一个实施例的结构示意图,如图3所示,该网络服务器包括:第一获取模块11、第二获取模块12、判断模块13和处理模块14,其中,第一获取模块11用于根据本地存储的上网信息获取预设时间段内进行网络访问的用户访问网站的特征信息;第二获取模块12用于根据特征信息对用户进行聚类分析获取多个用户簇;判断模块13用于在接收用户终端发送的包括用户标识的网络访问请求时,判断用户是否包括与用户标识对应的第一用户;处理模块14用于若判断获知用户包括与用户标识对应的第一用户,则根据第一用户所在的用户簇中用户的特征信息确定向第一用户推荐的网站,并将推荐的网站的网址嵌入到网络访问响应中返回给所述用户终端。Fig. 3 is a schematic structural diagram of an embodiment of the network server of the present invention. As shown in Fig. 3, the network server includes: a first acquisition module 11, a
针对图3所示的实施例,第二获取模块12可以根据特征信息通过分裂法、层次法、基于密度的方法、基于网格的方法和基于模型的方法对用户进行聚类分析。For the embodiment shown in FIG. 3 , the
本实施例提供的网络服务器中各模块的功能和处理流程,可以参见上述图1所示的方法实施例,其实现原理和技术效果类似,此处不再赘述。For the functions and processing flow of each module in the network server provided in this embodiment, refer to the method embodiment shown in FIG. 1 above. The implementation principles and technical effects are similar, and will not be repeated here.
基于图3所示的实施例,进一步地,处理模块14还用于若判断获知用户没有包括与用户标识对应的第一用户,则向其余网络服务器广播包括用户标识和预设时间段的上网信息查询请求,若接收到其余网络服务器返回的第一用户在预设时间段内的上网信息,根据上网信息获取第一用户访问的网站对应的特征信息;根据每个用户簇中用户的特征信息获取对应的聚集轮廓信息,并根据第一用户的特征信息和聚集轮廓信息通过相似性度量确定第一用户所属的用户簇。Based on the embodiment shown in FIG. 3 , further, the
本实施例提供的网络服务器中各模块的功能和处理流程,可以参见上述图2所示的方法实施例,其实现原理和技术效果类似,此处不再赘述。For the functions and processing flow of each module in the network server provided in this embodiment, refer to the method embodiment shown in FIG. 2 above. The implementation principles and technical effects are similar, and will not be repeated here.
图4为本发明网站推荐系统一个实施例的结构示意图,如图4所示,该系统包括:网络服务器1以及用户终端2,其中,网络服务器1可以为本发明实施例提供的网络服务器,用户终端2为本发明实施例涉及到的用户终端,本实施例提供的网站推荐系统中各装置的功能和处理流程,可以参见上述方法和装置实施例,其实现原理和技术效果类似,此处不再赘述。Fig. 4 is a schematic structural diagram of an embodiment of the website recommendation system of the present invention. As shown in Fig. 4, the system includes: a
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it can still be Modifications are made to the technical solutions described in the foregoing embodiments, or equivalent replacements are made to some of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the various embodiments of the present invention.
Claims (8)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110289037.7A CN102316167B (en) | 2011-09-26 | 2011-09-26 | Website recommending method, system thereof and network server |
PCT/CN2011/083681 WO2013044560A1 (en) | 2011-09-26 | 2011-12-08 | Method and system for recommending website and network server |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110289037.7A CN102316167B (en) | 2011-09-26 | 2011-09-26 | Website recommending method, system thereof and network server |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102316167A CN102316167A (en) | 2012-01-11 |
CN102316167B true CN102316167B (en) | 2013-11-06 |
Family
ID=45428973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110289037.7A Active CN102316167B (en) | 2011-09-26 | 2011-09-26 | Website recommending method, system thereof and network server |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102316167B (en) |
WO (1) | WO2013044560A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102647462B (en) * | 2012-03-29 | 2017-04-19 | 北京奇虎科技有限公司 | Application acquisition and sending method and device |
CN103716804B (en) * | 2012-09-28 | 2017-02-15 | 北京亿赞普网络技术有限公司 | Wireless data communication network user network behavior analyzing method, device and system |
CN104753979B (en) * | 2013-12-25 | 2018-12-28 | 腾讯科技(深圳)有限公司 | A kind of method, server, terminal and system showing site information |
CN104866544A (en) * | 2015-05-07 | 2015-08-26 | 百度在线网络技术(北京)有限公司 | Information pushing method and device |
CN105516928A (en) * | 2016-01-15 | 2016-04-20 | 中国联合网络通信有限公司广东省分公司 | Position recommending method and system based on position crowd characteristics |
CN106354782A (en) * | 2016-08-23 | 2017-01-25 | 天津火炬鑫茂创业服务有限公司 | Information tracking and promotion system |
CN107665226A (en) * | 2017-01-19 | 2018-02-06 | 深圳市谷熊网络科技有限公司 | The method for pushing and pusher of a kind of information |
CN109962907B (en) * | 2019-01-16 | 2023-04-21 | 深圳壹账通智能科技有限公司 | User identification method and terminal equipment based on big data |
CN110751219A (en) * | 2019-10-23 | 2020-02-04 | 郑州阿帕斯科技有限公司 | Content sending method and device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101685521A (en) * | 2008-09-23 | 2010-03-31 | 北京搜狗科技发展有限公司 | Method for showing advertisements in webpage and system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002001419A1 (en) * | 2000-06-28 | 2002-01-03 | Quark, Inc. | System and method for providing personalized recommendations |
US7739314B2 (en) * | 2005-08-15 | 2010-06-15 | Google Inc. | Scalable user clustering based on set similarity |
US7593939B2 (en) * | 2006-04-07 | 2009-09-22 | Google Inc. | Generating specialized search results in response to patterned queries |
US7966225B2 (en) * | 2007-03-30 | 2011-06-21 | Amazon Technologies, Inc. | Method, system, and medium for cluster-based categorization and presentation of item recommendations |
CN101431485B (en) * | 2008-12-31 | 2012-07-04 | 深圳市迅雷网络技术有限公司 | Method and system for automatically recommending internet information |
-
2011
- 2011-09-26 CN CN201110289037.7A patent/CN102316167B/en active Active
- 2011-12-08 WO PCT/CN2011/083681 patent/WO2013044560A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101685521A (en) * | 2008-09-23 | 2010-03-31 | 北京搜狗科技发展有限公司 | Method for showing advertisements in webpage and system |
Also Published As
Publication number | Publication date |
---|---|
CN102316167A (en) | 2012-01-11 |
WO2013044560A1 (en) | 2013-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102316167B (en) | Website recommending method, system thereof and network server | |
CN102316166B (en) | Website recommending method and system and network server | |
US10572565B2 (en) | User behavior models based on source domain | |
CN103886090B (en) | Content recommendation method and device based on user preferences | |
CN104298719B (en) | Category division, advertisement placement method and the system of user is carried out based on Social behaviors | |
US8719293B2 (en) | Generating improved document classification data using historical search results | |
Zhuang et al. | When recommendation meets mobile: contextual and personalized recommendation on the go | |
CN104217030B (en) | A kind of method and apparatus that user's classification is carried out according to server search daily record data | |
CN101266620B (en) | Method and device for providing target information to users | |
CN102855256B (en) | For determining the method, apparatus and equipment of Website Evaluation information | |
US20120197979A1 (en) | Web-wide content quality crowd sourcing | |
WO2009023070A1 (en) | Systems and methods for keyword selection in a web-based social network | |
WO2016188347A1 (en) | Network quality evaluation method and device, network content sorting method and system, computing apparatus and non-transitory machine-readable storage medium | |
CN111552884B (en) | Method and apparatus for content recommendation | |
CN118467593A (en) | Method, system and device for identifying related entities | |
Liu et al. | Where your photo is taken: Geolocation prediction for social images | |
CN106599165B (en) | content recommendation method and server based on playing behavior | |
CN104636448A (en) | A music recommendation method and device | |
WO2018161719A1 (en) | Method and apparatus for recommending articles to users on basis of regional characteristics | |
US10147095B2 (en) | Chain understanding in search | |
CN106383857A (en) | Information processing method and electronic equipment | |
CN110909258B (en) | Information recommendation method, device, equipment and storage medium | |
CN108352032A (en) | Systems and methods for returning prioritized content | |
US11341141B2 (en) | Search system using multiple search streams | |
CN107025567A (en) | A kind of data processing method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210207 Address after: 100190 room 506, building 2, courtyard 4, South 4th Street, Zhongguancun, Haidian District, Beijing Patentee after: CHINA INTERNET NETWORK INFORMATION CENTER Address before: 100190 No. four, four South Street, Haidian District, Beijing, Zhongguancun Patentee before: Computer Network Information Center, Chinese Academy of Sciences |