[go: up one dir, main page]

CN102033886B - Fabric retrieval method and system - Google Patents

Fabric retrieval method and system Download PDF

Info

Publication number
CN102033886B
CN102033886B CN200910179282.5A CN200910179282A CN102033886B CN 102033886 B CN102033886 B CN 102033886B CN 200910179282 A CN200910179282 A CN 200910179282A CN 102033886 B CN102033886 B CN 102033886B
Authority
CN
China
Prior art keywords
mrow
msub
record
attribute
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200910179282.5A
Other languages
Chinese (zh)
Other versions
CN102033886A (en
Inventor
蔡经伦
邹嘉豪
郑智坚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hong Kong Research Institute of Textiles and Apparel Ltd
Original Assignee
Hong Kong Research Institute of Textiles and Apparel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hong Kong Research Institute of Textiles and Apparel Ltd filed Critical Hong Kong Research Institute of Textiles and Apparel Ltd
Priority to CN200910179282.5A priority Critical patent/CN102033886B/en
Publication of CN102033886A publication Critical patent/CN102033886A/en
Application granted granted Critical
Publication of CN102033886B publication Critical patent/CN102033886B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

The invention relates to a fabric retrieval method, which comprises the following steps: a server receives a user query request from a client; the server side calculates the final weight value of each attribute of the fabric to be retrieved in the query request; the server side groups the historical records and calculates a characteristic record representing each group; then, the server side determines the group to which the feature record with the highest matching value with the query request belongs; the server side further determines the history record with the highest matching value with the query request and sends the history record to the client side. The invention also discloses a system using the method. By utilizing the method and the system disclosed by the invention, a garment designer and a purchaser can select a proper fabric for a new product in a most efficient mode, so that the effective management is provided for the sample data of the fabric, the research and development process of the new product is accelerated, and the production capacity and the competitive capacity of the textile industry and the garment industry are further enhanced.

Description

一种织物检索方法及系统A fabric retrieval method and system

技术领域 technical field

本发明涉及数据检索领域,更具体地说,涉及一种织物检索方法及系统。The invention relates to the field of data retrieval, more specifically, to a fabric retrieval method and system.

背景技术 Background technique

在潮流瞬息万变的社会,服装界开发新产品要求更短的生命周期、更快产品的响应和发布,同时越来越多的不确定的客户需求和购买冲动给服装企业带来了巨大的压力、机遇和挑战。服装设计师和采购员不得不不断的研发新产品以满足市场的需要。为了迎接这些挑战,服装企业不得不加速他们的新产品研发进程NPD(new product development)。服装界的NPD包括市场调研,趋势分析,采购,设计和最后服装的成型。In a rapidly changing society, the development of new products in the apparel industry requires a shorter life cycle, faster product response and release. At the same time, more and more uncertain customer needs and purchasing impulses have brought enormous pressure to apparel companies. Opportunities and Challenges. Fashion designers and buyers have to constantly develop new products to meet the needs of the market. In order to meet these challenges, clothing companies have to accelerate their new product development process NPD (new product development). NPD in the apparel industry includes market research, trend analysis, sourcing, design and final garment shaping.

在NPD过程中,其中有两个环节就是:设计师设计新产品,设计师在根据新产品的外观和功能需求如颜色、样式、是否防水、洗涤方式等属性形成新产品的织物规格,这些新产品的织物规格也即新产品所需的织物的属性值的集合;然后采购员根据设计师设计的新产品所需的织物规格,选择合适的织物。采购员在选择合适织物的过程中,不仅要考虑设计师提供的织物规格,同时还要考虑生产制造此产品的供应链的相关因素:如供应商、成本、库存等。因为设计师和采购员不同的经验、对织物的不同看法、关注的焦点不同、对属性的把握尺度不同或者设计师和采购员交流沟通不充分等原因,采购员选择出来的织物往往得不到设计师的认同,那么采购员和设计师就需要交流沟通,之后采购员要重新选择织物。又因为织物的样品有成千上万种,所以选择织物的过程往往是要反反复复许多次,直到选择出设计师和采购员都认同的织物。In the NPD process, there are two links: the designer designs a new product, and the designer forms the fabric specification of the new product according to the appearance and functional requirements of the new product, such as color, style, whether it is waterproof, washing method, etc. These new The fabric specification of the product is also the collection of the attribute values of the fabric required by the new product; then the buyer selects the appropriate fabric according to the fabric specification required by the new product designed by the designer. In the process of selecting a suitable fabric, the buyer should not only consider the fabric specifications provided by the designer, but also consider the relevant factors of the supply chain that produces the product: such as suppliers, costs, inventory, etc. Due to the different experiences of designers and buyers, different views on fabrics, different focus of attention, different scales of grasping attributes, or insufficient communication between designers and buyers, the fabrics selected by buyers are often not available. If the designer agrees, then the buyer and the designer need to communicate, and then the buyer has to re-select the fabric. And because there are tens of thousands of samples of fabrics, the process of selecting fabrics often needs to be repeated many times until the fabrics that both designers and purchasers agree with are selected.

以上所述的两个环节效率非常低,极大的影响了NPD的效率和织物选择的正确性。因此,若没有过去成功的类似经验的支持,设计者和采购员只能简单的根据他们的本能、经验和意识来设计客户要求的产品和选择需要的织物。也就是说,NPD过程缺少知识的支持。The efficiency of the above two links is very low, which greatly affects the efficiency of NPD and the correctness of fabric selection. Therefore, without the support of successful similar experience in the past, designers and purchasers can only simply design the products required by customers and select the required fabrics according to their instinct, experience and awareness. That is to say, the NPD process lacks the support of knowledge.

同时,NPD团队需要利用信息管理系统如ERP(Enterprise ResourcePlanning)来管理业务数据和信息,在反复对织物进行评估选择的过程中,会产生大量有用的数据,但是,因为缺少系统化的方法来存储和操作所有相关数据,导致NPD过程的的数据管理的效率很低。At the same time, the NPD team needs to use information management systems such as ERP (Enterprise Resource Planning) to manage business data and information. In the process of repeatedly evaluating and selecting fabrics, a large amount of useful data will be generated. However, due to the lack of a systematic method to store and manipulating all relevant data, resulting in very inefficient data management for the NPD process.

因此,需要一种织物检索方法及系统,来克服现有技术中存在的上述缺陷。Therefore, there is a need for a fabric retrieval method and system to overcome the above-mentioned defects in the prior art.

发明内容 Contents of the invention

本发明所要解决的技术问题在于,针对现有织物选择中存在的低效的织物数据管理和选择过程缺少知识的支持的问题,提出一种织物检索方法及系统。The technical problem to be solved by the present invention is to propose a fabric retrieval method and system for the inefficient fabric data management and the lack of knowledge support in the selection process existing in fabric selection.

本发明解决其技术问题所使用的技术方案之一是:提供一种织物检索方法,包括如下步骤:One of the technical schemes used by the present invention to solve the technical problems is to provide a fabric retrieval method, comprising the steps of:

服务器端从客户端接收用户查询请求,其中所述用户查询请求包括历史记录分组信息、待检索织物的至少一个属性的值以及所述至少一个属性中每一属性对应的权重等级和标号;所述历史记录分组信息包括每组历史记录中历史记录的数目须满足的值和每组历史记录中历史记录相似系数须满足的值;The server side receives a user query request from the client, wherein the user query request includes historical record grouping information, the value of at least one attribute of the fabric to be retrieved, and the weight level and label corresponding to each attribute in the at least one attribute; The historical record grouping information includes the value that the number of historical records in each group of historical records must meet and the value that the historical record similarity coefficient in each group of historical records must meet;

服务器端根据接收的所述查询请求中的每个属性的所述权重等级和所述标号,计算查询请求中待检索织物的每个属性的最终权重值;The server end calculates the final weight value of each attribute of the fabric to be retrieved in the query request according to the weight level and the label of each attribute in the received query request;

服务器端根据所述历史记录分组信息中的每组历史记录中历史记录的数目须满足的值和每组历史记录中历史记录相似系数须满足的值,对存储在历史记录数据库中的历史记录进行分组,并计算出代表每个分组的特征记录;According to the value that the number of historical records in each group of historical records in the historical record grouping information must satisfy and the value that the historical record similarity coefficient in each group of historical records must satisfy, the server side performs the historical records stored in the historical record database Group, and calculate the characteristic records representing each group;

服务器端根据所述查询请求中的每个属性的值及由服务器端计算得出的每个属性的所述最终权重值和所述每个特征记录的每个属性的值,计算所述每一特征记录与所述查询请求的匹配值,确定与所述查询请求匹配值最高的特征记录所属的分组;The server side calculates each The matching value of the feature record and the query request, determining the group to which the feature record with the highest matching value with the query request belongs;

服务器端根据所述查询请求中的每个属性的值及由服务器端计算得出每个属性的所述最终权重值和所述与查询请求匹配值最高的特征记录所属的分组中的每个历史记录的每个属性的值,计算与所述查询请求匹配值最高的特征记录所属的分组中的每个历史记录与查询请求的匹配值,确定与查询请求匹配值最高的历史记录,并把该历史记录发送给客户端。According to the value of each attribute in the query request and calculated by the server, the server end calculates the final weight value of each attribute and each history in the group to which the feature record with the highest matching value with the query request belongs. The value of each attribute of the record, calculate the matching value of each historical record in the group to which the feature record with the highest matching value of the query request and the query request is determined, determine the historical record with the highest matching value of the query request, and put the The history is sent to the client.

在本发明所述的织物检索方法中,所述每个属性的标号分别是从1开始的不重复的连续的自然数,所述计算查询请求中待检索织物的每个属性的最终权重值包括如下步骤:In the fabric retrieval method of the present invention, the label of each attribute is a non-repetitive continuous natural number starting from 1, and the final weight value of each attribute of the fabric to be retrieved in the calculation query request includes the following step:

S21)计算所述查询请求中的每个属性的初始权重值wi,根据 w i = 1 n Σ j = i n 1 j , i = 1,2 . . . n 来计算每个属性的初始权重值,其中i表示属性的标号,n表示查询请求待检索织物的总属性个数;S21) Calculate the initial weight value w i of each attribute in the query request, according to w i = 1 no Σ j = i no 1 j , i = 1,2 . . . no To calculate the initial weight value of each attribute, where i represents the label of the attribute, and n represents the total number of attributes of the fabric to be retrieved in the query request;

S22)将具有相同权重等级的属性的最初权重值相加再取平均值得到具有该权重等级的属性的最终权重w(Ai)。S22) Add the initial weight values of the attributes with the same weight level and take the average value to obtain the final weight w(A i ) of the attribute with the weight level.

在本发明所述的织物检索方法中,所述历史记录的相似系数为:任两个历史记录具有的共同属性个数与该两个历史记录中每个历史记录的所有属性个数的比值之和的平均值。In the fabric retrieval method of the present invention, the similarity coefficient of the historical records is: the ratio of the number of common attributes that any two historical records have to the number of all attributes of each historical record in the two historical records and the average value of .

在本发明所述的织物检索方法中,所述历史记录的分组满足以下条件:In the fabric retrieval method of the present invention, the grouping of the historical records satisfies the following conditions:

(1)如果Ci,Cj∈qk,那么max(θ(Ci,Cj))≥σ,表示每组历史记录中最大相似系数必须满足的最小值;(1) If C i , C j ∈ q k , then max(θ(C i , C j ))≥σ, indicating the minimum value that must be satisfied by the maximum similarity coefficient in each group of historical records;

(( 22 )) ∀∀ qq jj ,, || qq jj || ≥&Greater Equal; ββ ;;

(3)如果Ci∈qk那么 C i ∉ q s , k≠s,qk,qs∈Q;(3) If C i ∈ q k then C i ∉ q the s , k≠s, q k , q s ∈ Q;

其中, θ = ( C i ∩ C j ) = 1 2 ( | A ( C i ) | ∩ A ( C j ) | | A ( C i ) | + | A ( C i ) ∩ A ( C j ) | | A ( C j ) | ) 为历史记录Ci和Cj的相似系数,σ为所述历史记录分组信息中每组历史记录中历史记录相似系数须满足的值,β为所述历史记录分组信息中每组历史记录中历史记录数目须满足的值,C=(C1,C2,...,Cj,...Cm)表示历史记录的集合,A=(A1,A2,...,Aj,...An)表示所有属性的集合,A(Ci)=(A1,A2,...,Aj,...Ak)表示历史记录Ci的所有属性的集合,Q=(q1,q2,...,qm)表示历史记录分组的集合,|A(Ci)|表示历史记录Ci中所有属性的个数。in, θ = ( C i ∩ C j ) = 1 2 ( | A ( C i ) | ∩ A ( C j ) | | A ( C i ) | + | A ( C i ) ∩ A ( C j ) | | A ( C j ) | ) is the similarity coefficient of historical records C i and C j , σ is the value that the similarity coefficient of historical records in each group of historical records in the historical record grouping information must satisfy, and β is the history of each group of historical records in the historical record grouping information The number of records must meet the value, C=(C 1 , C 2 ,...,C j ,...C m ) means the collection of historical records, A=(A 1 , A 2 ,...,A j ,...A n ) represents the set of all attributes, A(C i )=(A 1 , A 2 ,...,A j ,...A k ) represents the set of all attributes of the historical record C i , Q=(q 1 , q 2 , . . . , q m ) represents the set of historical record groups, and |A(C i )| represents the number of all attributes in the historical record C i .

在本发明所述的织物检索方法中,所述每个分组的特征记录为该分组中所有历史记录在同一属性上的平均值所组成的记录,计算每一分组的特征记录包括如下步骤:In the fabric retrieval method according to the present invention, the feature record of each group is a record composed of the average value of all historical records in the group on the same attribute, and calculating the feature record of each group includes the following steps:

S31)qj(Ai)表示分组qj中所有历史记录在属性Ai上的平均值,利用 q j ‾ ( A i ) = 1 | q j i | Σ ∀ C k ∈ q j i v k ( A i ) 计算分组qj中所有历史记录在每个属性上的平均值,vk(Ai)表示历史记录k的属性Ai的值,qj i表示分组qj中所有历史记录的集合,|qj i|表示分组qj中所有历史记录的个数;S31) q j (A i ) represents the average value of all historical records in group q j on attribute A i , using q j ‾ ( A i ) = 1 | q j i | Σ ∀ C k ∈ q j i v k ( A i ) Calculate the average value of all historical records in group q j on each attribute, v k (A i ) represents the value of attribute A i of historical record k, q j i represents the set of all historical records in group q j , |q j i |Indicates the number of all historical records in the group q j ;

S32)

Figure G2009101792825D00045
为分组qj的特征记录, v C q j r ( A i ) = q j ‾ ( A i ) . S32)
Figure G2009101792825D00045
is the feature record of group q j , v C q j r ( A i ) = q j ‾ ( A i ) .

在本发明所述的织物检索方法中,计算每一所述特征记录与所述查询请求的匹配值为: ( C input , C q j r ) = Σ i = 1 n w ( A i ) * ( 1 - sim ( v input ( A i ) , v C q j r ( A i ) ) ) , 其中 sim ( v input ( A i ) , v C q j r ( A i ) ) = | v input ( A i ) - v C q j r ( A i ) | 2 , Cinput表示所述查询请求,表示分组qj的特征记录。In the fabric retrieval method of the present invention, the matching value of each feature record and the query request is calculated as: ( C input , C q j r ) = Σ i = 1 no w ( A i ) * ( 1 - sim ( v input ( A i ) , v C q j r ( A i ) ) ) , in sim ( v input ( A i ) , v C q j r ( A i ) ) = | v input ( A i ) - v C q j r ( A i ) | 2 , C input represents the query request, Represents the feature record of group q j .

在本发明所述的织物检索方法中,计算所述查询请求与具有最高匹配值的特征记录所属的分组中的每个历史记录的匹配值为: ( C input , C j ) = Σ i = 1 n w ( A i ) * ( 1 - sim ( v input ( A i ) , v C j ( A i ) ) ) , 其中 sim ( v input ( A i ) , v c j ( A i ) ) = | v input ( A i ) - v c j ( A i ) | 2 , Cj表示具有最高匹配值的特征记录所属的分组中的历史记录,Cinput表示所述查询请求。In the fabric retrieval method of the present invention, the matching value of each historical record in the group to which the feature record with the highest matching value is calculated is: ( C input , C j ) = Σ i = 1 no w ( A i ) * ( 1 - sim ( v input ( A i ) , v C j ( A i ) ) ) , in sim ( v input ( A i ) , v c j ( A i ) ) = | v input ( A i ) - v c j ( A i ) | 2 , C j represents the history record in the group to which the feature record with the highest matching value belongs, and C input represents the query request.

本发明解决其技术问题所使用的技术方案之二是:提供一种织物检索系统,包括客户端和服务器端,所述客户端包括:The second technical solution used by the present invention to solve the technical problems is to provide a fabric retrieval system, including a client and a server, and the client includes:

织物数据库:用于存储织物相关的业务数据;Fabric database: used to store fabric-related business data;

多维数据管理模块:用于接收用户输入的查询请求并将请求发送到服务器端,并利用星型模式来管理织物数据库中的数据,提供织物业务相关的操作;Multidimensional data management module: used to receive the query request input by the user and send the request to the server, and use the star schema to manage the data in the fabric database and provide fabric business-related operations;

所述服务器端包括:The server side includes:

检索模块:用于计算所述多维数据管理模块发送的查询请求中待检索织物的每个属性的最终权重值、对历史记录数据库中的历史记录进行分组并计算每个分组的特征记录、计算每一特征记录与查询请求的匹配值,确定与查询请求匹配值最高的特征记录所在的分组、在具有最高匹配值的特征记录所在的分组中计算每一历史记录与查询请求的匹配值,确定与查询请求匹配值最高的历史记录,并把该历史记录发送给所述客户端的所述多维数据管理模块;Retrieval module: used to calculate the final weight value of each attribute of the fabric to be retrieved in the query request sent by the multidimensional data management module, group the historical records in the historical record database and calculate the feature records of each group, calculate each A characteristic record and the matching value of the query request, determine the grouping where the characteristic record with the highest matching value is located in the query request, calculate the matching value of each historical record and the query request in the grouping where the characteristic record with the highest matching value is located, and determine the matching value with the query request Querying the historical record with the highest matching value, and sending the historical record to the multidimensional data management module of the client;

历史记录数据库:用于存储历史记录。History database: used to store history.

在本发明所述的织物检索系统中,所述检索模块包括:In the fabric retrieval system of the present invention, the retrieval module includes:

历史记录分组单元:用于对所述历史记录数据库中的历史记录进行分组,计算出代表每个分组的特征记录;Historical record grouping unit: used to group historical records in the historical record database, and calculate characteristic records representing each group;

属性权重计算单元:用于计算所述查询请求中待检索织物的每个属性的最终权重值;Attribute weight calculation unit: used to calculate the final weight value of each attribute of the fabric to be retrieved in the query request;

组查找单元:用于根据所述属性权重计算单元计算出的所述查询请求中待检索织物的每个属性的最终权重值、所述查询请求中的每个属性的值和所述历史记录分组单元计算出的特征记录的每个属性的值,计算所述查询请求与所述每个特征记录的匹配值、确定与查询请求匹配值最高的特征记录所属的分组;Group search unit: used for calculating the final weight value of each attribute of the fabric to be retrieved in the query request calculated by the attribute weight calculation unit, the value of each attribute in the query request and the historical record grouping The unit calculates the value of each attribute of the feature record, calculates the matching value of the query request and each feature record, and determines the group to which the feature record with the highest matching value with the query request belongs;

历史记录查找单元:用于根据所述属性权重计算单元计算出的所述查询请求中待检索织物的每个属性的最终权重值、查询请求中的每个属性的值和所述组查找单元确定的具有最高匹配值的特征记录所属的分组中每个历史记录的属性的值,计算所述查询请求与所述组查找单元确定的具有最高匹配值的特征记录所属的分组中的每个历史记录的匹配值,确定与所述查询请求匹配值最高的历史记录。History record lookup unit: used for calculating the final weight value of each attribute of the fabric to be retrieved in the query request calculated by the attribute weight calculation unit, the value of each attribute in the query request and the group search unit to determine The value of the attribute of each historical record in the group to which the feature record with the highest matching value belongs, and calculate the query request and each historical record in the group to which the feature record with the highest matching value determined by the group search unit belongs The matching value of is determined to determine the historical record with the highest matching value of the query request.

实施本发明的技术方案,具有以下有益效果:在新产品的织物选择过程中,通过参考已有的历史记录为新产品的织物选择提供支持,提供了新产品织物选择的效率,同时为织物的样本数据提供了有效的管理,加快了新产品研发进程。Implementing the technical solution of the present invention has the following beneficial effects: in the fabric selection process of new products, support is provided for the fabric selection of new products by referring to existing historical records, the efficiency of fabric selection for new products is provided, and at the same time, it provides support for the fabric selection of fabrics. Sample data provides effective management and speeds up the process of new product development.

附图说明 Description of drawings

图1是本发明一较佳实施例提供的一种织物检索方法的流程图;Fig. 1 is a flow chart of a fabric retrieval method provided by a preferred embodiment of the present invention;

图2是本发明一较佳实施例提供的一种织物检索系统的结构示意图。Fig. 2 is a schematic structural diagram of a fabric retrieval system provided by a preferred embodiment of the present invention.

具体实施方式 Detailed ways

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.

在本发明的实施例中,符号的注释如下:In the embodiment of the present invention, the notation of symbol is as follows:

C=(C1,C2,...,Cj,...Cm)表示知识库中所有历史记录的集合;C=(C 1 , C 2 , . . . , C j , . . . C m ) represents the collection of all historical records in the knowledge base;

A=(A1,A2,...,Aj,...An)表示所有属性的集合;A=(A 1 , A 2 , . . . , A j , . . . A n ) represents the set of all attributes;

A(Ci)=(A1,A2,...,Aj,...Ak)表示历史记录Ci的所有属性的集合;A(C i )=(A 1 , A 2 ,..., A j ,...A k ) represents the set of all attributes of the historical record C i ;

|M|表示集合M中元素的个数;|M| indicates the number of elements in the set M;

vi(Aj)表示历史记录i的属性Aj的值;v i (A j ) represents the value of attribute A j of history record i;

w(Ai)表示属性Ai的最终权重值;w(A i ) represents the final weight value of attribute A i ;

simsim (( vv cc kk (( AA ii )) ,, vv cc jj (( AA ii )) )) == || vv cc kk (( AA ii )) -- vv cc jj (( AA ii )) || 22 ;;

Q=(q1,q2,...,qm)表示历史记录分组的集合。Q=(q 1 , q 2 , . . . , q m ) represents a collection of historical record groups.

图1是本发明一较佳实施例提供的一种织物检索方法的流程图,如图1所示,在步骤S1中,服务器端从客户端接收用户查询请求。Fig. 1 is a flowchart of a fabric retrieval method provided by a preferred embodiment of the present invention. As shown in Fig. 1, in step S1, the server side receives a user query request from the client side.

用户查询请求包括历史记录分组信息、待检索织物的至少一个属性的值以及所述至少一个属性中每一属性对应的权重等级和标号;历史记录分组信息包括每组历史记录中历史记录的数目须满足的值和每组历史记录中历史记录相似系数须满足的值。The user query request includes historical record grouping information, the value of at least one attribute of the fabric to be retrieved, and the weight level and label corresponding to each attribute in the at least one attribute; the historical record grouping information includes the number of historical records in each group of historical records. Satisfied values and values that must be satisfied by the historical record similarity coefficient in each set of historical records.

在具体的实现过程中,首先设计师根据新产品的外观和功能需求如颜色、样式、是否防水、洗涤方式等属性形成新产品的织物规格,这些织物规格也即织物的属性值的集合,接着,采购员提取设计师设计的新产品的织物规格来选择该新产品的合适织物。采购员在选择合适织物的过程中,不仅要考虑设计师提供的织物规格,同时还要考虑生产制造此产品的供应链的相关因素:如供应商、成本等。采购员对于设计师设计的织物属性规格和根据他们的经验得到的其它供应链上的相关属性规格给这些属性定一个权重等级和标号,并确定每组历史记录中历史记录的数目须满足的值和每组历史记录中历史记录相似系数须满足的值,将所有这些信息作为一个查询请求输入到客户端。In the specific implementation process, firstly, the designer forms the fabric specifications of the new product according to the appearance and functional requirements of the new product, such as color, style, whether it is waterproof, washing method, etc. These fabric specifications are also a collection of fabric attribute values, and then , the buyer extracts the fabric specifications of the new product designed by the designer to select the appropriate fabric for the new product. In the process of selecting a suitable fabric, the buyer should not only consider the fabric specifications provided by the designer, but also consider the relevant factors of the supply chain that produces the product: such as suppliers, costs, etc. Buyers set a weight level and label for the fabric attribute specifications designed by designers and other related attribute specifications in the supply chain based on their experience, and determine the value that the number of historical records in each group of historical records must meet The value that must be satisfied by the historical record similarity coefficient in each group of historical records, and all these information are input to the client as a query request.

随后,在下一步骤S2,服务器端根据接收的查询请求中的每个属性的权重等级和所述标号,计算查询请求中待检索织物的每个属性的最终权重值。Subsequently, in the next step S2, the server calculates the final weight value of each attribute of the fabric to be retrieved in the query request according to the weight level and the label of each attribute in the received query request.

在本发明的实施例中,所述每个属性的标号分别是从1开始的不重复的连续的自然数,所述计算查询请求中待检索织物的每个属性的最终权重值包括如下步骤:In an embodiment of the present invention, the label of each attribute is a non-repetitive continuous natural number starting from 1, and the calculation of the final weight value of each attribute of the fabric to be retrieved in the query request includes the following steps:

S21)计算查询请求中的每个属性的初始权重值wi,根据 w i = 1 n Σ j = i n 1 j , i = 1,2 , . . . n 来计算每个属性的初始权重值,其中i表示属性的标号,n表示查询请求待检索织物的总属性个数;S21) Calculate the initial weight value w i of each attribute in the query request, according to w i = 1 no Σ j = i no 1 j , i = 1,2 , . . . no To calculate the initial weight value of each attribute, where i represents the label of the attribute, and n represents the total number of attributes of the fabric to be retrieved in the query request;

S22)将具有相同权重等级的属性的最初权重值相加再取平均值得到具有该权重等级的属性的最终权重w(Ai)。S22) Add the initial weight values of the attributes with the same weight level and take the average value to obtain the final weight w(A i ) of the attribute with the weight level.

例如,查询请求Cinput共有11个属性,每个属性的标号分别为1至11,权重等级为五个:非常重要、重要、不太重要、相关和不相关。如表1所示:For example, the query request C input has 11 attributes in total, each attribute has a label from 1 to 11 and five weight levels: very important, important, not very important, relevant and irrelevant. As shown in Table 1:

  属性 Attributes   等级 level   标号 label   织物的组成 Composition of the fabric   非常重要 Very important   1 1   产品的类型 Type of product   非常重要 Very important   2 2   织物的柔软度 fabric softness   非常重要 Very important   3 3   织物的结构 fabric structure   重要 important   4 4

  织物的保养方式 How to maintain the fabric   重要 important   5 5   使用的季节 season of use   重要 important   6 6   颜色/图案 color/pattern   不太重要 not so important   7 7   供应商地址 supplier address   不太重要 not so important   8 8   织物的宽度/重量 Fabric width/weight   相关 relevant   9 9   染色方法 Dyeing method   相关 relevant   10 10   洗涤方法 cleaning method   不相关 irrelevant   11 11

表1Table 1

那么:标号为1的属性的权重为: w 1 = 1 11 ( 1 + 1 2 + 1 3 + 1 4 + 1 5 + 1 6 + 1 7 + 1 8 + 1 9 + 1 10 + 1 11 ) = 0.275 ; Then: the weight of the attribute labeled 1 is: w 1 = 1 11 ( 1 + 1 2 + 1 3 + 1 4 + 1 5 + 1 6 + 1 7 + 1 8 + 1 9 + 1 10 + 1 11 ) = 0.275 ;

标号为2的属性的权重为: w 2 = 1 11 ( 1 2 + 1 3 + 1 4 + 1 5 + 1 6 + 1 7 + 1 8 + 1 9 + 1 10 + 1 11 ) = 0.184 ; The weight of the attribute labeled 2 is: w 2 = 1 11 ( 1 2 + 1 3 + 1 4 + 1 5 + 1 6 + 1 7 + 1 8 + 1 9 + 1 10 + 1 11 ) = 0.184 ;

标号为3的属性的权重为: w 3 = 1 11 ( 1 3 + 1 4 + 1 5 + 1 6 + 1 7 + 1 8 + 1 9 + 1 10 + 1 11 ) = 0.138 ; The weight of the attribute labeled 3 is: w 3 = 1 11 ( 1 3 + 1 4 + 1 5 + 1 6 + 1 7 + 1 8 + 1 9 + 1 10 + 1 11 ) = 0.138 ;

依次类推,排在第4至第11的的属性的权重分别为:0.108、0.085、0.067、0.052、0.039、0.027、0.017和0.008。By analogy, the weights of attributes ranked 4th to 11th are: 0.108, 0.085, 0.067, 0.052, 0.039, 0.027, 0.017, and 0.008.

最后,将具有相同等级的属性的最初权重相加再去平均值得到最终权重:Finally, the initial weights of attributes with the same rank are summed and averaged to get the final weights:

织物的组成、织物的类型、织物的柔软度这三个属性具有相同的等级,那么这三个属性的最终权重为:The three attributes of fabric composition, fabric type, and fabric softness have the same level, then the final weights of these three attributes are:

1 3 ( 0.275 + 0.184 + 0.138 ) = 0.199 . 1 3 ( 0.275 + 0.184 + 0.138 ) = 0.199 .

类似的,织物的结构、织物的保养方式、使用的季节这三个属性的最终权重为:Similarly, the final weights of the three attributes of fabric structure, fabric maintenance, and season of use are:

1 3 ( 0.108 + 0.085 + 0.067 ) = 0.087 . 1 3 ( 0.108 + 0.085 + 0.067 ) = 0.087 .

颜色/图案、供应商地址这两个属性的最终权重为:0.045。The final weight of the two attributes Color/Pattern, Supplier Address is: 0.045.

织物宽度/重量、染色方法这两个属性的最终权重为:0.024。The final weight of the two attributes Fabric Width/Weight, Dyeing Method: 0.024.

洗涤方式这个属性的最终的权重为:0.008。The final weight of this attribute of washing method is: 0.008.

在本发明的实施例中,历史记录的每个属性的标号只要分别是从1开始的不重复的连续的自然数即可,至于哪个属性对应哪个号码这个并不重要。In the embodiment of the present invention, as long as the label of each attribute of the historical record is a non-repeating continuous natural number starting from 1, it is not important which attribute corresponds to which number.

随后,在下一步骤S3,服务器端根据所述历史记录分组信息中的每组历史记录中历史记录的数目须满足的值和每组历史记录中历史记录相似系数须满足的值,对存储在历史记录数据库中的历史记录进行分组,并计算出代表每个分组的特征记录。Subsequently, in the next step S3, the server end stores in the historical records according to the value that the number of historical records in each group of historical records in the historical record grouping information must satisfy and the value that the historical record similarity coefficient in each group of historical records must satisfy. The historical records in the record database are grouped, and the characteristic records representing each group are calculated.

在本发明的实施例中,历史记录的相似系数为:任两个历史记录具有的共同属性个数与该两个历史记录中每个历史记录的所有属性个数的比值之和的平均值。In the embodiment of the present invention, the similarity coefficient of the historical records is: the average value of the sum of the ratio of the number of common attributes of any two historical records to the number of all attributes of each of the two historical records.

例如:历史记录Ci有16个属性,历史记录Cj有12个属性,这两个历史记录有5个共同的属性,那么这两个历史记录的相似系数 θ = ( C i ∩ C j ) = 1 2 ( | A ( C i ) ∩ A ( C j ) | | A ( C i ) | + | A ( C i ) ∩ A ( C j ) | | A ( C j ) | ) = 1 2 ( 5 16 + 5 12 ) . For example: historical record C i has 16 attributes, historical record C j has 12 attributes, and these two historical records have 5 common attributes, then the similarity coefficient of these two historical records θ = ( C i ∩ C j ) = 1 2 ( | A ( C i ) ∩ A ( C j ) | | A ( C i ) | + | A ( C i ) ∩ A ( C j ) | | A ( C j ) | ) = 1 2 ( 5 16 + 5 12 ) .

历史记录的分组满足以下条件:The grouping of historical records meets the following conditions:

(1)如果Ci,Cj∈qk,那么max(θ(Ci,Cj))≥σ,σ为历史记录分组信息中每组历史记录中历史记录相似系数须满足的值,在此处σ为每个分组中最大相似系数必须满足的最小值;(1) If C i , C j ∈ q k , then max(θ(C i , C j ))≥σ, σ is the value that the similarity coefficient of historical records in each group of historical records in the historical record grouping information must satisfy. Here σ is the minimum value that must be satisfied by the maximum similarity coefficient in each group;

(2)且 ∀ q j , | q j | ≥ β , β为历史记录分组信息中每组历史记录中历史记录数目须满足的值,在此处β为每个分组必须满足的最少历史记录个数;(2) and ∀ q j , | q j | &Greater Equal; β , β is the value that must be satisfied by the number of historical records in each group of historical records in the historical record grouping information, where β is the minimum number of historical records that must be satisfied by each group;

(3)如果Ci∈qk那么 C i ∉ q s , k≠s,qk,qs∈Q,意思是一个历史记录只能属于一个分组。(3) If C i ∈ q k then C i ∉ q the s , k≠s, q k , q s ∈ Q, means that a historical record can only belong to one group.

根据上述(1)、(2)、(3)完成已有历史记录的分组之后,步骤S3进一步计算代表每个分组的特征记录,每个分组的特征记录为该分组中所有历史记录在同一属性上的平均值所组成的记录,计算每一分组的特征记录包括如下步骤:After completing the grouping of existing historical records according to the above (1), (2), and (3), step S3 further calculates the feature records representing each group. The feature records of each group are all historical records in the group in the same attribute The records composed of the average value above, the calculation of the feature records of each group includes the following steps:

S31)qj(Ai)表示分组qj中所有历史记录在属性Ai上的平均值,利用 q j ‾ ( A i ) = 1 | q j i | Σ ∀ C k ∈ q j i v k ( A i ) 计算分组qj中所有历史记录在每个属性上的平均值,vk(Ai)表示历史记录k第i个属性的值,qj i表示分组qj中所有历史记录的集合,|qj i|表示分组qj中所有历史记录的个数;S31) q j (A i ) represents the average value of all historical records in group q j on attribute A i , using q j ‾ ( A i ) = 1 | q j i | Σ ∀ C k ∈ q j i v k ( A i ) Calculate the average value of all historical records in group q j on each attribute, v k (A i ) represents the value of the i-th attribute of historical record k, q j i represents the set of all historical records in group q j , |q j i |Indicates the number of all historical records in the group q j ;

S32)Cj r为分组qj的特征记录, v C j r ( A i ) = q j ‾ ( A i ) . S32) C j r is the feature record of group q j , v C j r ( A i ) = q j ‾ ( A i ) .

随后,在下一步骤S4,服务器端根据查询请求中的每个属性的值及由服务器端计算得出的每个属性的最终权重值和所述每个特征记录的每个属性的值,计算每一特征记录与查询请求的匹配值,确定与查询请求匹配值最高的特征记录所属的分组。Subsequently, in the next step S4, the server side calculates each A matching value of the feature record and the query request, determining the group to which the feature record with the highest matching value with the query request belongs.

在步骤S4中,计算每一特征记录与查询请求的匹配值为: ( C input , C q j r ) = Σ i = 1 n w ( A i ) * ( 1 - sim ( v input ( A i ) , v C q j r ( A i ) ) ) , 其中 sim ( v input ( A i ) , v C q j r ( A i ) ) = | v input ( A i - v C q j r ( A i ) ) | 2 , Cinput表示所述查询请求,

Figure G2009101792825D00115
表示分组qj的特征记录。In step S4, the matching value of each feature record and query request is calculated as: ( C input , C q j r ) = Σ i = 1 no w ( A i ) * ( 1 - sim ( v input ( A i ) , v C q j r ( A i ) ) ) , in sim ( v input ( A i ) , v C q j r ( A i ) ) = | v input ( A i - v C q j r ( A i ) ) | 2 , C input represents the query request,
Figure G2009101792825D00115
Represents the feature record of group q j .

假设在步骤S3中对历史记录进行分组后产生五个分组,即Q=(q1,q2,q3,q4,q5)。那么查询请求Cinput与分组q1的特征记录的匹配值为: ( C input , C q 1 r ) = Σ i = 1 n w ( A i ) * ( 1 - sim ( v input ( A i ) , v C q 1 r ( A i ) ) ) , 其中 sim ( v input ( A i ) , v C q 1 r ( A i ) ) = | v input ( A i ) - v C q 1 r ( A i ) | 2 , w(Ai)为属性Ai对应的权重。同理计算查询请求Cinput与分组q2的特征记录的匹配值

Figure G2009101792825D00121
Cinput与分组q3的特征记录的匹配值(Cinput,Cq3 r)、Cinput与分组q4的特征记录的匹配值
Figure G2009101792825D00122
Cinput与分组q5的特征记录的匹配值
Figure G2009101792825D00123
Assume that five groups are generated after grouping the historical records in step S3, namely Q=(q 1 , q 2 , q 3 , q 4 , q 5 ). Then the matching value of the query request C input and the feature record of group q 1 is: ( C input , C q 1 r ) = Σ i = 1 no w ( A i ) * ( 1 - sim ( v input ( A i ) , v C q 1 r ( A i ) ) ) , in sim ( v input ( A i ) , v C q 1 r ( A i ) ) = | v input ( A i ) - v C q 1 r ( A i ) | 2 , w(A i ) is the weight corresponding to attribute A i . In the same way, calculate the matching value of the query request C input and the feature record of the group q 2
Figure G2009101792825D00121
The matching value of C input and the feature record of group q 3 (C input , C q3 r ), the matching value of C input and the feature record of group q 4
Figure G2009101792825D00122
The matching value of C input and the feature record of group q 5
Figure G2009101792825D00123

完成查询请求与历史记录的每个分组的特征记录的匹配值的计算之后,确定与查询请求匹配值最高的特征记录所属的分组,假设为组q3After completing the calculation of the matching value of the query request and the feature records of each group of historical records, determine the group to which the feature record with the highest matching value of the query request belongs, assuming it is group q 3 .

随后,在下一步骤S5,服务器端根据查询请求中的每个属性的值及由服务器端计算得出每个属性的最终权重值和与查询请求匹配值最高的特征记录所属的分组中的每个历史记录的每个属性的值,计算与查询请求匹配值最高的特征记录所属的分组中的每个历史记录与查询请求的匹配值,确定与查询请求匹配值最高的历史记录,并把该历史记录发送给客户端。Subsequently, in the next step S5, the server calculates the final weight value of each attribute and each attribute in the group to which the feature record with the highest matching value of the query request belongs according to the value of each attribute in the query request. For the value of each attribute of the historical record, calculate the matching value of each historical record in the group to which the feature record with the highest matching value matches the query request and the query request, determine the historical record with the highest matching value with the query request, and put the historical record Records are sent to the client.

在步骤S5,计算查询请求与具有最高匹配值的特征记录所属的分组中的每个历史记录的匹配值为: ( C input , C j ) = Σ i = 1 n w ( A i ) * ( 1 - sim ( v input ( A i ) , v C j ( A i ) ) ) , 其中 sim ( v input ( A i ) , v c j ( A i ) ) = | v input ( A i ) - v c j ( A i ) | 2 , Cj表示具有最高匹配值的特征记录所属的分组中的历史记录,Cinput表示所述查询请求。In step S5, the matching value of the query request and each historical record in the group to which the feature record with the highest matching value belongs is calculated: ( C input , C j ) = Σ i = 1 no w ( A i ) * ( 1 - sim ( v input ( A i ) , v C j ( A i ) ) ) , in sim ( v input ( A i ) , v c j ( A i ) ) = | v input ( A i ) - v c j ( A i ) | 2 , C j represents the history record in the group to which the feature record with the highest matching value belongs, and C input represents the query request.

因为在步骤S4中选择出来的具有最高匹配值的分组为q3,所以步骤S5将在组q3中确定一个具有最高匹配值的历史记录作为此次查询的结果Because the group with the highest matching value selected in step S4 is q 3 , step S5 will determine a historical record with the highest matching value in group q 3 as the result of this query

假设在具有最高匹配值的分组q3中有6个历史记录C1、C2、C3、C4、C5和C6。那么查询请求Cinput与历史记录C1的匹配值为: ( C input , C 1 ) = Σ i = 1 n w ( A i ) * ( 1 - sim ( v input ( A i ) , v C 1 ( A i ) ) ) , 其中w(Ai)为属性Ai对应的权重, sim ( v input ( A i ) , v C 1 ( A i ) ) = | v input ( A i ) - v C 1 ( A i ) | 2 . 同理计算查询请求Cinput与历史记录C2的匹配值(Cinput,C2)、与历史记录C3的匹配值(Cinput,C3)、与历史记录C4的匹配值(Cinput,C4)、与历史记录C5的匹配值(Cinput,C5)和与历史记录C6的匹配值(Cinput,C6)。取匹配值最高的历史记录,假设为C5,作为本次查询的结果发送给客户端。Assume there are 6 history records C 1 , C 2 , C 3 , C 4 , C 5 and C 6 in the group q 3 with the highest matching value. Then the matching value of the query request C input and the historical record C 1 is: ( C input , C 1 ) = Σ i = 1 no w ( A i ) * ( 1 - sim ( v input ( A i ) , v C 1 ( A i ) ) ) , Where w(A i ) is the weight corresponding to attribute A i , sim ( v input ( A i ) , v C 1 ( A i ) ) = | v input ( A i ) - v C 1 ( A i ) | 2 . Similarly, calculate the matching value (C input , C 2 ) of the query request C input and the historical record C 2 , the matching value (C input , C 3 ) of the historical record C 3 , and the matching value (C input ) of the historical record C 4 (C input , C 4 ), the matching value (C input , C 5 ) with the historical record C 5 , and the matching value (C input , C 6 ) with the historical record C 6 . Take the historical record with the highest matching value, assuming it is C 5 , and send it to the client as the result of this query.

在具体的实现过程中,步骤S5之后,采购员将选择出来的历史记录对应的织物提供给设计师,根据以往的历史记录,设计师可以知道这些织物的性能。设计师再对采购员提供的织物做分析和评估,评估可能有如下几种情况:In a specific implementation process, after step S5, the purchaser provides the fabrics corresponding to the selected historical records to the designer, and the designer can know the properties of these fabrics according to the previous historical records. The designer then analyzes and evaluates the fabric provided by the buyer. The evaluation may have the following situations:

(1)采购员提供的织物满足设计师的要求,这种情况下,设计师的意见和采购员的意见达成了一致,采购员提供的织物就是设计师设计的新产品所需要的织物。(1) The fabric provided by the buyer meets the designer's requirements. In this case, the designer's opinion and the buyer's opinion have reached an agreement, and the fabric provided by the buyer is the fabric required by the new product designed by the designer.

(2)采购员提供的织物不满足设计师的需求,设计师和采购员共同讨论,对以往的历史记录进行分析,发现针对设计师的此新设计,检索出来的织物比设计师要求的织物更具优越性,那么,设计师更改自己的设计要求使之符合织物的规格。此采购员提供的织物也即最终的设计师设计的新产品所需要的织物。(2) The fabric provided by the buyer does not meet the needs of the designer. The designer and the buyer discuss together and analyze the previous historical records. It is found that for the new design of the designer, the retrieved fabric is better than the fabric required by the designer. More superior, then, the designer changes his design requirements to meet the specifications of the fabric. The fabric provided by the buyer is also the fabric required by the final designer for the new product.

(3)采购员提供的织物不满足设计师的需求,设计师和采购员共同讨论,讨论的结果是:可能设计师需要修改设计要求,也可能是采购员需要修改设计要求以外的其它一些规格,或者是设计师和采购员都需要修改他们对此新产品的一些规格。那么,采购员根据新产品修改之后的新的规格要求重新利用本发明所述的检索方法来查找新产品的织物。(3) The fabric provided by the buyer does not meet the needs of the designer. The designer and the buyer discuss together. The result of the discussion is that the designer may need to modify the design requirements, or the buyer may need to modify some other specifications other than the design requirements. , or both designers and buyers need to revise some of their specifications for this new product. Then, the buyer re-uses the retrieval method described in the present invention to search for the fabric of the new product according to the new specification requirements after the new product modification.

在实际中,因为设计师和采购员不同的经验、对织物的不同看法、关注的焦点不同、对属性的把握尺度不同或者设计师和采购员交流沟通不充分等原因,本发明所述的检索流程可能要反复几次,才能找到最终设计师和采购员都满意的织物。In practice, due to the different experiences of designers and buyers, different views on fabrics, different focus of attention, different scales of grasping attributes, or insufficient communication between designers and buyers, the retrieval method described in the present invention The process may go through several iterations before finding a fabric that both the final designer and buyer are happy with.

图2是本发明一较佳实施例提供的一种织物检索系统的结构示意图,如图2所示,包括:客户端1和服务器端2。客户端1包括多位数据管理模块11和织物数据库12。服务器端2包括检索模块21和历史记录数据库22。其中检索模块21包括:属性权重计算单元211、历史记录分组单元212、组查找单元213和历史记录查找单元214。FIG. 2 is a schematic structural diagram of a fabric retrieval system provided by a preferred embodiment of the present invention. As shown in FIG. 2 , it includes: a client terminal 1 and a server terminal 2 . The client 1 includes a multi-bit data management module 11 and a fabric database 12 . The server end 2 includes a retrieval module 21 and a historical record database 22 . The retrieval module 21 includes: an attribute weight calculation unit 211 , a historical record grouping unit 212 , a group search unit 213 and a historical record search unit 214 .

在本发明的实施例中,织物数据库12用于存储织物相关的业务数据,存储的数据不仅包括织物本身相关的静态属性数据,还包括供应链相关数据,如:供应商信息、已生产产品的信息,历史交易记录、顾客信息、成本、库存和员工相关信息等等所有涉及服装业务的数据。多维数据管理模块12再将织物数据库中的数据组织管理成星型模式(一个星型模式是根据维度建模原理设计的关系数据库中一些表的集合),这种模式可以加快当从不同的数据源提取数据时的响应速度。星型模式在关系表之外创建多维空间,使得单维表之间互相连接。同时多维数据管理模块12提供织物业务相关的操作:包括查询、插入、删除和更新等操作,利用这些操作实现对数据的管理。这些操作是通过结构化查询语言(Structure Query Language,SQL)来实现的。用户根据自己负责的业务,利用多维数据管理模块12上对应的功能来完成自己的工作。In an embodiment of the present invention, the fabric database 12 is used to store fabric-related business data, and the stored data not only includes static attribute data related to the fabric itself, but also includes supply chain-related data, such as: supplier information, produced product information, etc. Information, historical transaction records, customer information, costs, inventory and employee related information, etc., all data related to clothing business. The multidimensional data management module 12 then organizes and manages the data in the fabric database into a star schema (a star schema is a collection of some tables in a relational database designed according to the dimension modeling principle), and this model can speed up when different data How responsive the source is when fetching data. A star schema creates a multidimensional space outside of a relational table, allowing single-dimensional tables to be connected to each other. At the same time, the multidimensional data management module 12 provides operations related to the fabric business: including operations such as query, insertion, deletion, and update, and uses these operations to realize data management. These operations are implemented through Structured Query Language (SQL). Users use the corresponding functions on the multi-dimensional data management module 12 to complete their own work according to the business they are responsible for.

例如,在本发明的实施例中,首先设计师负责的业务是设计新产品。那么,设计师在根据新产品的外观和功能需求如颜色、样式、是否防水、洗涤方式等属性形成新产品的织物规格,这些织物规格也即织物的属性的值的集合,设计师将这些属性的值输入到多维数据管理模块12中,然后多维数据管理模块12将这些织物规格以关系表格式保存在织物数据库11中。接着,采购员负责的业务是根据设计师设计的新产品的需求规格,找出新产品所需要的合适的织物。那么,采购员在多维数据管理模块12中提取设计师设计的新产品的织物规格,来选择该新产品合适的织物。采购员在选择合适织物的过程中,不仅要考虑设计师提供的织物规格,同时还要考虑生产制造此产品的供应链的相关因素:如供应商、成本、库存等。采购员对于设计师设计的织物属性规格和根据他们的经验得到的其它供应链上的相关属性规格给这些属性定一个权重等级和标号,并确定每组历史记录中历史记录的数目须满足的值和每组历史记录中历史记录相似系数须满足的值,将所有这些信息作为一个查询请求输入到多维数据管理模块12来选择织物,多维数据管理模块21接收选择织物命令时触发服务器端2的检索模块21中来选择合适的织物。For example, in the embodiment of the present invention, firstly, the designer is in charge of designing new products. Then, the designer forms the fabric specifications of the new product according to the appearance and functional requirements of the new product, such as color, style, whether it is waterproof, washing method, etc. These fabric specifications are also a collection of fabric attribute values. The value of is input in the multidimensional data management module 12, then the multidimensional data management module 12 saves these fabric specifications in the fabric database 11 with relational table format. Next, the business of the buyer is to find out the appropriate fabric for the new product according to the demand specification of the new product designed by the designer. Then, the buyer extracts the fabric specifications of the new product designed by the designer in the multidimensional data management module 12 to select a suitable fabric for the new product. In the process of selecting a suitable fabric, the buyer should not only consider the fabric specifications provided by the designer, but also consider the relevant factors of the supply chain that produces the product: such as suppliers, costs, inventory, etc. Buyers set a weight level and label for the fabric attribute specifications designed by designers and other related attribute specifications in the supply chain based on their experience, and determine the value that the number of historical records in each group of historical records must meet The value that must be satisfied with the historical record similarity coefficient in each group of historical records, all these information are entered into the multidimensional data management module 12 as a query request to select the fabric, and the multidimensional data management module 21 triggers the retrieval of the server end 2 when receiving the fabric selection command Module 21 to select the appropriate fabric.

服务器端2的检索模块21接收到来自多维数据管理模块21的查询请求,首先,属性权重计算单元211根据本发明所述检索方法中的属性权重计算方法对查询请求的各属性计算权重;接着,历史记录分组单元212根据本发明所述检索方法中的的分组方法对历史记录数据库22中的历史记录进行分组,并根据本发明所述检索方法中的对分组历史记录计算代表特征记录的方法计算每个分组的特征记录;然后组查找单元213根据本发明所述检索方法中的计算查询请求与历史记录数据库中的每个分组的特征记录的匹配值的方法,确定与查询请求匹配值最高的特征记录所属的分组;最后,历史记录查找单元214利用本发明所述检索方法中的计算查询请求与具有最高匹配值的特征记录所属的分组中每个历史记录的匹配值的方法,确定与查询请求匹配值最高的历史记录,并将此历史记录发送给客户端1。The retrieval module 21 of the server end 2 receives the query request from the multidimensional data management module 21, first, the attribute weight calculation unit 211 calculates the weight of each attribute of the query request according to the attribute weight calculation method in the retrieval method of the present invention; then, The historical record grouping unit 212 groups the historical records in the historical record database 22 according to the grouping method in the retrieval method of the present invention, and calculates the representative feature records according to the method for calculating representative feature records for the grouped historical records in the retrieval method of the present invention. The feature record of each group; then the group search unit 213 determines the highest matching value with the query request according to the method of calculating the matching value of the query request and the feature record of each group in the historical record database in the retrieval method of the present invention. The grouping to which the characteristic record belongs; finally, the historical record search unit 214 utilizes the method of calculating the query request in the retrieval method of the present invention and the matching value of each historical record in the grouping to which the characteristic record with the highest matching value belongs to determine and query Request the history record with the highest matching value and send this history record to client 1.

在具体的实现过程中,若最终设计师和采购员对检索的织物达成了一致,即检索织物作为设计师设计的新产品的最终织物,那么将此次检索作为历史记录存储到历史记录数据库22中。In the specific implementation process, if the final designer and the buyer reach an agreement on the retrieved fabric, that is, the retrieved fabric is the final fabric of the new product designed by the designer, then this retrieval will be stored as a historical record in the historical record database 22 middle.

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention should be included in the protection of the present invention. within range.

Claims (8)

1. A method of retrieving a fabric, comprising the steps of:
the method comprises the steps that a server receives a user query request from a client, wherein the user query request comprises historical record grouping information, a value of at least one attribute of a fabric to be retrieved and a weight grade and a label corresponding to each attribute in the at least one attribute; the historical record grouping information comprises values which are required to be met by the number of the historical records in each group of historical records and values which are required to be met by the historical record similarity coefficient in each group of historical records;
the server side calculates a final weight value of each attribute of the fabric to be retrieved in the query request according to the weight grade and the label of each attribute in the received query request;
the server side groups the historical records stored in the historical record database according to the value which is required to be met by the number of the historical records in each group of the historical records in the historical record grouping information and the value which is required to be met by the similarity coefficient of the historical records in each group of the historical records, and calculates the characteristic record representing each group;
the server side calculates a matching value of each feature record and the query request according to the value of each attribute in the query request, the final weight value of each attribute calculated by the server side and the value of each attribute of each feature record, and determines a group to which the feature record with the highest matching value with the query request belongs;
the server side calculates the matching value of each history record in the group to which the feature record with the highest matching value with the query request belongs and the query request according to the value of each attribute in the query request, the final weight value of each attribute calculated by the server side and the value of each attribute of each history record in the group to which the feature record with the highest matching value with the query request belongs, determines the history record with the highest matching value with the query request, and sends the history record to the client side;
wherein the label of each attribute is a non-repeating continuous natural number starting from 1, and the calculating the final weight value of each attribute of the fabric to be retrieved in the query request includes the following steps:
s21) calculating an initial weight value w of each attribute in the query requestiAccording to
Figure FDA0000148831690000021
Calculating an initial weight value of each attribute, wherein i represents the label number of the attribute, and n represents the total number of the attributes of the fabric to be searched for according to the query request;
s22) adding the initial weight values of the attributes having the same weight levelThen, the final weight w (A) of the attribute with the weight grade is obtained by taking the average valuei)。
2. The method of claim 1, wherein the similarity coefficient of the history record is: the average value of the sum of the ratios of the number of common attributes of any two historical records to the number of all the attributes of each historical record in the two historical records.
3. The method of claim 2, wherein the grouping of the history records satisfies the following condition:
(1) if C is presenti,Cj∈qkThen max (θ (C)i,Cj) σ) is larger than or equal to σ, and represents the minimum value which the maximum similarity coefficient in each group of history records must satisfy;
(2) <math> <mrow> <mo>&ForAll;</mo> <msub> <mi>q</mi> <mi>j</mi> </msub> <mo>,</mo> <mo>|</mo> <msub> <mi>q</mi> <mi>j</mi> </msub> <mo>|</mo> <mo>&GreaterEqual;</mo> <mi>&beta;</mi> <mo>;</mo> </mrow> </math>
(3) if C is presenti∈qkThen
Figure FDA0000148831690000023
k≠s,qk,qs∈Q;
Wherein, <math> <mrow> <mi>&theta;</mi> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>C</mi> <mi>i</mi> </msub> <mi>I</mi> </mtd> <mtd> <msub> <mi>C</mi> <mi>j</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mfrac> <mfenced open='|' close='|'> <mtable> <mtr> <mtd> <mi>A</mi> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mi>I</mi> </mtd> <mtd> <mi>A</mi> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mrow> <mo>|</mo> <mi>A</mi> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </mfrac> <mo>+</mo> <mfrac> <mfenced open='|' close='|'> <mtable> <mtr> <mtd> <mi>A</mi> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mi>I</mi> </mtd> <mtd> <mi>A</mi> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mrow> <mo>|</mo> <mi>A</mi> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> </math> for history CiAnd Cjσ is a value that the history similarity coefficient in each group of the history grouping information should satisfy, β is a value that the number of histories in each group of the history grouping information should satisfy, and C ═ is (C ═ C)1,C2,...,Cj,...Cm) Representing a set of history records, A ═ A1,A2,...,Aj,...An) Representing a collection of all attributes, A (C)i)=(A1,A2,...,Aj,...Ak) Represents a history CiQ ═ Q (Q), a set of all attributes of1,q2,...,qm) Represents a collection of historical record groupings, | A (C)i) I represents History CiThe number of all attributes in (1).
4. The method of claim 3, wherein the characteristic record of each group is a record formed by an average value of all the historical records in the group on the same attribute, and calculating the characteristic record of each group comprises the following steps:
S31)
Figure FDA0000148831690000031
representing a packet qjWherein all history records are in attribute AiAverage value of (3) using
Figure FDA0000148831690000032
Computing a packet qjAverage of all history recorded on each attribute, vk(Ai) Attribute A representing History kiThe value of (a) is,
Figure FDA0000148831690000033
representing a packet qjThe collection of all the history records in the history record,
Figure FDA0000148831690000034
representing a packet qjThe number of all history records in the database;
S32)
Figure FDA0000148831690000035
into a packet qjIs recorded on the basis of the characteristics of the image,
Figure FDA0000148831690000036
5. the method of claim 4, wherein calculating the matching value of each of the feature records to the query request is: <math> <mrow> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mi>input</mi> </msub> <mo>,</mo> <msubsup> <mi>C</mi> <msub> <mi>q</mi> <mi>j</mi> </msub> <mi>r</mi> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mi>w</mi> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>*</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>sim</mi> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>input</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>v</mi> <msubsup> <mi>C</mi> <msub> <mi>q</mi> <mi>j</mi> </msub> <mi>r</mi> </msubsup> </msub> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> wherein sim ( v input ( A i ) , v C q j r ( A i ) ) = | v input ( A i ) - v C q j r ( A i ) | 2 , CinputRepresents the request for the query in question,
Figure FDA0000148831690000039
representing a packet qjThe characteristic of (2) is recorded.
6. Such asThe method of claim 4, wherein calculating the match value for each history record in the group to which the query request and the feature record having the highest match value belong is: <math> <mrow> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mi>input</mi> </msub> <mo>,</mo> <msub> <mi>C</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mi>w</mi> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>*</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>sim</mi> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>input</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>v</mi> <msub> <mi>C</mi> <mi>j</mi> </msub> </msub> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> wherein sim ( v input ( A i ) , v c j ( A i ) ) = | v input ( A i ) - v c j ( A i ) | 2 , CjRepresenting the history in the group to which the feature record with the highest matching value belongs, CinputRepresenting the query request.
7. A fabric retrieval system comprises a client and a server, and is characterized in that,
the client comprises:
a fabric database: the system is used for storing fabric-related service data;
the multidimensional data management module: the fabric business management system is used for receiving a query request input by a user and sending the request to a server side, managing data in a fabric database by using a star mode and providing operation related to fabric business;
the server side includes:
the retrieval module: the multidimensional data management module is used for calculating a final weight value of each attribute of the fabric to be retrieved in the query request sent by the multidimensional data management module, grouping the historical records in the historical record database, calculating the characteristic record of each group, calculating the matching value of each characteristic record and the query request, determining the group of the characteristic record with the highest matching value with the query request, calculating the matching value of each historical record and the query request in the group of the characteristic record with the highest matching value, determining the historical record with the highest matching value with the query request, and sending the historical record to the client;
history database: for storing history records.
8. The system of claim 7, wherein the retrieving module comprises:
history grouping unit: the system is used for grouping the historical records in the historical record database and calculating a characteristic record representing each group;
an attribute weight calculation unit: the method comprises the steps of calculating a final weight value of each attribute of the fabric to be retrieved in the query request;
a group search unit: the attribute weight calculation unit is used for calculating a matching value of the query request and each feature record according to the final weight value of each attribute of the fabric to be retrieved in the query request, the value of each attribute in the query request and the value of each attribute of the feature record calculated by the history record grouping unit, and determining the group to which the feature record with the highest matching value with the query request belongs;
history search unit: the attribute weight calculation unit is used for calculating the matching value of the query request and each history record in the group to which the feature record with the highest matching value determined by the group search unit belongs according to the final weight value of each attribute of the fabric to be retrieved in the query request, the value of each attribute in the query request and the value of the attribute of each history record in the group to which the feature record with the highest matching value determined by the group search unit belongs, and determining the history record with the highest matching value with the query request.
CN200910179282.5A 2009-09-25 2009-09-25 Fabric retrieval method and system Expired - Fee Related CN102033886B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910179282.5A CN102033886B (en) 2009-09-25 2009-09-25 Fabric retrieval method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910179282.5A CN102033886B (en) 2009-09-25 2009-09-25 Fabric retrieval method and system

Publications (2)

Publication Number Publication Date
CN102033886A CN102033886A (en) 2011-04-27
CN102033886B true CN102033886B (en) 2012-07-04

Family

ID=43886793

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910179282.5A Expired - Fee Related CN102033886B (en) 2009-09-25 2009-09-25 Fabric retrieval method and system

Country Status (1)

Country Link
CN (1) CN102033886B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109947970A (en) * 2019-03-16 2019-06-28 张兴宇 A kind of textile fabric flower pattern searching system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103886026B (en) * 2014-02-25 2017-09-05 厦门客来点信息科技有限公司 Clothing matching method based on personal feature
KR101986724B1 (en) * 2017-08-16 2019-06-07 장희주 Method for providing internet shopping-mall service coordinating with offline store using unique identifier for fabric
CN110826735B (en) * 2019-10-31 2023-04-25 上海玖道信息科技股份有限公司 An intelligent multi-dimensional query and maintenance method for electric power SCADA
KR102679257B1 (en) * 2023-03-22 2024-06-27 김유진 Recommendation system of clothes made of recycle fiber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030177110A1 (en) * 2002-03-15 2003-09-18 Fujitsu Limited Profile information recommendation method, program and apparatus
US6871186B1 (en) * 1997-11-14 2005-03-22 New York University System and method for dynamic profiling of users in one-to-one applications and for validating user rules
CN1858743A (en) * 2006-03-10 2006-11-08 华为技术有限公司 Information searching method and device in relation ship data bank
CN101286150A (en) * 2007-04-10 2008-10-15 阿里巴巴集团控股有限公司 Method and device for creating updated parameter, method and device for displaying relevant key words

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6871186B1 (en) * 1997-11-14 2005-03-22 New York University System and method for dynamic profiling of users in one-to-one applications and for validating user rules
US20030177110A1 (en) * 2002-03-15 2003-09-18 Fujitsu Limited Profile information recommendation method, program and apparatus
CN1858743A (en) * 2006-03-10 2006-11-08 华为技术有限公司 Information searching method and device in relation ship data bank
CN101286150A (en) * 2007-04-10 2008-10-15 阿里巴巴集团控股有限公司 Method and device for creating updated parameter, method and device for displaying relevant key words

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109947970A (en) * 2019-03-16 2019-06-28 张兴宇 A kind of textile fabric flower pattern searching system
CN109947970B (en) * 2019-03-16 2021-01-15 南通联发信息科技有限公司 Textile fabric pattern retrieval system

Also Published As

Publication number Publication date
CN102033886A (en) 2011-04-27

Similar Documents

Publication Publication Date Title
Tang et al. Data mining with SQL Server 2005
US8655918B2 (en) System and method of transforming data for use in data analysis tools
CN101111835B (en) Automatic Default Dimension Selection Method in Multidimensional Enterprise Software System
CN106600302A (en) Hadoop-based commodity recommendation system
CN104036051B (en) A kind of database schema abstraction generating method propagated based on label
Jin et al. Toward understanding and evaluating structural node embeddings
CN102033886B (en) Fabric retrieval method and system
CN106844407A (en) Label network production method and system based on data set correlation
CN113487117B (en) Method and system for simulating behavior data of electric business based on multi-dimensional user portrait
CN107633093A (en) A kind of structure and its querying method of DECISION KNOWLEDGE collection of illustrative plates of powering
JP2004030221A (en) Automatic change table detection method
Hemalatha Market basket analysis–a data mining application in Indian retailing
CN114723535A (en) Supply chain and knowledge graph-based item recommendation method, equipment and medium
CN105590237A (en) Application of high utility sequential pattern with negative-profit items in electronic commerce business decision making
CN110020918B (en) Recommendation information generation method and system
CN114565429A (en) An Intelligent Supplier Matching Method Based on Semantic Graph Model
CN108460654A (en) A kind of insurance products recommendation method, system, medium and equipment based on binary tree
Gang et al. The research & application of Business Intelligence system in retail industry
Yeung et al. Data Analytics Architectures for E-Commerce Platforms in Cloud
CN112784064A (en) Hierarchical super-dimensional knowledge graph construction method facing social network
Brown et al. Toward automated large-scale information integration and discovery
Sapir et al. A methodology for the design of a fuzzy data warehouse
Ragulan et al. Designing a data warehouse system for sales and distribution company
Pu et al. Data analysis and application of retail enterprises based on KNIME
Ramdhani et al. The Best Association Model on Online Retail Datasets

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120704

Termination date: 20200925