[go: up one dir, main page]

CN101867474B - Digital signature method - Google Patents

Digital signature method Download PDF

Info

Publication number
CN101867474B
CN101867474B CN201010161195XA CN201010161195A CN101867474B CN 101867474 B CN101867474 B CN 101867474B CN 201010161195X A CN201010161195X A CN 201010161195XA CN 201010161195 A CN201010161195 A CN 201010161195A CN 101867474 B CN101867474 B CN 101867474B
Authority
CN
China
Prior art keywords
signature
user
hash function
transformation
security
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201010161195XA
Other languages
Chinese (zh)
Other versions
CN101867474A (en
Inventor
王后珍
张焕国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changshu Zijin Intellectual Property Service Co ltd
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201010161195XA priority Critical patent/CN101867474B/en
Publication of CN101867474A publication Critical patent/CN101867474A/en
Application granted granted Critical
Publication of CN101867474B publication Critical patent/CN101867474B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Storage Device Security (AREA)

Abstract

本发明涉及信息安全技术领域,尤其涉及一种数字签名方法。本发明基于矩阵分解的困难性、并结合哈希函数认证技术构造的一种新型轻量级数字签名方案,它可广泛应用于网络安全、电子商务、票据以及身份认证等信息安全系统领域,运用此方案进行签名认证时,具有实现效率高、不需要密码算法协处理器、高度安全性、抗量子计算机的攻击等优点,尤其适合在智能卡、无线传感网络、蜂窝电话、射频标签RFID等信息安全领域。The invention relates to the technical field of information security, in particular to a digital signature method. The present invention is based on the difficulty of matrix decomposition and a new lightweight digital signature scheme constructed in combination with hash function authentication technology, which can be widely used in the fields of information security systems such as network security, e-commerce, bills and identity authentication. This scheme has the advantages of high efficiency, no need for a cryptographic algorithm coprocessor, high security, and anti-quantum computer attacks when performing signature authentication. It is especially suitable for information such as smart cards, wireless sensor networks, cellular phones, and radio frequency tags. security area.

Description

数字签名方法digital signature method

技术领域 technical field

本发明涉及信息安全技术领域,尤其涉及一种数字签名方法。The invention relates to the technical field of information security, in particular to a digital signature method.

背景技术 Background technique

二十一世纪是信息的时代。除了电子信息科学技术继续高速发展之外,量子和生物等新型信息科学正在建立和发展。量子信息科学的研究和发展催生了量子计算机、量子通信和量子密码的出现。目前量子计算机的研发工作已取得了突破性的进展,如2001年IBM公司率先研制成功了7量子比特的示例性量子计算机等。1994年Shor提出了著名的Shor算法,这是一种专用的密码搜索破译算法,其扩展算法能以多项式时间攻击所有能够转换为广义离散傅里叶变换的公钥密码,包括RSA、ElGamal和ECC。这意味着一旦量子计算机走向实用,那么这些广泛应用的公钥密码体制将不再安全。The 21st century is the age of information. In addition to the continuous rapid development of electronic information science and technology, new information sciences such as quantum and biology are being established and developed. The research and development of quantum information science has given birth to the emergence of quantum computer, quantum communication and quantum cryptography. At present, breakthroughs have been made in the research and development of quantum computers. For example, in 2001, IBM Corporation took the lead in successfully developing an exemplary quantum computer with 7 qubits. In 1994, Shor proposed the famous Shor algorithm, which is a dedicated password search and deciphering algorithm. Its extended algorithm can attack all public key ciphers that can be converted into generalized discrete Fourier transform in polynomial time, including RSA, ElGamal and ECC. . This means that once quantum computers become practical, these widely used public key cryptography systems will no longer be secure.

随着整数分解技术的发展(如二次筛法和数域筛法),RSA类体制为了保证其安全性就必须使用逐渐增大的参数。使用大模数的RSA体制的计算量很大,降低了该体制的加密和解密效率。因此这种体制对于资源有限的计算设备如蜂窝电话、智能卡等是不太适合的,更不用说无线传感器网络和射频标签RFID。其次,下一代互联网IPv6为了提高服务的安全性,引入大量的加密和认证技术,对于用户而言,传统公钥密码算法效率较低、加解密消耗的CPU时间会使用户的服务相应速度变慢。With the development of integer decomposition technology (such as quadratic sieve method and number field sieve method), RSA-like systems must use gradually increasing parameters in order to ensure their security. The RSA system using a large modulus requires a large amount of calculation, which reduces the encryption and decryption efficiency of the system. Therefore, this system is not suitable for resource-limited computing devices such as cellular phones, smart cards, etc., let alone wireless sensor networks and radio frequency tags RFID. Secondly, in order to improve the security of services, the next-generation Internet IPv6 introduces a large number of encryption and authentication technologies. For users, the efficiency of traditional public key cryptography algorithms is low, and the CPU time consumed by encryption and decryption will slow down the corresponding service speed of users. .

发明内容 Contents of the invention

针对上述存在的技术问题,本发明的目的是提供一种轻量级新型数字签名方法,其特征是基于矩阵分解的困难性、并结合哈希函数认证技术构造的新型数字签名方法。For the above-mentioned technical problems, the purpose of this invention is to provide a lightweight new digital signature method, which is characterized by a new digital signature method based on the difficulty of matrix decomposition and combined with hash function authentication technology.

为达到上述目的,本发明采用如下的技术方案:To achieve the above object, the present invention adopts the following technical solutions:

(Ⅰ)系统建立:选择一个输出至少160位的标准哈希函数H(·)和有限域GF(q),其中q=2k、整数k小于哈希函数H(·)的输出值长度;(I) System establishment: select a standard hash function H(·) and a finite field GF(q) with an output of at least 160 bits, where q=2 k and the integer k is less than the length of the output value of the hash function H(·);

根据用户安全性需求指定整数参数n、δ和r的值(0<δ,r<n);Specify the values of the integer parameters n, δ and r according to user security requirements (0<δ, r<n);

随机选取GF(q)上的n维仿射双射变换T;Randomly select the n-dimensional affine bijective transformation T on GF(q);

构造基于哈希函数H(·)的可逆压缩变换L:(z1,…,zn)←(x1,…,xn,xn+1,…,xn+δ),Construct a reversible compression transformation L based on the hash function H( ): (z 1 ,…,z n )←(x 1 ,…,x n ,x n+1 ,…,x n+δ ),

Figure GSB00000238602600021
Figure GSB00000238602600021

其中A为n-δ维可逆方阵,系数γi≠0(1≤i≤2δ),而系数aij(1≤i≤δ,1≤j≤n-1)以及常数项αi(1≤i≤n)为随机选择;xn+i(1≤i≤δ)为扩展变量,它是向量(x1,…,xn)前(n-δ+i-1)个分量的哈希值,即Where A is an n-δ-dimensional reversible square matrix, coefficient γ i ≠ 0 (1≤i≤2δ), and coefficient a ij (1≤i≤δ, 1≤j≤n-1) and constant term α i (1 ≤i≤n) is a random selection; x n+i (1≤i≤δ) is an extended variable, which is the hash of the first (n-δ+i-1) components of the vector (x 1 ,…, x n ) Greek value, ie

xn+i=Hk(x1||x2||…||xn-δ+i-1),1≤i≤δx n+i =H k (x 1 ||x 2 ||…||x n-δ+i-1 ), 1≤i≤δ

其中Hk(·)表示依次取出H(·)输出值的前k位,“||”表示将两个比特串连接起来;Among them, H k ( ) means to take out the first k bits of the output value of H ( ) in turn, and "||" means to connect two bit strings;

令T-表示依次取出T的n-r行所构成的变换,Let T - denote the transformation formed by sequentially taking out nr rows of T,

系统的公钥为上述两个映射T-和L的复合,G=T-οL,公钥G是有限域GF(q)上n+δ个输入变量、n-r个输出的线性不定方程组;私钥为映射T和L的逆变换组成,D={T-1,L-1};其中,逆变换L-1由A-1、B、αi(1≤i≤n)、

Figure GSB00000238602600022
以及γi(δ+1≤j≤2δ)组成。The public key of the system is the composite of the above two mappings T- and L, G=T - οL, and the public key G is a linear indeterminate equation system with n+δ input variables and nr outputs on the finite field GF(q); The key is composed of the inverse transformation of mapping T and L, D={T -1 , L -1 }; where, the inverse transformation L -1 consists of A -1 , B, α i (1≤i≤n),
Figure GSB00000238602600022
And γ i (δ+1≤j≤2δ) composition.

(Ⅱ)签名过程为:假设用户A对用户B的消息向量(y1,…,yn-r)进行签名,则用户A的签名过程分以下两个步骤:(II) The signature process is as follows: Assume that user A signs the message vector (y 1 ,...,y nr ) of user B, then the signature process of user A is divided into the following two steps:

①随机选取r个变量yn-r+i∈GF(q)(1≤i≤r)与消息向量级联起来,构成GF(q)上的n维向量(y1,…,yn),并用私钥T-1计算得到(z1…,zn)=T-1(y1…,yn);①Randomly select r variables y n-r+i ∈GF(q) (1≤i≤r) and concatenate them with the message vector to form an n-dimensional vector (y 1 ,...,y n ) on GF(q) , and use the private key T -1 to calculate (z 1 ..., z n ) = T -1 (y 1 ..., y n );

②用私钥L-1计算便可得到相应签名(x1…,xn+δ)=L-1(z1,…,zn);②Calculate with the private key L -1 to get the corresponding signature (x 1 ..., x n+δ ) = L -1 (z 1 , ..., z n );

(Ⅲ)验证签名过程:用户B收到用户A对消息的签名后,分以下两个步骤:(Ⅲ) Signature verification process: After user B receives user A's signature on the message, it divides into the following two steps:

①用哈希函数对签名(x1,…,xn+δ)进行认证,即每个分量要满足:①Use the hash function to authenticate the signature (x 1 ,...,x n+δ ), that is, each component must satisfy:

xn+i=Hk(x1||x2||…||xn-δ+i-1),1≤i≤δx n+i =H k (x 1 ||x 2 ||…||x n-δ+i-1 ), 1≤i≤δ

否则拒绝签名;Otherwise refuse to sign;

②若步骤①认证通过,则继续用用户A的公钥G验证,即② If step ① passes the authentication, continue to use the public key G of user A to verify, that is

如果上式方程左右两边相等,则接受签名,否则拒绝签名。If the left and right sides of the above equation are equal, the signature is accepted, otherwise the signature is rejected.

所述哈希函数H(·)分别可选用MD5、SHA-1、SHA-2、SHA-3等标准哈希函数。Standard hash functions such as MD5, SHA-1, SHA-2, and SHA-3 can be selected for the hash function H(·) respectively.

本发明具有以下优点和积极效果:The present invention has the following advantages and positive effects:

1)本发明是一种安全性很高的数字签名方案。其安全性性能主要取决所使用的哈希函数,目前广泛使用的哈希函数均是采用大量逻辑运算构造,具有很高的安全性,能抵抗量子计算机的攻击;1) The present invention is a highly secure digital signature scheme. Its security performance mainly depends on the hash function used. At present, the widely used hash functions are constructed by a large number of logical operations, which have high security and can resist the attack of quantum computers;

2)本发明是一种高效轻量的数字签名方案,其运算主要为哈希值运算和有限域上的乘法运算,目前广泛使用的哈希函数均是采用大量逻辑运算构造,因此具有较低的计算复杂性,如果我们选择较小的域参数如GF(28),则乘法可采用查表,效率较高,本方案可广泛应用于计算能力有限的嵌入式设备中;2) The present invention is an efficient and light-weight digital signature scheme. Its operations are mainly hash value operations and multiplication operations on finite fields. Currently, widely used hash functions are constructed using a large number of logical operations, so they have a relatively low If we choose a smaller field parameter such as GF(2 8 ), the multiplication can use look-up table, which is more efficient. This scheme can be widely used in embedded devices with limited computing power;

3)本发明签名方法具有很大的灵活性,哈希函数可以自由选择。3) The signature method of the present invention has great flexibility, and the hash function can be freely selected.

具体实施方式 Detailed ways

下面以具体实施例对本发明作进一步说明:The present invention will be further described below with specific embodiment:

本发明的数字签名方案的安全性基于矩阵分解的困难性,也即从公钥G=T-οL中成功分解出私钥信息T和L是计算上不可行的。而L本质上是一个基于哈希函数的非线性可逆变换,线性变换T起隐藏L的作用,因此通过两个变换的化合,将系统的安全性转化为依赖于哈希函数的安全性。The security of the digital signature scheme of the present invention is based on the difficulty of matrix decomposition, that is, it is computationally infeasible to successfully decompose the private key information T and L from the public key G=T - οL. In essence, L is a nonlinear reversible transformation based on a hash function, and the linear transformation T plays the role of hiding L. Therefore, through the combination of the two transformations, the security of the system is transformed into the security that depends on the hash function.

为了充分理解本发明签名方案,我们给出一个安全性水平约为 的具体实例:In order to fully understand the signature scheme of the present invention, we give a security level of about A concrete example of:

(Ⅰ)系统建立:选择标准哈希函数SHA-1作为H(·)、系统参数n=31、δ=12、r=10以及k=8。随机选取有限域GF(28)上的31维仿射双射变换T;(I) System establishment: select standard hash function SHA-1 as H(·), system parameters n=31, δ=12, r=10 and k=8. Randomly select the 31-dimensional affine bijective transformation T on the finite field GF(2 8 );

构造基于SHA-1的可逆压缩变换L:(z1,…,z31)←(x1,…,x31,x32,…,x43),Construct a reversible compression transformation L based on SHA-1: (z 1 ,…,z 31 )←(x 1 ,…,x 31 ,x 32 ,…,x 43 ),

其中A为19维可逆方阵,系数γi≠0(1≤i≤24),而系数aij(1≤i≤12,1≤j≤30)以及常数项αi(1≤i≤31)为随机选择;xn+i(1≤i≤12)为扩展变量,它是向量(x1,…,x31)前(18+i)个分量的哈希值,即Among them, A is a 19-dimensional reversible square matrix, coefficient γ i ≠0 (1≤i≤24), and coefficient a ij (1≤i≤12, 1≤j≤30) and constant term α i (1≤i≤31 ) is a random selection; x n+i (1≤i≤12) is an extended variable, which is the hash value of the first (18+i) components of the vector (x 1 ,...,x 31 ), namely

x31+i=H8(x1||x2||…||x18+i),1≤i≤12x 31+i =H 8 (x 1 ||x 2 ||…||x 18+i ), 1≤i≤12

其中H8(·)表示依次取出H(·)输出值的前8位,“||”表示将两个比特串连接起来;Among them, H 8 ( ) means to take out the first 8 bits of the output value of H ( ) in turn, and "||" means to connect two bit strings;

令T-表示依次取出T的21行所构成的变换。Let T - denote the transformation consisting of taking out the 21 rows of T in sequence.

系统的公钥为上述两个映射T-和L的复合,G=T-οL,公钥G是有限域GF(28)上43个输入变量、21个输出的线性不定方程组;The public key of the system is the composite of the above two mappings T - and L, G=T - οL, and the public key G is a linear indeterminate equation system with 43 input variables and 21 outputs on the finite field GF (2 8 );

系统私钥为映射T和L的逆变换组成,D={T-1,L-1};其中,逆变换L-1由A-1、B、αi(1≤i≤31)、

Figure GSB00000238602600041
以及γi(13≤j≤24)组成。根据上述基于SHA-1的可逆变换L可得其逆变换L-1:(x1,…,x31,x32,…,x43)←(z1,…,z31),The system private key is composed of the inverse transformation of mapping T and L, D={T -1 , L -1 }; where, the inverse transformation L -1 consists of A -1 , B, α i (1≤i≤31),
Figure GSB00000238602600041
And γ i (13≤j≤24) composition. According to the above reversible transformation L based on SHA-1, its inverse transformation L -1 can be obtained: (x 1 ,...,x 31 , x 32 ,...,x 43 )←(z 1 ,...,z 31 ),

(Ⅱ)签名过程为:假设用户A对用户B的消息向量(y1,…,y21)进行签名,则用户A的签名过程分以下两个步骤:(II) The signature process is as follows: Assuming that user A signs the message vector (y 1 ,...,y 21 ) of user B, the signature process of user A is divided into the following two steps:

①随机选取10个变量y21+i∈GF(28)(1≤i≤10)与消息向量级联起来,构成GF(28)上的31维向量(y1,…,y31),并用私钥T-1计算得到(z1…,z31)=T-1(y1…,y31);① Randomly select 10 variables y 21+i ∈ GF(2 8 ) (1≤i≤10) and concatenate them with the message vector to form a 31-dimensional vector (y 1 ,...,y 31 ) on GF(2 8 ) , and use the private key T -1 to calculate (z 1 ..., z 31 ) = T -1 (y 1 ..., y 31 );

②用私钥L-1计算便可得到相应签名(x1…,x43)=L-1(z1,…,z31);②Calculate with the private key L -1 to get the corresponding signature (x 1 ..., x 43 ) = L -1 (z 1 , ..., z 31 );

(Ⅲ)验证签名过程:用户B收到用户A对消息的签名后,分以下两个步骤:(Ⅲ) Signature verification process: After user B receives user A's signature on the message, it divides into the following two steps:

①用哈希函数对签名(x1,…,x43)进行认证,即每个分量要满足:①Use the hash function to authenticate the signature (x 1 ,...,x 43 ), that is, each component must satisfy:

x31+i=H8(x1||x2||…||x18+i),1≤i≤12x 31+i =H 8 (x 1 ||x 2 ||…||x 18+i ), 1≤i≤12

否则拒绝签名;Otherwise refuse to sign;

②若步骤①认证通过,则继续用用户A的公钥G验证,即② If step ① passes the authentication, continue to use the public key G of user A to verify, that is

当系统参数n=31、δ=12、r=10以及k=8时,则系统的公钥大小约为0.88Kbyte、公钥大小约为1.65Kbyte,安全性水平约为

Figure GSB00000238602600043
并且主要的运算是有限域GF(28)上的乘法运算,由于有限域较小可以预运算并造表存储,于是乘法运算可转化为查表运算;其次大约10次SHA-1运算。因此实现效率高,适合软硬件实现。When the system parameters n=31, δ=12, r=10 and k=8, the public key size of the system is about 0.88Kbyte, the public key size is about 1.65Kbyte, and the security level is about
Figure GSB00000238602600043
And the main operation is the multiplication operation on the finite field GF(2 8 ). Since the finite field is small, it can be pre-calculated and stored in a table, so the multiplication operation can be converted into a table lookup operation; followed by about 10 SHA-1 operations. Therefore, the implementation efficiency is high, and it is suitable for software and hardware implementation.

Claims (2)

1.一种数字签名方法,其特征在于,包括以下步骤:1. A digital signature method, characterized in that, comprising the following steps: (I)系统建立:选择一个输出至少160位的标准哈希函数H(·)和有限域GF(q),其中q=2k、整数k小于哈希函数H(·)的输出值长度;(1) System establishment: select a standard hash function H(·) and a finite field GF(q) with an output of at least 160 bits, where q= 2k and integer k are less than the output value length of the hash function H(·); 根据用户安全性需求指定整数参数n、δ和r的值(0<δ,r<n);Specify the values of the integer parameters n, δ and r according to user security requirements (0<δ, r<n); 随机选取GF(q)上的n维仿射双射变换T;Randomly select the n-dimensional affine bijective transformation T on GF(q); 构造基于哈希函数H(·)的可逆压缩变换L:(z1,…,zn)←(x1,…,xn,xn+1,…,xn+δ),Construct a reversible compression transformation L based on the hash function H( ): (z 1 ,…,z n )←(x 1 ,…,x n ,x n+1 ,…,x n+δ ), 其中A为n-δ维可逆方阵,系数γi≠0(1≤i≤2δ),而系数aij(1≤i≤δ,1≤j≤n-1)以及常数项αi(1≤i≤n)为随机选择;xn+i(1≤i≤δ)为扩展变量,它是向量(x1,…,xn)前(n-δ+i-1)个分量的哈希值,即Where A is an n-δ-dimensional reversible square matrix, coefficient γ i ≠ 0 (1≤i≤2δ), and coefficient a ij (1≤i≤δ, 1≤j≤n-1) and constant term α i (1 ≤i≤n) is a random selection; x n+i (1≤i≤δ) is an extended variable, which is the hash of the first (n-δ+i-1) components of the vector (x 1 ,…, x n ) Greek value, ie xn+i=Hk(x1||x2||…||xn-δ+i-1),1≤i≤δx n+i =H k (x 1 ||x 2 ||…||x n-δ+i-1 ), 1≤i≤δ 其中Hk(·)表示依次取出H(·)输出值的前k位,“||”表示将两个比特串连接起来;Among them, H k ( ) means to take out the first k bits of the output value of H ( ) in turn, and "||" means to connect two bit strings; 令T-表示依次取出T的n-r行所构成的变换,Let T - denote the transformation formed by sequentially taking out nr rows of T, 系统的公钥为上述两个映射T-和L的复合,G=T-οL,公钥G是有限域GF(q)上的线性不定方程组,输入变量数为n+δ、输出变量数为n-r;私钥为映射T和L的逆变换组成,D={T-1,L-1};其中,逆变换L-1由A-1、B、αi(1≤i≤n)、 以及γj(δ+1≤j≤2δ)组成;The public key of the system is the compound of the above two mappings T - and L, G=T - οL, the public key G is a linear indeterminate equation system on the finite field GF(q), the number of input variables is n+δ, and the number of output variables is nr; the private key is composed of the inverse transformation of mapping T and L, D={T -1 , L -1 }; where, the inverse transformation L -1 consists of A -1 , B, α i (1≤i≤n) , And γ j (δ+1≤j≤2δ) composition; (II)签名过程为:假设用户A对用户B的消息向量(y1,…,yn-r)进行签名,则用户A的签名过程分以下两个步骤:(II) The signature process is as follows: Assuming that user A signs the message vector (y 1 , ..., y nr ) of user B, the signature process of user A is divided into the following two steps: ①随机选取r个变量yn-r+i∈GF(q)(1≤i≤r)与消息向量级联起来,构成GF(q)上的n维向量(y1,…,yn),并用私钥T-1计算得到(z1…,zn)=T-1(y1…,yn);①Randomly select r variables y n-r+i ∈GF(q) (1≤i≤r) and concatenate them with the message vector to form an n-dimensional vector (y 1 ,...,y n ) on GF(q) , and use the private key T -1 to calculate (z 1 ..., z n ) = T -1 (y 1 ..., y n ); ②用私钥L-1计算便可得到相应签名(x1…,xn+δ)=L-1(z1,…,zn);②Calculate with the private key L -1 to get the corresponding signature (x 1 ..., x n+δ ) = L -1 (z 1 , ..., z n ); (III)验证签名过程:用户B收到用户A对消息的签名后,分以下两个步骤:(III) Signature verification process: After user B receives user A's signature on the message, it divides into the following two steps: ①用哈希函数对签名(x1,…,xn+δ)进行认证,即每个分量要满足:①Use the hash function to authenticate the signature (x 1 ,...,x n+δ ), that is, each component must satisfy: xn+i=Hk(x1||x2||…||xn-δ+i-1),1≤i≤δx n+i =H k (x 1 ||x 2 ||…||x n-δ+i-1 ), 1≤i≤δ 否则拒绝签名;Otherwise refuse to sign; ②若步骤①认证通过,则继续用用户A的公钥G验证,即② If step ① passes the authentication, continue to use the public key G of user A to verify, that is
Figure FSB00000837096500021
Figure FSB00000837096500021
如果上式方程左右两边相等,则接受签名,否则拒绝签名。If the left and right sides of the above equation are equal, the signature is accepted, otherwise the signature is rejected.
2.根据权利要求1所述的数字签名方法,其特征在于:2. The digital signature method according to claim 1, characterized in that: 所述哈希函数H(·)分别选用哈希函数标准MD5、SHA-1、SHA-2、SHA-3。The hash function H(·) selects hash function standards MD5, SHA-1, SHA-2, and SHA-3 respectively.
CN201010161195XA 2010-04-26 2010-04-26 Digital signature method Expired - Fee Related CN101867474B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010161195XA CN101867474B (en) 2010-04-26 2010-04-26 Digital signature method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010161195XA CN101867474B (en) 2010-04-26 2010-04-26 Digital signature method

Publications (2)

Publication Number Publication Date
CN101867474A CN101867474A (en) 2010-10-20
CN101867474B true CN101867474B (en) 2012-09-05

Family

ID=42959047

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010161195XA Expired - Fee Related CN101867474B (en) 2010-04-26 2010-04-26 Digital signature method

Country Status (1)

Country Link
CN (1) CN101867474B (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105025474B (en) * 2015-06-26 2018-04-13 安徽大学 Lightweight digital signature method for wireless sensor network
US10133603B2 (en) 2017-02-14 2018-11-20 Bank Of America Corporation Computerized system for real-time resource transfer verification and tracking
US10447472B2 (en) 2017-02-21 2019-10-15 Bank Of America Corporation Block computing for information silo
US10454892B2 (en) 2017-02-21 2019-10-22 Bank Of America Corporation Determining security features for external quantum-level computing processing
US10243976B2 (en) 2017-02-24 2019-03-26 Bank Of America Corporation Information securities resource propagation for attack prevention
US10489726B2 (en) 2017-02-27 2019-11-26 Bank Of America Corporation Lineage identification and tracking of resource inception, use, and current location
US10440051B2 (en) 2017-03-03 2019-10-08 Bank Of America Corporation Enhanced detection of polymorphic malicious content within an entity
US10284496B2 (en) 2017-03-03 2019-05-07 Bank Of America Corporation Computerized system for providing resource distribution channels based on predicting future resource distributions
US10437991B2 (en) 2017-03-06 2019-10-08 Bank Of America Corporation Distractional variable identification for authentication of resource distribution
US10270594B2 (en) 2017-03-06 2019-04-23 Bank Of America Corporation Enhanced polymorphic quantum enabled firewall
US10412082B2 (en) 2017-03-09 2019-09-10 Bank Of America Corporation Multi-variable composition at channel for multi-faceted authentication
US11120356B2 (en) 2017-03-17 2021-09-14 Bank Of America Corporation Morphing federated model for real-time prevention of resource abuse
US10440052B2 (en) 2017-03-17 2019-10-08 Bank Of America Corporation Real-time linear identification of resource distribution breach
US11055776B2 (en) 2017-03-23 2021-07-06 Bank Of America Corporation Multi-disciplinary comprehensive real-time trading signal within a designated time frame
US10476854B2 (en) 2017-04-20 2019-11-12 Bank Of America Corporation Quantum key distribution logon widget
CN109727134B (en) * 2018-12-29 2024-04-05 三六零科技集团有限公司 Picture copyright trading method and device
CN113158218B (en) * 2021-05-21 2024-08-27 上海幻电信息科技有限公司 Data encryption method and device and data decryption method and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1264974A (en) * 1999-12-01 2000-08-30 陈永川 Digital signature method using elliptic curve encryption algorithm
CN101176299A (en) * 2005-05-20 2008-05-07 塞尔蒂科梅公司 Privacy-enhanced e-passport authentication protocol
CN101488958A (en) * 2009-02-20 2009-07-22 东南大学 Large cluster safe real-time communication method executed by using elliptical curve

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7797545B2 (en) * 2005-09-29 2010-09-14 Research In Motion Limited System and method for registering entities for code signing services

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1264974A (en) * 1999-12-01 2000-08-30 陈永川 Digital signature method using elliptic curve encryption algorithm
CN101176299A (en) * 2005-05-20 2008-05-07 塞尔蒂科梅公司 Privacy-enhanced e-passport authentication protocol
CN101488958A (en) * 2009-02-20 2009-07-22 东南大学 Large cluster safe real-time communication method executed by using elliptical curve

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
侯惠芳等.异构无线网络中的标识认证研究.《Computer Engineering and Applications 计算机工程与应用》.2009,第45卷(第28期),第105-108页. *

Also Published As

Publication number Publication date
CN101867474A (en) 2010-10-20

Similar Documents

Publication Publication Date Title
CN101867474B (en) Digital signature method
CN101834724B (en) Authenticated encryption method of public key and digital signature method
CN112199649B (en) Anonymous authentication method under mobile edge computing based on blockchain
Kavin et al. A new digital signature algorithm for ensuring the data integrity in cloud using elliptic curves.
Li et al. Cryptographic and parallel hash function based on cross coupled map lattices suitable for multimedia communication security
CN103427979B (en) A kind of Internet picture transparent safety transmission method based on chaos encryption
CN109660555A (en) Content safety sharing method and system based on proxy re-encryption
CN105354233B (en) The Linear SVM classified service inquiry system and method for two-way secret protection
CN109981256A (en) Whitepack block cipher building method and system based on FeisitelBox structure
CN104023044A (en) Cloud-storage data lightweight-level public auditing method with privacy protection
US9780948B1 (en) Generating integers for cryptographic protocols
CN106027262B (en) Multi-variable signing method resisting key recovery attack
CN110851845A (en) A Lightweight Single User Multiple Data Encapsulation Method for Fully Homomorphic Data
Zheng et al. Secure storage auditing with efficient key updates for cognitive industrial IoT environment
WO2010005071A1 (en) Password authenticating method
Seyedzade et al. A novel image encryption algorithm based on hash function
Wang et al. Extended multivariate public key cryptosystems with secure encryption function
CN106685662B (en) A kind of whitepack software implementation method of the close SM2 Encryption Algorithm of quotient based on residue number system
Vyakaranal et al. Performance analysis of symmetric key cryptographic algorithms
Tiwari Cryptography in blockchain
CN107070636A (en) A kind of whitepack software implementation method of the close SM4 algorithms of the business of standard ciphertext output format
Abdel-Kader et al. Efficient two-stage cryptography scheme for secure distributed data storage in cloud computing.
CN118199868A (en) Identity verification method based on quantum random number and anti-quantum digital signature algorithm
El-Douh et al. Hybrid cryptography with a one-time stamp to secure contact tracing for COVID-19 infection
WO2023093278A1 (en) Digital signature thresholding method and apparatus

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: CHANGSHU ZIJIN INTELLECTUAL PROPERTY SERVICE CO.,

Free format text: FORMER OWNER: WUHAN UNIVERSITY

Effective date: 20121219

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 430072 WUHAN, HUBEI PROVINCE TO: 215500 SUZHOU, JIANGSU PROVINCE

TR01 Transfer of patent right

Effective date of registration: 20121219

Address after: 215500 Changshou City South East Economic Development Zone, Jiangsu, Jin Road, No. 8

Patentee after: Changshu Zijin Intellectual Property Service Co.,Ltd.

Address before: 430072 Hubei city of Wuhan province Wuchang Luojiashan

Patentee before: Wuhan University

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120905

CF01 Termination of patent right due to non-payment of annual fee