CN100463009C - A traffic information fusion processing method and system - Google Patents
A traffic information fusion processing method and system Download PDFInfo
- Publication number
- CN100463009C CN100463009C CNB2006101682713A CN200610168271A CN100463009C CN 100463009 C CN100463009 C CN 100463009C CN B2006101682713 A CNB2006101682713 A CN B2006101682713A CN 200610168271 A CN200610168271 A CN 200610168271A CN 100463009 C CN100463009 C CN 100463009C
- Authority
- CN
- China
- Prior art keywords
- road
- section
- condition information
- unit
- floating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007499 fusion processing Methods 0.000 title claims abstract description 75
- 238000000034 method Methods 0.000 title claims abstract description 54
- 238000007667 floating Methods 0.000 claims abstract description 258
- 238000001514 detection method Methods 0.000 claims description 45
- 238000004364 calculation method Methods 0.000 claims description 41
- 238000012545 processing Methods 0.000 claims description 41
- 238000007781 pre-processing Methods 0.000 claims description 4
- 238000005516 engineering process Methods 0.000 description 7
- 230000010365 information processing Effects 0.000 description 5
- 230000004927 fusion Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- 239000003086 colorant Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 1
- 206010039203 Road traffic accident Diseases 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- FEPMHVLSLDOMQC-UHFFFAOYSA-N virginiamycin-S1 Natural products CC1OC(=O)C(C=2C=CC=CC=2)NC(=O)C2CC(=O)CCN2C(=O)C(CC=2C=CC=CC=2)N(C)C(=O)C2CCCN2C(=O)C(CC)NC(=O)C1NC(=O)C1=NC=CC=C1O FEPMHVLSLDOMQC-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Traffic Control Systems (AREA)
Abstract
本发明公开了一种交通信息融合处理方法和系统,解决浮动车数据只能反映各辆浮动车独自行驶路线中某一点或某一段的交通路况信息,而无法计算出整条道路的全面路况信息的问题。所述方法包括:循环读取一个周期内所有浮动车辆采集的源数据;对应每辆浮动车源数据,计算该辆浮动车在不同时间段内行驶路段的路况信息;将组成道路的每个路链划分为单元路段,并推算单元路段的路况信息;根据所述单元路段的路况信息,计算每个路链的路况信息,然后再计算每条道路的综合路况信息。本发明还具有可扩展性,能够兼容其他类型的交通信息数据,并在融合处理时将浮动车数据和其他类型数据相结合,有效解决了由于浮动车数量较少而导致交通信息覆盖率不足的问题。
The invention discloses a traffic information fusion processing method and system, which solves the problem that the floating car data can only reflect the traffic road condition information of a certain point or a certain section of the driving route of each floating car alone, but cannot calculate the comprehensive road condition information of the entire road The problem. The method includes: cyclically reading the source data collected by all floating vehicles in one cycle; corresponding to the source data of each floating vehicle, calculating the road condition information of the road sections driven by the floating vehicle in different time periods; The link is divided into unit road sections, and the road condition information of the unit road sections is calculated; according to the road condition information of the unit road sections, the road condition information of each road link is calculated, and then the comprehensive road condition information of each road is calculated. The present invention also has scalability, can be compatible with other types of traffic information data, and combines floating car data with other types of data during fusion processing, effectively solving the problem of insufficient coverage of traffic information due to the small number of floating cars question.
Description
技术领域 technical field
本发明涉及信息融合技术,特别是涉及一种交通信息融合处理方法和系统。The invention relates to information fusion technology, in particular to a traffic information fusion processing method and system.
背景技术 Background technique
随着城市交通状况的日益恶化,许多国家开展了关于智能交通系统(ITS)的研究和建设。智能交通系统是以缓和道路堵塞和减少交通事故,提高交通利用者的方便、舒适为目的,利用交通信息系统、通讯网络、定位系统和智能化分析与选线的交通系统的总称。智能交通的实现包括交通信息的采集、分析和处理以及向社会公众发布。With the deteriorating urban traffic situation, many countries have carried out research and construction on Intelligent Transportation System (ITS). Intelligent transportation system is a general term for traffic systems that use traffic information systems, communication networks, positioning systems, and intelligent analysis and route selection for the purpose of alleviating road congestion, reducing traffic accidents, and improving the convenience and comfort of traffic users. The realization of intelligent transportation includes the collection, analysis and processing of traffic information, and release to the public.
传统的交通信息采集方式如感应线圈、检测器、视频监控等,都属于固定检测类型,用“静”的方法来测量实时交通流在固定点处的变化情况。而浮动车采集技术是目前国际上先进的道路交通信息采集技术,用“动”的方法测量交通流在交通网络各离散点处的特性。浮动车利用全球定位系统(GPS)车载系统和无线通信设备将车辆动态信息(如时间、速度、坐标、方向等)实时地传送到浮动车信息处理中心,经过汇总、处理后生成反映实时道路拥堵情况的交通信息。Traditional traffic information collection methods such as induction coils, detectors, video surveillance, etc., all belong to the fixed detection type, and use the "static" method to measure the changes of real-time traffic flow at fixed points. The floating vehicle collection technology is currently the most advanced road traffic information collection technology in the world. It uses the "dynamic" method to measure the characteristics of traffic flow at discrete points in the traffic network. The floating vehicle uses the global positioning system (GPS) vehicle system and wireless communication equipment to transmit vehicle dynamic information (such as time, speed, coordinates, direction, etc.) to the floating vehicle information processing center in real time. Traffic information for the situation.
由于通过浮动车采集技术采集到的交通信息数据,只是反映各辆车独自行驶路线中道路某一点或某一段的交通路况,而一条道路在同一时间可能有多辆浮动车行驶,所以缺乏对实际道路路况的整体描述,无法直接向社会公众提供道路交通路况信息服务。同时,浮动车技术的应用也存在约束条件,如当浮动车数量不能达到要求时,交通信息的道路覆盖率就会较低,影响交通信息的准确性。Because the traffic information data collected by the floating car collection technology only reflects the traffic conditions at a certain point or a certain section of the road on the route of each vehicle alone, and a road may have multiple floating cars driving at the same time, there is a lack of real The overall description of road conditions cannot directly provide road traffic information services to the public. At the same time, the application of floating car technology also has constraints. For example, when the number of floating cars cannot meet the requirements, the road coverage of traffic information will be low, which will affect the accuracy of traffic information.
发明内容 Contents of the invention
本发明所要解决的技术问题是提供一种交通信息融合处理方法和系统,以解决浮动车数据只能反映各辆浮动车独自行驶路线中某一点或某一段的交通路况信息,而无法计算出整条道路的全面路况信息的问题。The technical problem to be solved by the present invention is to provide a traffic information fusion processing method and system to solve the problem that the floating car data can only reflect the traffic road condition information of a certain point or a certain section of the driving route of each floating car alone, and cannot calculate the overall traffic information. The problem of comprehensive traffic information of roads.
本发明的另一个目的是解决由于浮动车数量较少而导致交通信息的道路覆盖率不足的问题。Another object of the present invention is to solve the problem of insufficient road coverage of traffic information due to the small number of floating cars.
为解决上述技术问题,本发明提供了一种交通信息融合处理方法,包括:In order to solve the above technical problems, the present invention provides a traffic information fusion processing method, comprising:
循环读取一个周期内所有浮动车辆采集的源数据;Loop read the source data collected by all floating vehicles in one cycle;
对应每辆浮动车源数据,计算该辆浮动车在不同时间段内行驶路段的路况信息;所述行驶路段为在两个预置时间点之间该浮动车行驶过的路段;Corresponding to each floating car source data, calculate the road condition information of the traveling section of the floating car in different time periods; the traveling section is the road section that the floating car has traveled between two preset time points;
将组成道路的每个路链划分为单元路段,所述单元路段对应一个或多个浮动车行驶路段;Divide each road link that forms the road into unit road sections, and the unit road sections correspond to one or more floating car driving road sections;
根据所述浮动车行驶路段的路况信息,推算每个单元路段的路况信息;Calculate the road condition information of each unit road section according to the road condition information of the traveling section of the floating vehicle;
根据所述单元路段的路况信息,计算每个路链的路况信息;calculating the road condition information of each road link according to the road condition information of the unit road section;
根据所述路链的路况信息,计算每条道路的综合路况信息。According to the road condition information of the road link, the comprehensive road condition information of each road is calculated.
其中,按照以下步骤根据所述浮动车行驶路段的路况信息,推算每个单元路段的路况信息:读取所述周期内所有浮动车行驶路段的路况信息,所述路况信息包括浮动车的平均行车速度;推算单元路段的路况信息,其中路况信息中平均行车速度的推算方法是:所述单元路段对应一个或多个浮动车行驶路段,判断跨越每个单元路段的浮动车行驶路段个数,若为1,则平均行车速度等于所述浮动车行驶路段的平均行车速度;若大于1,则平均行车速度为行驶时间最新且速度最大的浮动车行驶路段的平均行车速度。Wherein, calculate the road condition information of each unit road section according to the road condition information of the floating car traveling section according to the following steps: read the road condition information of all floating car traveling sections in the cycle, and the road condition information includes the average driving of the floating car Speed; calculate the road condition information of unit road section, wherein in the road condition information, the calculation method of average driving speed is: described unit road section corresponds to one or more floating car running road sections, judges the number of floating car running road sections across each unit road section, if If it is 1, the average driving speed is equal to the average driving speed of the floating car running section; if it is greater than 1, then the average driving speed is the average driving speed of the floating car running section with the latest travel time and the highest speed.
优选的,按照以下步骤计算路链的路况信息:若按照距离常量等分路链,则路链的平均行车速度为路链长度除以所包含单元路段的行车时间之和;其中,所述单元路段的行车时间为单元路段长度除以平均行车速度。Preferably, the road condition information of the road link is calculated according to the following steps: if the road link is equally divided according to the distance constant, the average driving speed of the road link is the sum of the road link length divided by the driving time of the included unit road section; wherein, the unit The driving time of a road segment is the length of the unit road segment divided by the average driving speed.
优选的,按照以下步骤计算道路的综合路况信息:道路的平均行车速度为道路长度除以总的行车时间;其中,所述总的行车时间为所包含路链的行车时间按照路链长度的权值计算所得。Preferably, the comprehensive road condition information of road is calculated according to the following steps: the average driving speed of road is road length divided by total driving time; The value is calculated.
优选的,还包括:按照所述单元路段的平均行车速度计算拥堵程度系数,将拥堵程度系数相同的相邻单元路段合并。Preferably, it also includes: calculating the congestion degree coefficient according to the average driving speed of the unit road section, and merging adjacent unit road sections with the same congestion degree coefficient.
优选的,按照以下步骤计算每辆浮动车行驶路段的路况信息:判断每个浮动车行驶路段是否跨越路链,若是,则在每个路链交接处补充两个车辆投影点数据,用于划分所述浮动车行驶路段,并在每个车辆投影点增加浮动车源数据;其中,所述两个车辆投影点分别与该浮动车行驶路段的起止投影点重新组合成两个浮动车行驶路段;对应每辆浮动车的源数据,计算该辆浮动车重新划分后的每个浮动车行驶路段的路况信息,其中包括平均行车速度。Preferably, calculate the road condition information of each floating car traveling section according to the following steps: judge whether each floating car traveling section crosses the road link, if so, supplement two vehicle projection point data at each road link junction, for dividing Said floating car driving section, and adding floating car source data at each vehicle projection point; wherein, said two vehicle projection points are respectively recombined with the start and end projection points of the floating car driving section to form two floating car driving sections; Corresponding to the source data of each floating car, calculate the road condition information of each floating car driving section after the floating car is re-divided, including the average driving speed.
所述方法还包括:将道路的综合路况信息按照统一的数据格式输出。The method also includes: outputting the comprehensive road condition information of the road according to a unified data format.
本发明还提供了另一种交通信息融合处理方法,包括:The present invention also provides another traffic information fusion processing method, comprising:
将固定检测系统采集的源数据转换为针对各个检测路段的路况信息;Convert the source data collected by the fixed detection system into road condition information for each detection section;
循环读取一个周期内所有浮动车采集的源数据和检测路段的路况信息;Circularly read the source data collected by all floating vehicles in one cycle and the road condition information of the detected road section;
对应每辆浮动车源数据,计算该辆浮动车在不同时间段内行驶路段的路况信息;所述行驶路段为在两个预置时间点之间该浮动车行驶过的路段;Corresponding to each floating car source data, calculate the road condition information of the traveling section of the floating car in different time periods; the traveling section is the road section that the floating car has traveled between two preset time points;
将组成道路的每个路链划分为单元路段;所述单元路段对应一个或多个浮动车行驶路段,或者对应一个或多个检测路段;Divide each link of the road into unit road sections; the unit road sections correspond to one or more floating car driving sections, or correspond to one or more detection road sections;
将所述浮动车行驶路段的路况信息和检测路段的路况信息相结合,推算每个单元路段的路况信息;Combining the road condition information of the traveling section of the floating vehicle with the road condition information of the detected section, calculating the road condition information of each unit section;
根据所述单元路段的路况信息,计算每个路链的路况信息;calculating the road condition information of each road link according to the road condition information of the unit road section;
根据所述路链的路况信息,计算每条道路的综合路况信息。According to the road condition information of the road link, the comprehensive road condition information of each road is calculated.
其中,按照距离常量等分路链。Among them, the link is equally divided according to the distance constant.
其中,按照以下步骤推算每个单元路段的路况信息,其中路况信息中平均行车速度的推算方法是:判断跨越每个单元路段的浮动车行驶路段和检测路段的个数,其中所述单元路段对应一个或多个浮动车行驶路段,或者对应一个或多个检测路段:若仅浮动车行驶路段的个数为0,则平均行车速度为检测时间最新且速度最大的检测路段的平均车速;若仅检测路段的个数为0,则平均行车速度为行驶时间最新且速度最大的浮动车行驶路段的平均行车速度;若浮动车行驶路段和检测路段的个数均大于0,则平均行车速度等于第一系数乘以行驶时间最新且速度最大的浮动车行驶路段的平均行车速度,再加上第二系数乘以检测时间最新且速度最大的检测路段的平均车速,其中第一系数加第二系数等于1。Wherein, calculate the road condition information of each unit road section according to the following steps, wherein the method of calculating the average driving speed in the road condition information is: judge the number of the floating car driving section and the detection road section across each unit road section, wherein the unit road section corresponds to One or more floating car travel sections, or corresponding to one or more detection sections: if only the number of floating car travel sections is 0, then the average driving speed is the latest and maximum average speed of the detection section of the detection time; if only If the number of detected road sections is 0, the average driving speed is the average driving speed of the floating car driving section with the latest travel time and the highest speed; One coefficient is multiplied by the average speed of the floating car driving section with the latest travel time and the highest speed, and the second coefficient is multiplied by the average vehicle speed of the detection section with the latest detection time and the highest speed, wherein the first coefficient plus the second coefficient is equal to 1.
基于上述发明方法,本发明提供一种交通信息融合处理系统,包括:Based on the above inventive method, the present invention provides a traffic information fusion processing system, comprising:
源数据接收单元,用于循环读取一个周期内所有浮动车辆采集的源数据;The source data receiving unit is used to cyclically read the source data collected by all floating vehicles in one cycle;
源数据处理单元,用于对应每辆浮动车源数据,计算该辆浮动车在不同时间段内行驶路段的路况信息;所述行驶路段为在两个预置时间点之间该浮动车行驶过的路段;The source data processing unit is used to correspond to the source data of each floating car, and calculate the road condition information of the traveling section of the floating car in different time periods; section of the road;
融合处理单元,用于将组成道路的每个路链划分为单元路段,所述单元路段对应一个或多个浮动车行驶路段;根据所述浮动车行驶路段的路况信息,推算每个单元路段的路况信息;根据所述单元路段的路况信息,计算每个路链的路况信息;根据所述路链的路况信息,计算每条道路的综合路况信息。The fusion processing unit is used to divide each road link of the road into unit road sections, and the unit road sections correspond to one or more floating car driving road sections; according to the road condition information of the floating car driving road sections, the road condition information; calculate the road condition information of each road link according to the road condition information of the unit section; calculate the comprehensive road condition information of each road according to the road condition information of the road link.
其中,所述融合处理单元包括:单元路段处理子单元,用于读取所述周期内所有浮动车行驶路段的路况信息,所述路况信息包括浮动车的平均行车速度;将组成道路的每个路链划分为单元路段;推算单元路段的路况信息,其中路况信息中平均行车速度的推算方法是:所述单元路段对应一个或多个浮动车行驶路段,判断跨越每个单元路段的浮动车行驶路段个数,若为1,则平均行车速度等于所述浮动车行驶路段的平均行车速度;若大于1,则平均行车速度为行驶时间最新且速度最大的浮动车行驶路段的平均行车速度;融合处理子单元,用于根据所述单元路段的路况信息,计算每个路链的路况信息;根据所述路链的路况信息,计算每条道路的综合路况信息。Wherein, the fusion processing unit includes: a unit road section processing subunit, which is used to read the road condition information of all floating car driving sections in the cycle, and the road condition information includes the average driving speed of the floating car; The road chain is divided into unit road sections; calculate the road condition information of the unit road sections, wherein the calculation method of the average driving speed in the road condition information is: the unit road section corresponds to one or more floating car driving sections, and judges the floating car traveling across each unit road section The number of road sections, if it is 1, the average driving speed is equal to the average driving speed of the floating car running section; if it is greater than 1, then the average driving speed is the latest and the average driving speed of the floating car running section with the latest driving time and the highest speed; fusion The processing subunit is used to calculate the road condition information of each road link according to the road condition information of the unit road section; calculate the comprehensive road condition information of each road according to the road condition information of the road link.
优选的,所述源数据处理单元包括:拆分子单元,用于判断每个浮动车行驶路段是否跨越路链,若是,则在每个路链交接处补充两个车辆投影点数据,用于划分浮动车行驶路段,并在每个车辆投影点增加浮动车源数据;其中,所述两个车辆投影点分别与该浮动车行驶路段的起止投影点重新组合成两个浮动车行驶路段;计算子单元,用于对应每辆浮动车源数据,计算该辆浮动车重新划分后的每个浮动车行驶路段的路况信息,其中包括平均行车速度。Preferably, the source data processing unit includes: dismantling subunits for judging whether each floating car travel section crosses the road link, if so, supplementing two vehicle projection point data at each road link junction for dividing Floating vehicle driving section, and increase floating vehicle source data at each vehicle projection point; wherein, the two vehicle projection points are recombined with the start and end projection points of the floating vehicle driving section respectively to form two floating vehicle driving sections; The unit is used to correspond to the source data of each floating car, and calculate the road condition information of each floating road section after the floating car is re-divided, including the average driving speed.
所述系统还包括:输出单元,用于将道路的综合路况信息按照统一的数据格式输出。The system also includes: an output unit, which is used to output the comprehensive road condition information of the road according to a unified data format.
本发明还提供了另一种交通信息融合处理系统,包括:The present invention also provides another traffic information fusion processing system, comprising:
预处理单元,用于将固定检测系统采集的源数据转换为针对各个检测路段的路况信息;A pre-processing unit is used to convert the source data collected by the fixed detection system into road condition information for each detection section;
源数据接收单元,用于循环读取一个周期内所有浮动车采集的源数据和检测路段的路况信息;The source data receiving unit is used to cyclically read the source data collected by all floating vehicles in one cycle and detect the road condition information of the road section;
源数据处理单元,用于对应每辆浮动车源数据,计算该辆浮动车在不同时间段内行驶路段的路况信息;所述行驶路段为在两个预置时间点之间该浮动车行驶过的路段;The source data processing unit is used to correspond to the source data of each floating car, and calculate the road condition information of the traveling section of the floating car in different time periods; section of the road;
融合处理单元,用于将组成道路的每个路链划分为单元路段;所述单元路段对应一个或多个浮动车行驶路段,或者对应一个或多个检测路段;将所述浮动车行驶路段的路况信息和检测路段的路况信息相结合,推算每个单元路段的路况信息;根据所述单元路段的路况信息,计算每个路链的路况信息;根据所述路链的路况信息,计算每条道路的综合路况信息。The fusion processing unit is used to divide each road link of the road into unit road sections; the unit road sections correspond to one or more floating car driving road sections, or correspond to one or more detection road sections; Combining the road condition information with the road condition information of the detected road section, calculating the road condition information of each unit road section; calculating the road condition information of each road link according to the road condition information of the unit road section; Comprehensive traffic information for roads.
其中,所述融合处理单元包括:单元路段处理子单元,用于将组成道路的每个路链划分为单元路段,并推算每个单元路段的路况信息,其中路况信息中平均行车速度的推算方法是:所述单元路段对应一个或多个浮动车行驶路段,或者对应一个或多个检测路段,判断跨越每个单元路段的浮动车行驶路段和检测路段的个数:若仅浮动车行驶路段的个数为0,则平均行车速度为检测时间最新且速度最大的检测路段的平均车速;若仅检测路段的个数为0,则平均行车速度为行驶时间最新且速度最大的浮动车行驶路段的平均行车速度;若浮动车行驶路段和检测路段的个数均大于0,则平均行车速度等于第一系数乘以行驶时间最新且速度最大的浮动车行驶路段的平均行车速度,再加上第二系数乘以检测时间最新且速度最大的检测路段的平均车速,其中第一系数加第二系数等于1;Wherein, the fusion processing unit includes: a unit road section processing subunit, which is used to divide each road link forming a road into a unit road section, and calculate the road condition information of each unit road section, wherein the method for calculating the average driving speed in the road condition information Be: described unit road section corresponds to one or more floating car driving road sections, or corresponds to one or more detection road sections, and judges the number of floating car driving road sections and detection road sections across each unit road section: if only the number of floating car driving road sections If the number is 0, the average driving speed is the average speed of the detection road section with the latest detection time and the highest speed; Average driving speed; if the numbers of the floating car driving section and the detection section are both greater than 0, then the average driving speed is equal to the first coefficient multiplied by the average driving speed of the floating car driving section with the latest traveling time and the highest speed, plus the second The coefficient is multiplied by the average vehicle speed of the detection road section with the latest detection time and the maximum speed, wherein the first coefficient plus the second coefficient is equal to 1;
融合处理子单元,用于根据所述单元路段的路况信息,计算每个路链的路况信息;根据所述路链的路况信息,计算每条道路的综合路况信息。The fusion processing subunit is used to calculate the road condition information of each road link according to the road condition information of the unit road section; calculate the comprehensive road condition information of each road according to the road condition information of the road link.
与现有技术相比,本发明具有以下优点:Compared with prior art, the present invention has the following advantages:
首先,本发明提出一种将多辆浮动车数据进行高效融合处理的方法,通过对实时动态的浮动车数据进行分析,按照每辆车的行驶路线,计算其在不同时间段行驶路段的路况,并在此基础上对道路网各条道路上所有浮动车辆的行驶路段路况进行融合处理,计算出道路的综合交通信息。所述方法提高了交通信息的准确性,适用于采用大规模浮动车采集技术的城市道路交通信息的实时监控和管理,通过动态发布道路的综合交通路况信息,及时为公众提供准确的道路拥堵信息、最优行车路线等出行服务信息,以及为相关交通管理部门提供交通状况的决策依据。本发明具有良好的实用性。First of all, the present invention proposes a method for efficiently merging the data of multiple floating cars. By analyzing the real-time dynamic floating car data, according to the driving route of each car, it calculates the road conditions of its driving sections in different time periods. And on this basis, the road conditions of all floating vehicles on the roads of the road network are fused, and the comprehensive traffic information of the road is calculated. The method improves the accuracy of traffic information, is applicable to the real-time monitoring and management of urban road traffic information using large-scale floating vehicle collection technology, and provides the public with accurate road congestion information in a timely manner by dynamically releasing comprehensive road traffic information , optimal driving routes and other travel service information, and provide decision-making basis for traffic conditions for relevant traffic management departments. The invention has good practicability.
其次,本发明具有可扩展性,能够兼容其他类型的交通信息数据,通过设置标准的输入格式,并在融合处理时将浮动车数据和其他类型数据相结合,有效解决了由于浮动车数量较少而导致交通信息覆盖率不足的问题。因此,多数据源数据的融合处理提高了道路交通信息的覆盖率和准确性。Secondly, the present invention has scalability and can be compatible with other types of traffic information data. By setting a standard input format and combining floating car data with other types of data during fusion processing, it effectively solves the problem caused by the small number of floating cars. This leads to the problem of insufficient coverage of traffic information. Therefore, the fusion processing of multi-data source data improves the coverage and accuracy of road traffic information.
再次,对于浮动车路段路况信息的计算,本发明将跨路链的行驶路段在路链交点处进行分割,并补充相应的交通信息数据,然后对重新划分后的浮动车行驶路段进行计算。所述浮动车行驶路段的再次划分,有效增加了浮动车的采集数据量,从而提高道路交通信息的覆盖率。Again, for the calculation of the road condition information of the floating car section, the present invention divides the traveling section of the cross-road link at the intersection of the link, and supplements the corresponding traffic information data, and then calculates the re-divided floating car traveling section. The re-division of the driving section of the floating vehicle effectively increases the amount of data collected by the floating vehicle, thereby improving the coverage of road traffic information.
最后,本发明还定义了一种道路地理信息数据格式和道路交通信息数据格式,突破原有的只是基于路链的处理方式,可以从多层次的角度来定义交通信息的格式和内容,增强道路交通信息描述的准确性和实用性。Finally, the present invention also defines a road geographic information data format and a road traffic information data format, breaking through the original processing method based on road links, the format and content of traffic information can be defined from a multi-level perspective, and road traffic information can be enhanced. Accuracy and practicality of traffic information description.
附图说明 Description of drawings
图1是本发明所述交通信息融合处理的整体流程图;Fig. 1 is the overall flowchart of traffic information fusion processing described in the present invention;
图2是本发明中浮动车行驶路段的路况信息处理流程图;Fig. 2 is the flow chart of road condition information processing of the traveling section of the floating car in the present invention;
图3是本发明中道路综合路况信息的计算流程图;Fig. 3 is the calculation flowchart of road comprehensive road condition information among the present invention;
图4是本发明所述交通信息融合处理系统的结构图;Fig. 4 is a structural diagram of the traffic information fusion processing system of the present invention;
图5是本发明结合其他类型数据融合处理单元路段的路况信息流程图;Fig. 5 is the road condition information flowchart of the present invention in combination with other types of data fusion processing unit sections;
图6是本发明结合其他类型数据的交通信息融合处理系统结构图。Fig. 6 is a structural diagram of the traffic information fusion processing system combined with other types of data according to the present invention.
具体实施方式 Detailed ways
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.
智能交通的主要目标是实现整个城市交通运输系统的现代化,而城市交通运输系统现代化的关键环节是各类交通信息的高度融合和共享,以及提供实时动态交通信息服务来满足公众越来越迫切的交通信息需求。因此,道路实时动态交通信息处理已经成为整个ITS信息系统的重要基础。实时动态交通信息处理系统用于将采集到的各种交通信息源数据进行融合处理分析,生成实时动态交通路况信息,最后通过WEB发布平台、公共移动网、移动终端等向公众提供道路拥堵信息、车行时间信息以及最优行车路线等出行帮助信息,同时为相关交通部门管理交通运输提供部分解决方案和决策依据。The main goal of intelligent transportation is to realize the modernization of the entire urban transportation system, and the key link in the modernization of the urban transportation system is the high degree of integration and sharing of various traffic information, as well as the provision of real-time dynamic traffic information services to meet the increasingly urgent needs of the public. traffic information needs. Therefore, the real-time dynamic traffic information processing of the road has become an important basis of the entire ITS information system. The real-time dynamic traffic information processing system is used to integrate and analyze the collected traffic information source data, generate real-time dynamic traffic condition information, and finally provide the public with road congestion information, Driving time information and travel assistance information such as the optimal driving route, and at the same time provide some solutions and decision-making basis for the relevant transportation departments to manage transportation.
交通信息的融合处理是指通过对采集到的交通信息样本进行综合分析处理,计算出道路的整体交通路况信息,最终获得整个城市道路网的实时交通路况。交通信息融合处理是实时动态交通信息服务系统的一个重要组成部分,是保证交通信息服务质量的关键。本发明提出一种针对大规模浮动车数据的高效融合处理方法,通过对实时动态的浮动车数据进行分析,按照每辆车的行驶路线,计算其在不同时间段行驶路段的路况,并在此基础上对道路网各条道路上所有浮动车的行驶路段路况进行融合处理,计算出道路的综合交通信息。The fusion processing of traffic information refers to the comprehensive analysis and processing of collected traffic information samples to calculate the overall traffic condition information of the road, and finally obtain the real-time traffic condition of the entire urban road network. Traffic information fusion processing is an important part of the real-time dynamic traffic information service system and the key to ensure the quality of traffic information service. The present invention proposes a high-efficiency fusion processing method for large-scale floating car data. By analyzing the real-time dynamic floating car data, according to the driving route of each car, the road conditions of its driving road sections in different time periods are calculated, and hereby On the basis of this, the road conditions of all floating vehicles on the roads of the road network are fused to calculate the comprehensive traffic information of the road.
为详细说明本发明内容,首先需要对发明中涉及到的道路地理信息数据格式和道路网拓扑结构的定义进行说明。道路地理信息数据用来描述一个城市道路网的地理信息,由点、路链、道路构成,其中道路包含路链,而路链又包含点。下面通过表1、2、3分别进行说明。In order to describe the content of the present invention in detail, it is first necessary to explain the definition of the road geographic information data format and road network topology involved in the invention. Road geographic information data is used to describe the geographic information of an urban road network, which consists of points, road links, and roads, where roads contain road links, and road links contain points. Tables 1, 2, and 3 will be used for illustration below.
表1 道路地理信息数据表Table 1 road geographic information data table
道路的属性信息包括道路标识(ID)、道路等级、道路类型、道路名称、方向、道路长度、所包含的路链数。其中,道路ID是通过对整个城市道路网进行分类编号而分配给每条道路的号码;道路名是地图领域统一使用的标准路名,如“学院路”;道路等级描述道路的级别,总共分为“一级”、“二级”和“三级”;道路类型描述道路的归类,包括环路(又分为主路和辅路)、主干路、快速路、主要街道和一般道路;道路方向包括东、南、西、北四种信息;道路长度描述的是在某个方向上所述道路的长度,单位为米。The attribute information of the road includes road identification (ID), road grade, road type, road name, direction, road length, and the number of road links included. Among them, the road ID is the number assigned to each road by classifying and numbering the entire urban road network; the road name is the standard road name used uniformly in the map field, such as "College Road"; the road grade describes the level of the road. "Level 1", "Level 2" and "Level 3"; road types describe the classification of roads, including ring roads (also divided into main roads and auxiliary roads), trunk roads, expressways, main streets and general roads; roads The direction includes four kinds of information: east, south, west, and north; the road length describes the length of the road in a certain direction, and the unit is meter.
表2 路链地理信息数据表Table 2 Link geographic information data table
路链表示道路上相邻的两个交叉点之间的部分,路链的属性信息包括路链号、路链序号、路链长度、路链起点到道路该方向上终点的距离、点数。其中,路链号为路链在整个路网中的唯一编号;路链序号描述路链在道路某方向路链数组中的位置;路链长度描述路链的长度,单位为米;点数为路链上节点的个数。A link represents the part between two adjacent intersections on the road. The attribute information of the link includes the link number, the link number, the length of the link, the distance from the starting point of the link to the end point in the direction of the road, and the number of points. Among them, the link number is the unique number of the link in the entire road network; the link number describes the position of the link in the link array in a certain direction of the road; the link length describes the length of the link, and the unit is meters; the point is the road The number of nodes on the chain.
表3 点信息数据表Table 3 point information data table
点是构成道路和路链的最基本元素,点的属性包括经度、纬度和点到路链终点的距离。A point is the most basic element that constitutes a road and a link. The attributes of a point include longitude, latitude, and the distance from the point to the end of the link.
道路网拓扑结构由节点和单元路段构成。其中,道路节点描述道路与相邻道路连接处的信息,节点按类型可分为立交桥、重要路口和一般路口(同时路口又可分为有红绿灯的和无红绿灯的两种)。节点属性信息由节点的类型决定:立交桥节点信息包括通过该桥四个方向的道路信息,属性信息同上述的道路信息;路口信息包括路口的类型信息和中心点坐标信息,其中路口的类型信息描述路口的级别,每种级别都对应通过所述路口的平均时间延迟。单元路段由相邻两个节点间的道路上的一部分或多条道路组成。单元路段的属性信息包括路段编号、方向、所在道路编号、起点路链序号和终点路链序号。The road network topology is composed of nodes and unit road sections. Among them, the road node describes the information of the connection between the road and the adjacent road. The nodes can be divided into overpasses, important intersections and general intersections according to the type (at the same time, the intersections can be divided into two types: those with traffic lights and those without traffic lights). The node attribute information is determined by the type of node: the overpass node information includes the road information passing through the four directions of the bridge, and the attribute information is the same as the above-mentioned road information; the intersection information includes the type information of the intersection and the coordinate information of the center point, wherein the type information of the intersection describes The level of intersection, each level corresponds to the average time delay to pass through the intersection. A unit road segment is composed of a part or multiple roads on the road between two adjacent nodes. The attribute information of the unit link includes link number, direction, road number, start link number and end link number.
道路网拓扑描述的是整个城市道路网单元路段和节点间的构成关系。每条单元路段都有它的前导路段和后继路段,其中前导路段表示沿着所述单元路段方向可到达的所有相邻路段,而后继路段表示可进入到该路段的所有相邻路段。每个节点都有各个方向上与之连接的单元路段信息。The road network topology describes the compositional relationship between the entire urban road network unit sections and nodes. Each unit road segment has its predecessor road segment and successor road segment, wherein the predecessor road segment represents all adjacent road segments reachable along the direction of the unit road segment, and the successor road segment represents all adjacent road segments accessible to the road segment. Each node has information about unit road segments connected to it in all directions.
以上内容清晰了道路、路链、点和道路网的概念,下面发明的介绍将用到所述信息。本发明中的交通信息融合处理主要针对浮动车数据。由于浮动车数据的坐标通过GPS实时采集,存在很大误差,无法保证每个车辆坐标点都落在车辆正确的行驶道路上,也就不能满足交通信息融合处理的要求。因此,首先需要对浮动车的初始数据进行预处理,将浮动车的坐标数据进行地图匹配,通过修正坐标偏差使其落在正确的行驶道路上。而在道路网拓扑比较复杂的情况下,简单的进行地图匹配无法一次确定唯一正确的道路,需要根据浮动车行驶的规律和特点,选择一系列时间上连续的数据进行行车路线推测,从而找到最终正确的行车路线,并确定各个点坐标所在的道路。The above content clarifies the concepts of road, road link, point and road network, which will be used in the introduction of the invention below. The traffic information fusion processing in the present invention is mainly aimed at floating car data. Because the coordinates of the floating car data are collected in real time by GPS, there are large errors, and it is impossible to ensure that each vehicle coordinate point falls on the correct driving road of the vehicle, and it cannot meet the requirements of traffic information fusion processing. Therefore, it is first necessary to preprocess the initial data of the floating car, map the coordinate data of the floating car, and make it fall on the correct driving road by correcting the coordinate deviation. In the case of a complex road network topology, simple map matching cannot determine the only correct road at one time. It is necessary to select a series of time-continuous data to estimate the driving route according to the driving rules and characteristics of the floating car, so as to find the final road. The correct driving route, and determine the road where the coordinates of each point are located.
由上可知,通过浮动车采集的数据进行地图匹配和行车路线推测处理后,才能进行融合处理。参照表4,是浮动车行车路线推测数据表,经预处理的数据按照统一的数据格式生成。浮动车行车路线推测数据包括车辆ID、时间、车辆点的经度和纬度(纠偏后)、车辆点所在道路号和路链号等信息,具体内容和格式如下表所示。It can be seen from the above that the fusion processing can only be performed after the data collected by the floating car is processed by map matching and driving route estimation. Referring to Table 4, it is the estimated data table of the driving route of the floating car, and the preprocessed data is generated according to a unified data format. The estimated data of the floating vehicle’s driving route includes vehicle ID, time, longitude and latitude of the vehicle point (after deviation correction), road number and link number of the vehicle point, etc. The specific content and format are shown in the table below.
表4 浮动车行车路线推测数据表Table 4 Floating car driving route estimation data table
本发明优选的,还定义了一种道路交通信息数据格式,将整个道路网划分为多条道路,每条道路划分为多个路链,每个路链又划分为多个路段,所述道路、路链、路段用于描述经融合处理后的数据。本发明突破原有的只是基于路链的处理方式,可以从多层次的角度来定义交通信息的格式和内容,增强道路交通信息描述的准确性和实用性。Preferably, the present invention also defines a road traffic information data format, which divides the entire road network into multiple roads, each road is divided into multiple road links, and each road link is divided into multiple road sections. , link, and link are used to describe the fused data. The present invention breaks through the original road link-based processing method, can define the format and content of traffic information from multi-level perspectives, and enhances the accuracy and practicability of road traffic information description.
表5 道路交通信息数据表Table 5 Road Traffic Information Data Sheet
参照表5,道路交通信息数据描述的主要是城市道路网内各条道路的交通路况信息,它的属性包括道路ID、道路名称、道路等级、道路类型、方向、道路长度、道路行车时间、道路拥堵程度、所包含的路链数和最拥堵路链号。其中,道路行车时间表示预测车辆正常行驶通过该道路所需的时间,单位为秒;道路拥堵程度表示该道路的路况等级,它是由道路平均车速决定的,不同的路况等级对应着不同的车速区间。Referring to Table 5, the road traffic information data mainly describes the traffic condition information of each road in the urban road network, and its attributes include road ID, road name, road grade, road type, direction, road length, road travel time, road The degree of congestion, the number of links included and the number of the most congested link. Among them, the road driving time indicates the time required for the predicted vehicle to pass the road normally, in seconds; the road congestion level indicates the road condition level of the road, which is determined by the average speed of the road, and different road condition levels correspond to different vehicle speeds interval.
表6 路链交通信息数据表Table 6 Road link traffic information data table
参照表6,路链交通信息的内容包括路链号、路链长度、路链行车时间、路链拥堵程度、该路链包含的有路况的路段数等信息。其中,路链行车时间表示预测车辆正常行驶通过该路链所需的时间,单位为秒;路链拥堵程度的定义与它所在的道路的定义标准相同;路链终点距离为从该路链起点到道路终点的距离,单位为米;路链同时由若干个表示不同路况的路段组成,每个路段都包含路段拥堵程度信息,定义标准同所在路链和道路。Referring to Table 6, the content of link traffic information includes information such as link number, link length, link travel time, link congestion degree, and the number of road sections with road conditions included in the link. Among them, the driving time of the road link indicates the time required for predicting the normal driving of the vehicle through the road link, in seconds; the definition of the congestion degree of the road link is the same as the definition standard of the road where it is located; the end distance of the road link is the distance from the starting point of the road link The distance to the end of the road, in meters; the road link is composed of several road sections representing different road conditions, and each road section contains information on the degree of congestion of the road section, and the definition standard is the same as that of the road link and road.
表7 路段交通信息数据表Table 7 Road section traffic information data table
参照表7,路段的属性包括路段终点到路链终点的距离、路段长度、路段行车时间和路段拥堵程度。其中,路段行车时间表示预测车辆正常行驶通过该路段所需的时间,单位为秒;路段拥堵程度的定义与它所在的道路的定义标准相同;路段终点距离指从该路段起点到路链终点的距离,单位为米。Referring to Table 7, the attributes of a road segment include the distance from the end point of the road segment to the end point of the link link, the length of the road segment, the driving time of the road segment, and the degree of congestion of the road segment. Among them, the driving time of the road segment indicates the time required for predicting the normal driving of the vehicle through the road segment, in seconds; the definition of the congestion degree of the road segment is the same as the definition standard of the road where it is located; the end point distance of the road segment refers to the distance between the starting point of the road segment and the end point Distance, in meters.
以上说明了交通信息融合处理的输入和输出数据格式,融合处理的输入数据是表4所示的浮动车行车路线推测数据(以下简称浮动车数据),输出数据即为表5、6、7所示的道路交通信息数据。对输入数据的融合处理过程参照图1,是交通信息融合处理的整体流程图。The input and output data formats of the traffic information fusion processing have been described above. The input data of the fusion processing is the floating car driving route estimation data shown in Table 4 (hereinafter referred to as the floating car data), and the output data is as shown in Tables 5, 6, and 7. displayed road traffic information data. For the fusion processing process of input data, refer to FIG. 1 , which is an overall flow chart of traffic information fusion processing.
步骤101,读取一个周期内经地图匹配和行车路线推测处理后的所有浮动车数据。交通信息的融合处理是按周期循环进行的,每个处理周期读取一定的数据量,以下内容就是对一个周期内的浮动车数据进行融合处理的过程。
步骤102,计算每辆浮动车在不同时间段内行驶路段的路况信息。每辆浮动车在各自的行车路线中设置多个投影点,用于分时间段采集实时动态的交通路况信息,然后经预处理后如表4所示。浮动车行车路线中每两个时间相邻的投影点称为一个行驶路段,多个投影点将每辆车的行车路线按照时间段划分为多个连续的行驶路段。每辆浮动车所反映的交通信息状况需要通过计算每个行驶路段的路况信息获得,其中所述路况信息包括行车时间、平均行车速度等。
表4中列出了计算行驶路段路况需要的重要参数,包括浮动车各个车辆投影点的坐标、所在道路编号和该点到道路终点的距离。设浮动车在一个周期内的车辆投影点信息参数分别为:坐标pi(x,y),x表示经度,y表示纬度;点到道路终点的距离Si;道路号n;时刻ti;其中i=1、2、...、k,k为一个周期内车辆投影点记录的数量。然后根据所述参数计算浮动车所覆盖道路的各个行驶路段的平均行车速度、行车时间、路段长度以及路段起点到所在道路终点的距离。设各个路段的长度为Li,行车时间为Ti,平均行车速度为Vi,则计算公式如下:Li=Si-Si-1;Ti=ti-ti-1;Vi=Li/Ti。Table 4 lists the important parameters needed to calculate the road conditions of the driving section, including the coordinates of each vehicle projection point of the floating car, the number of the road where it is located, and the distance from the point to the end of the road. Let the vehicle projection point information parameters of the floating car in one cycle be respectively: coordinate p i (x, y), x represents longitude, y represents latitude; point to the distance S i of the road end; road number n; moment t i ; Where i=1, 2, ..., k, k is the number of vehicle projection point records in one period. Then calculate the average driving speed, driving time, length of the road section and the distance from the starting point of the road section to the end point of the road where the floating car covers each driving section according to the parameters. Suppose the length of each section is L i , the driving time is T i , and the average driving speed is V i , then the calculation formula is as follows: L i =S i -S i-1 ; T i =t i -t i-1 ; V i = Li/Ti.
步骤103,根据上述每辆浮动车各个行驶路段的路况信息,对每条道路上所有车辆的路况信息进行融合处理,得到道路的综合路况信息,从而得到整个道路网的综合交通信息,如表5、6、7所示。上述路段路况信息虽然能够实时动态地反映浮动车所在道路的交通信息状况,但由于在同一时间一条道路上可能有多辆浮动车行驶,各辆车所反映的交通信息也可能不同,所以需要将所述浮动车各自反映的路况信息进行融合处理,才能获得整条道路全面准确的交通路况信息。
由上可知,道路综合路况信息的计算分为两个部分,分别是浮动车行驶路段的路况信息计算和道路综合路况信息计算,下面分别详述。参照图2,是本发明中浮动车行驶路段的路况信息处理流程图。It can be seen from the above that the calculation of the comprehensive road condition information of the road is divided into two parts, namely, the calculation of the road condition information of the section where the floating vehicle travels and the calculation of the comprehensive road condition information of the road, which will be described in detail below. Referring to Fig. 2, it is a flow chart of road condition information processing of the traveling section of the floating car in the present invention.
步骤201,读取经预处理的浮动车数据记录,所述数据记录为一个周期内所有浮动车辆的行车路线推测数据,其中包括行车时间、平均行车速度等。
步骤202,对所述数据记录按车辆ID进行分组,每辆浮动车分为一个组。由于每辆浮动车可以行驶在多条道路上,通过多个投影点采集数据,形成多条数据记录,所以将同一辆车的所有数据记录分为一个组进行处理。假设车辆数为n,下面将从第一组开始进行每辆浮动车路段路况信息的计算。
步骤203,读取一组数据记录,首先推断对应车辆的行驶路线是否跨越一个或多个路链,若是则转到步骤204,否则转到步骤205。推断依据是根据表4浮动车行车路线推测数据中的路链号记录,若两个时间相邻的投影点所在的路链号不同,则所述两个投影点间的行驶路段跨路链。由于浮动车的行驶路段是按照时间段的划分,所以一个行驶路段可能包含在某个路链中,也可能跨越某个或多个路链。本发明优选的,对浮动车数据进行融合处理前,再次划分浮动车行驶路段,有效增加了浮动车投影点的采集数据量,从而提高道路交通信息的覆盖率。
步骤204,当出现浮动车行驶路段跨越一个或多个路链时,在每个路链交接处补充两个车辆投影点数据,分属于两个路链,包括车辆在该点的时间、车辆点的路链号、道路号、路链终点距离和道路终点距离等信息,最后将补充的车辆投影点数据加入到该车的分组中。
步骤205,将该组中所有车辆投影点数据按时间相邻顺序,分别两两组成一个行驶路段。所以,浮动车行驶路段是以时间相邻的投影点为起止点。In
步骤206,根据步骤102中的公式计算每个行驶路段的路况信息,主要包括路段长度、行车时间、平均行车速度、路链终点距离和道路终点距离。
步骤207,判断该组数据是否是第n组,若是,则结束计算;否则转到步骤203。
完成所有浮动车辆各个行驶路段的路况信息计算后,进行道路综合路况信息的计算。参照图3,是本发明中道路综合路况信息的计算流程图。After the calculation of the road condition information of each section of the floating vehicle is completed, the calculation of the comprehensive road condition information of the road is performed. Referring to FIG. 3 , it is a flow chart of calculation of road comprehensive road condition information in the present invention.
步骤301,先读取一个周期内所有车辆的浮动车行驶路段的路况信息数据。
步骤302,对所述数据记录按道路号和路链号进行分组,假设道路数为n,路链数为m,则所述数据可构成[n,m]的二维数组。其中,每组道路分组数据下包含一组或多组路链分组数据。因此,道路综合路况信息的计算分为路链路况的计算和道路上所有路链路况的融合计算。
步骤303,读取一组道路分组数据。
步骤304,读取所述道路分组数据下的一组路链分组数据。
步骤305,计算所述路链的路况信息,首先设定固定距离系数S的值。本发明中,将路链划分为单元路段,先根据浮动车行驶路段的路况信息计算每个单元路段的路况信息,然后再融合生成一条路链的路况信息。其中,所述单元路段的概念与浮动车行驶路段的概念不同,前者指地理信息数据的划分,而后者是指时间段的划分,单元路段与浮动车行驶路段并不是一一对应的关系。而且,为便于计算,本发明中的单元路段是按照等距离划分,需要设定一距离系数S。当然,也可以有其他处理方法,例如对路链进行不等距划分,需要根据不同的融合处理方法进行选择。
步骤306,将所述路链从终点开始按距离系数S进行等分,每隔距离S设置一个节点,路链起点作为最后一个节点,最后一个距离小于S的部分可作为一个单独路段,假设分成p个路段。距离系数S可根据具体应用调整,当S很小时,可以认为节点处的平均行车速度与前一节点的平均行车速度相同。Step 306: Divide the road link equally from the end point according to the distance factor S, set a node every distance S, the starting point of the road link is the last node, and the last part whose distance is less than S can be used as a separate road section, assuming that it is divided into p road segments. The distance coefficient S can be adjusted according to the specific application. When S is small, it can be considered that the average driving speed at the node is the same as the average driving speed at the previous node.
步骤307,分别计算每个单元路段的综合路况信息,主要包括平均行车速度等。本发明采用的计算方法是:从第一个节点开始,依次推算跨越每个节点的浮动车行驶路段的个数,若路段个数为0,则表示该点处无浮动车行驶经过,其平均行车速度为不明;若路段个数为1,则该点的平均行车速度等于所述浮动车行驶路段的平均行车速度;若路段个数大于1,则表示有多辆浮动车从该点经过,取时间最新且速度最大的那条浮动车行驶路段的平均行车速度作为该点的平均行车速度。
当然,也可以采用其他算法计算,如取跨越节点的多个行驶路段平均行车速度的平均值,或者首先考虑速度,取速度最大且时间最新的浮动车行驶路段值。此外,本发明以节点处的平均行车速度来代表整个路段的平均行车速度,也可以采用其他方法确定单元路段的路况信息。Of course, other algorithms can also be used for calculation, such as taking the average value of the average driving speed of multiple driving sections across the node, or considering the speed first, and taking the value of the floating vehicle driving section with the highest speed and the latest time. In addition, the present invention uses the average driving speed at nodes to represent the average driving speed of the entire road section, and other methods can also be used to determine the road condition information of the unit road section.
在后续的处理中,当一些道路在处理周期内无浮动车数据时,可以根据道路交通流规律,如使用历史上同一时段该道路的交通信息进行推测计算,能够获得当前道路的交通信息。In the subsequent processing, when some roads have no floating vehicle data in the processing period, the traffic information of the current road can be obtained according to the law of road traffic flow, such as using the traffic information of the road at the same time period in history for calculation.
步骤308,计算每个单元路段的拥堵程度系数,并将路链上拥堵程度系数相同的相邻路段合并为新的路段。拥堵程度系数的计算方法是:平均行车速度小于或等于20千米/小时的,系数值为1,表示拥堵状态;大于或等于40千米/小时的,系数值为3,表示畅通状态;大于20千米/小时且小于40千米/小时的,系数值为2,表示一般状态。
本发明中,将拥堵程度系数相同的相邻路段合并的目的是,便于最后将道路综合路况信息以城市道路交通图的形式发布显示,用不同的颜色或图表标识不同的道路拥堵程度。而且,上文所述道路网拓扑描述中的单元路段即指合并后新的单元路段。但是,下面的计算并不依据合并后新的单元路段,而仍以合并前的单元路段进行计算。In the present invention, the purpose of merging adjacent road sections with the same congestion degree coefficient is to facilitate the final release and display of road comprehensive road condition information in the form of urban road traffic maps, and use different colors or charts to identify different road congestion degrees. Moreover, the unit road section in the above-mentioned road network topology description refers to the new unit road section after merging. However, the following calculations are not based on the new unit road section after merging, but are still calculated on the basis of the unit road section before merging.
步骤309,计算整个路链的整体路况信息,包括平均行车速度、行车时间等。其中,整个路链的行车时间为所包含单元路段的行车时间之和,而各个单元路段的行车时间由单元路段长度(即固定距离系数S)除以平均行车速度得到。路链长度除以路链行车时间即得到路链的平均行车速度。
路链路况信息的计算,也可以采用其他计算方法。本发明由于路链中的单元路段是按照等距离划分,所以为计算简便,将各个单元路段的行车时间相加得到路链的行车时间。如果单元路段是不等距划分,则可以采用权值计算方法,在此不再详述。The calculation of the road link condition information may also adopt other calculation methods. In the present invention, because the unit road sections in the road chain are divided according to equidistance, so for the convenience of calculation, the driving time of each unit road section is added to obtain the driving time of the road chain. If the unit road sections are divided by unequal distances, the weight calculation method can be used, which will not be described in detail here.
步骤310,判断该路链分组数据是否为第m组,若是,则表明一组道路分组下的所有路链分组已经计算完毕,可以转到步骤311;否则,转到步骤304,继续处理同一条道路下的路链分组数据。
步骤311,计算该道路在这个方向上的综合路况信息,包括平均行车速度、行车时间等。计算方法如下:
设该道路在此方向上的路链个数为n,各个路链的长度为Li,行车时间为Ti,则该道路的长度为
本发明中,由于道路所包含的各个路链的长度不等,所以上述总的行车时间采用了根据长度的权值计算方法。而且,在道路交通信息的覆盖率不足,缺少某个路链路况信息的情况下,也可以按照上述方法计算出整条道路的综合路况信息。In the present invention, since the lengths of the links included in the road are not equal, the weight calculation method based on the length is adopted for the above-mentioned total driving time. Moreover, when the coverage of the road traffic information is insufficient and there is a lack of certain road link condition information, the comprehensive road condition information of the entire road can also be calculated according to the above method.
步骤312,判断该道路分组是否为第n组,若是,则表明所有的道路分组数据已经处理完,结束整个道路网的交通信息融合处理过程;否则,转到步骤303,继续计算其他道路的综合路况信息。
上述对所有浮动车辆行驶路段路况信息的融合处理是本发明的关键,虽然本领域技术人员也实现了其他融合方法,但本发明采用的方法适用于采用大规模浮动车采集技术的城市道路交通信息的实时监控和管理,通过动态发布道路的综合交通路况信息,及时为公众提供准确的道路拥堵信息、最优行车路线等出行服务信息,以及为相关交通管理部门提供交通状况的决策依据。本发明具有良好的实用性,提高了交通信息的准确性。The above-mentioned fusion processing of road condition information of all floating vehicle driving sections is the key of the present invention, although those skilled in the art have also realized other fusion methods, the method adopted in the present invention is applicable to urban road traffic information using large-scale floating vehicle collection technology Real-time monitoring and management of the road, through the dynamic release of comprehensive road traffic conditions information, timely provide the public with accurate road congestion information, optimal driving routes and other travel service information, and provide decision-making basis for traffic conditions for relevant traffic management departments. The invention has good practicability and improves the accuracy of traffic information.
针对上述交通信息融合处理方法,本发明还提供了一种交通信息融合处理系统。图4是本发明所述交通信息融合处理系统的结构图,包括:源数据接收单元401,源数据处理单元402,融合处理单元403,输出单元404。Aiming at the above traffic information fusion processing method, the present invention also provides a traffic information fusion processing system. 4 is a structural diagram of the traffic information fusion processing system of the present invention, including: a source
源数据接收单元401,用于接收浮动车采集的数据。在上述方法中,通过循环读取一个周期内所有浮动车辆的行车路线推测数据,接收经预处理后的数据。The source
源数据处理单元402,用于对应每辆浮动车数据,计算该辆浮动车在不同时间段内行驶路段的路况信息。本发明优选的,为提高道路交通信息的覆盖率,对浮动车数据进行融合处理前,将数据中跨路链的浮动车行驶路段再次划分,有效增加了浮动车投影点的采集数据量。因此,所述源数据处理单元402包括拆分子单元405和计算子单元406。其中,The source
拆分子单元405,用于根据源数据接收单元401接收的行车路线推测数据,判断每个浮动车行驶路段是否跨越路链,若是,则在每个路链交接处划分浮动车行驶路段,补充两个车辆投影点数据,分属于两个路链,包括车辆在该点的时间、车辆点的路链号、道路号、路链终点距离和道路终点距离等信息;Dismantling the subunit 405 is used to judge whether each floating car travel section crosses the road link according to the driving route estimation data received by the source
计算子单元406,用于对经拆分子单元405处理的数据,根据上述步骤102中的公式,计算每辆浮动车重新划分后的每个行驶路段的路况信息,主要包括路段长度、行车时间、平均行车速度、路链终点距离和道路终点距离。
融合处理单元403,用于对同一条道路上所有浮动车辆的行驶路段路况信息进行融合处理,得出道路的综合路况信息。处理过程是先融合处理每个路链上的多辆浮动车数据,然后再对每条道路所包含的多条路链数据进行融合处理。所述融合处理单元403包括:单元路段处理子单元407和融合处理子单元408,其中,The
单元路段处理子单元407,先将每个路链划分为单元路段,为计算简便,本发明按照等距离划分。然后,读取上述周期内所有浮动车行驶路段的路况信息,推算每个单元路段的路况信息,其中平均行车速度的推算方法如上述步骤307所述:从路链的第一个节点开始,依次推算跨越每个节点的浮动车行驶路段的个数,若路段个数为0,则表示该点处无浮动车行驶经过,其平均行车速度为不明;若路段个数为1,则该点的平均行车速度等于所述浮动车行驶路段的平均行车速度;若路段个数大于1,则表示有多辆浮动车从该点经过,取时间最新且速度最大的那条浮动车行驶路段的平均行车速度作为该点的平均行车速度。The unit section processing subunit 407 firstly divides each link into unit sections. For the convenience of calculation, the present invention divides them according to equidistance. Then, read the road condition information of all floating car driving sections in the above-mentioned cycle, calculate the road condition information of each unit section, wherein the calculation method of average driving speed is as described in the above-mentioned step 307: start from the first node of the road chain, and then Estimate the number of floating car driving sections across each node. If the number of road sections is 0, it means that there is no floating car passing by at this point, and its average driving speed is unknown; if the number of road sections is 1, then the point’s The average driving speed is equal to the average driving speed of the floating car driving section; if the number of road sections is greater than 1, it means that there are multiple floating cars passing by this point, and the average driving speed of the floating car driving section with the latest time and the highest speed is taken The speed is taken as the average driving speed at that point.
本发明中,为便于最后将道路综合路况信息以城市道路交通图的形式发布显示,用不同的颜色或图表标识不同的道路拥堵程度,还需要计算每个单元路段的拥堵程度系数。拥堵程度系数的计算方法是:平均行车速度小于或等于20千米/小时的,系数值为1,表示拥堵状态;大于或等于40千米/小时的,系数值为3,表示畅通状态;大于20千米/小时且小于40千米/小时的,系数值为2,表示一般状态。将路链上拥堵程度系数相同的相邻路段合并,然后以图表形式发布整个交通拥堵情况。但是,下面的计算并不依据合并后新的单元路段,而仍以合并前的单元路段进行计算。In the present invention, in order to finally release and display the comprehensive road condition information in the form of urban road traffic map, different colors or graphs are used to mark different road congestion degrees, and the congestion degree coefficient of each unit section needs to be calculated. The calculation method of the congestion degree coefficient is: if the average driving speed is less than or equal to 20 km/h, the coefficient value is 1, indicating a congested state; if it is greater than or equal to 40 km/h, the coefficient value is 3, indicating a smooth state; 20 km/h and less than 40 km/h, the coefficient value is 2, indicating the general state. Merge adjacent road segments with the same congestion degree coefficient on the road link, and then publish the entire traffic congestion situation in the form of a graph. However, the following calculations are not based on the new unit road section after merging, but are still calculated on the basis of the unit road section before merging.
融合处理子单元408,用于根据所述单元路段处理子单元407的处理结果,计算每个路链的路况信息,并计算每条道路的综合路况信息。本发明采用的计算方法如上述步骤309和步骤311所述,在此不再详述。The fusion processing subunit 408 is configured to calculate the road condition information of each road link according to the processing result of the unit road section processing subunit 407, and calculate the comprehensive road condition information of each road. The calculation method used in the present invention is as described above in
输出单元404,用于将经融合处理单元403得到的道路综合路况信息,按照统一的数据格式输出。可以根据不同显示需求,输出不同的数据内容,如某路链的路况信息,或者是某条道路的路况信息,或者是城市的整体交通信息状况等。本发明可以从多层次的角度来定义交通信息的格式和内容,增强道路交通信息描述的准确性和实用性。The
本发明优选的,在融合处理浮动车数据的同时,还可以兼容处理其他类型的交通信息数据,如感应线圈、监测器、视频监控等固定检测系统采集的数据。所述从多个数据源获取处理数据的方式,有效解决了由于浮动车数量较少而导致交通信息覆盖率不足的问题,而且还可以提高交通信息的准确性。本发明提供的交通信息融合处理方法具有良好的可扩展性。Preferably in the present invention, while fusing and processing floating car data, other types of traffic information data, such as data collected by fixed detection systems such as induction coils, monitors, and video surveillance, can also be processed compatiblely. The method of obtaining and processing data from multiple data sources effectively solves the problem of insufficient coverage of traffic information due to the small number of floating cars, and can also improve the accuracy of traffic information. The traffic information fusion processing method provided by the invention has good scalability.
虽然很多非浮动车采集的交通信息数据与浮动车数据采集方式以及采集内容有很大不同,但都可以通过处理转换为描述一个或若干个针对检测路段的路况信息,如平均车速等。其中,所述检测路段用于描述其他类型的数据,区别于上述浮动车行驶路段和单元路段的概念。下表是对符合融合处理要求的数据内容格式的具体要求。Although many traffic information data collected by non-floating vehicles are quite different from floating vehicle data collection methods and collection content, they can all be processed and converted to describe one or several road condition information for the detection section, such as average vehicle speed, etc. Wherein, the detection road section is used to describe other types of data, which is different from the concepts of the floating car driving road section and the unit road section above. The following table is the specific requirements for the data content format that meets the fusion processing requirements.
表8 其他类型交通信息的数据表Table 8 Data sheets for other types of traffic information
以磁感线圈采集方式为例,采集到的初始数据是描述道路上埋设线圈的各个点的截面的交通流量,通过现有的一些模型的处理,可以计算出相邻两个线圈之间路段的平均车速,同时可以获得各个线圈埋设点的坐标和所在道路、路链,这样就可以转换为上面要求的数据内容格式。基于所述信息并结合浮动车数据,便可以进行交通信息融合处理,使得生成的道路交通路况更加准确、全面。Taking the magnetic induction coil collection method as an example, the collected initial data is to describe the traffic flow of the cross-section of each point where the coil is buried on the road. Through the processing of some existing models, the traffic flow of the road section between two adjacent coils can be calculated. At the same time, the coordinates of each coil embedding point and the road and road link where it is located can be obtained, so that it can be converted into the data content format required above. Based on the information and combined with the floating car data, traffic information fusion processing can be performed, making the generated road traffic conditions more accurate and comprehensive.
在同时处理浮动车数据和其他类型数据的情况下,整体的融合处理过程基本一致,也按照以下步骤执行:循环读取一个周期内所有浮动车辆的行车路线推测数据和其他类型的交通信息数据;根据每辆浮动车的行车路线推测数据,计算该辆浮动车在不同时间段内行驶路段的路况信息,而所述其他类型的交通信息数据已经表示出检测路段的路况信息;对每条道路进行融合处理,将道路的每个路链按照距离常量等分为单元路段;将所述浮动车行驶路段的路况信息和其他类型检测路段的路况信息相结合,推算每个单元路段的路况信息;根据所述单元路段的路况信息,计算每个路链的路况信息;再根据所述路链的路况信息,计算整条道路的综合路况信息。In the case of processing floating car data and other types of data at the same time, the overall fusion processing process is basically the same, and it is also performed according to the following steps: loop reading the driving route estimation data and other types of traffic information data of all floating vehicles in a cycle; According to the driving route estimation data of each floating car, calculate the road condition information of the road section that the floating car travels in different time periods, and the other types of traffic information data have shown the road condition information of the detected road section; Fusion processing, dividing each road link of the road into unit road sections according to the constant distance; combining the road condition information of the floating car driving section with the road condition information of other types of detected road sections, and calculating the road condition information of each unit road section; The road condition information of the unit road section is used to calculate the road condition information of each road link; and then the comprehensive road condition information of the entire road is calculated according to the road condition information of the road link.
上述多数据源数据的处理步骤中,与单数据源(浮动车数据)处理的不同之处在于:In the processing steps of the above-mentioned multi-data source data, the difference with the processing of single data source (floating car data) is:
第一,首先需要将其他类型的原始数据处理转换为表8所示的标准数据格式,才能进行后续的融合处理;First, it is first necessary to convert other types of raw data processing into the standard data format shown in Table 8 before subsequent fusion processing can be performed;
第二,在计算每个单元路段的路况信息时,需要综合考虑浮动车行驶路段的路况信息和其他类型检测路段的路况信息,处理方法是:从路链的第一个节点开始推算跨越每个节点的浮动车行驶路段和检测路段的个数,当浮动车行驶路段的个数为0时,取其他类型数据中时间最近和速度最大的为该点的平均行车速度;当浮动车行驶路段的个数大于或等于1时,该点的平均速度为v=α*v1+β*v2,其中v1为浮动车行驶路段中时间最新且速度最大的路段平均行车速度,v2为其他类型数据中时间最近和速度最大的路段平均车速,而且α+β=1。按照所述过程依次计算完所有节点的平均行车速度,也就得到了该道路上所有路段的平均行车速度。具体的处理过程如图5所示,是本发明结合其他类型数据融合处理单元路段的路况信息流程图。Second, when calculating the road condition information of each unit road section, it is necessary to comprehensively consider the road condition information of the floating car driving section and the road condition information of other types of detection road sections. The number of floating car driving sections and detection sections at the node. When the number of floating car driving sections is 0, take the one with the closest time and the highest speed among other types of data as the average driving speed of this point; when the floating car driving section When the number is greater than or equal to 1, the average speed of this point is v=α*v 1 +β*v 2 , where v 1 is the average driving speed of the section with the latest time and the highest speed in the floating car driving section, and v 2 is the other The average vehicle speed of the section with the shortest time and maximum speed in the type data, and α+β=1. After calculating the average driving speed of all nodes in sequence according to the above process, the average driving speed of all road sections on the road is obtained. The specific processing process is shown in FIG. 5 , which is a flow chart of road condition information of road sections combined with other types of data fusion processing units in the present invention.
步骤501,从第一个节点开始,取路链中的一个单元路段。
步骤502,判断跨越的浮动车行驶路段个数是否为0,若是则转步骤503,否则转步骤506。
步骤503,判断其他类型数据的检测路段个数是否为0,若是则转步骤504,否则转步骤505。
步骤504,浮动车行驶路段个数和检测路段个数都为0时,该路段的平均行车速度不明,继续转步骤509。In step 504, when the number of traveling sections of the floating vehicle and the number of detected sections are both 0, the average driving speed of this section is unknown, and the process continues to step 509.
步骤505,浮动车行驶路段个数为0而检测路段个数不为0时,该路段的平均行车速度为其它类型数据中时间最近和速度最大的路段平均车速,继续转步骤509。
步骤506,判断其他类型的检测路段个数是否为0,若是则转步骤507,否则转步骤508。
步骤507,当浮动车行驶路段个数不为0而检测路段个数为0时,该路段平均行车速度为浮动车行驶路段中时间最新和速度最大的路段平均行车速度,继续转步骤509。
步骤508,当浮动车行驶路段和检测路段的个数都不为0时,该路段平均行车速度为v=α*v1+β*v2,其中v1为浮动车行驶路段中时间最新且速度最大的路段平均行车速度,v2为其它类型数据中时间最近和速度最大的路段平均车速,而且α+β=1。继续步骤509。
步骤509,判断是否完成该路链所有路段的路况计算,若是则进行下一步处理,否则转步骤501。其中,所述下一步处理是指根据单元路段的路况信息,计算整个路链的综合路况,计算方法同上。In
针对上述融合处理其他类型数据的方法,本发明还提供了相应的交通信息融合处理系统,如图6所示,是本发明结合其他类型数据的交通信息融合处理系统结构图,包括预处理单元601、源数据接收单元602、源数据处理单元603、融合处理单元604和输出单元。For the above-mentioned fusion processing method of other types of data, the present invention also provides a corresponding traffic information fusion processing system, as shown in FIG. , a source
预处理单元601,用于将固定检测系统采集的交通信息数据转换为针对各个检测路段的路况信息,如表8所示。The
源数据接收单元602,通过循环读取一个周期内所有浮动车采集的行车路线推测数据,以及经预处理单元601得到的检测路段的路况信息,接收需要融合处理的源数据。The source
源数据处理单元603,功能同上述源数据处理单元402,用于对应每辆浮动车数据,计算该辆浮动车在不同时间段内行驶路段的路况信息,也包括拆分子单元和计算子单元,不再详述。The source
融合处理单元604,用于所述将所述浮动车行驶路段的路况信息和检测路段的路况信息相结合,计算得出整条道路的交通信息状况,也包括单元路段处理子单元605和融合处理子单元。The
其中,单元路段处理子单元605,用于将组成道路的每个路链划分为单元路段,为计算简便,本发明按照等距离划分,然后推算每个单元路段的路况信息。与图4所示系统中的单元路段处理子单元407不同,单元路段处理子单元605推算平均行车速度的方法是:Among them, the unit road
从路链的第一个节点开始推算跨越每个节点的浮动车行驶路段和检测路段的个数,当浮动车行驶路段的个数为0时,取其他类型数据中时间最近和速度最大的为该点的平均行车速度;当浮动车行驶路段的个数大于或等于1时,该点的平均速度为v=α*v1+β*v2,其中v1为浮动车行驶路段中时间最新且速度最大的路段平均行车速度,v2为其他类型数据中时间最近和速度最大的路段平均车速,而且α+β=1。Calculate the number of floating car driving sections and detection sections across each node from the first node of the road chain. When the number of floating car driving sections is 0, take the one with the closest time and the largest speed among other types of data as The average driving speed of this point; when the number of floating car driving sections is greater than or equal to 1, the average speed of this point is v=α*v 1 +β*v 2 , where v 1 is the latest time in the floating car driving section And the average driving speed of the road section with the highest speed, v 2 is the average speed of the road section with the shortest time and the highest speed in other types of data, and α+β=1.
同上所述,还需要进行单元路段拥堵程度系数的计算,以及拥堵程度系数相同的相邻单元路段的合并。As mentioned above, it is also necessary to calculate the congestion degree coefficient of the unit road section and merge the adjacent unit road sections with the same congestion degree coefficient.
融合处理子单元,功能同上述融合处理子单元408,用于根据所述单元路段的路况信息,计算每个路链的路况信息;再根据所述路链的路况信息,计算每条道路的综合路况信息。计算方法如前所述,The fusion processing subunit has the same function as the above fusion processing subunit 408, which is used to calculate the road condition information of each road link according to the road condition information of the unit road section; then calculate the comprehensive road condition information of each road according to the road condition information of the road link traffic information. The calculation method is as mentioned above,
最后,还需要通过输出单元,将将经融合处理单元403得到的道路综合路况信息,根据不同显示需求输出。Finally, it is also necessary to use the output unit to output the comprehensive road condition information obtained by the
以上对本发明所提供的一种交通信息融合处理方法和系统,进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。The above is a detailed introduction to the traffic information fusion processing method and system provided by the present invention. In this paper, specific examples are used to illustrate the principle and implementation of the present invention. The description of the above embodiments is only used to help understand the present invention. The method of the invention and its core idea; at the same time, for those of ordinary skill in the art, according to the idea of the invention, there will be changes in the specific implementation and application range. In summary, the contents of this specification should not be construed as limiting the present invention.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101682713A CN100463009C (en) | 2006-12-25 | 2006-12-25 | A traffic information fusion processing method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101682713A CN100463009C (en) | 2006-12-25 | 2006-12-25 | A traffic information fusion processing method and system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1975800A CN1975800A (en) | 2007-06-06 |
CN100463009C true CN100463009C (en) | 2009-02-18 |
Family
ID=38125842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006101682713A Active CN100463009C (en) | 2006-12-25 | 2006-12-25 | A traffic information fusion processing method and system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100463009C (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104217588A (en) * | 2013-05-31 | 2014-12-17 | 张伟伟 | Method, server and system for acquiring real-time traffic information |
CN105096590A (en) * | 2014-04-23 | 2015-11-25 | 株式会社日立制作所 | Traffic information generation method and device |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010205089A (en) * | 2009-03-04 | 2010-09-16 | Nec Corp | Apparatus and method for creating road traffic information |
CN101571997A (en) * | 2009-05-31 | 2009-11-04 | 上海宝康电子控制工程有限公司 | Method and device for fusion processing of multi-source traffic information |
CN101673460B (en) * | 2009-08-25 | 2011-06-15 | 北京世纪高通科技有限公司 | Traffic information quality evaluation method, device and system therefor |
CN101634569B (en) * | 2009-09-01 | 2011-12-28 | 中兴通讯股份有限公司 | Method and device for determining driving routes by driving time |
CN101877169B (en) * | 2009-11-13 | 2012-11-07 | 北京交通大学 | Data fusion system and method for controlling balance of multi-intersection traffic flow of trunk road |
CN101783069A (en) * | 2009-12-29 | 2010-07-21 | 北京世纪高通科技有限公司 | Traffic information fusion processing method and system |
CN101794513B (en) * | 2009-12-30 | 2012-01-04 | 北京世纪高通科技有限公司 | Method and device for preprocessing floating car data |
CN101783070A (en) * | 2010-01-11 | 2010-07-21 | 北京世纪高通科技有限公司 | Road condition updating method and device |
CN101826257B (en) * | 2010-03-29 | 2012-09-19 | 北京市公安局公安交通管理局 | Real-time detection method of traffic condition of motor vehicle lane |
CN102236967B (en) * | 2010-04-22 | 2014-06-11 | 高德软件有限公司 | Method and device for screening real-time traffic information |
CN101882372B (en) * | 2010-06-08 | 2013-03-27 | 北京世纪高通科技有限公司 | Short road chain real-time traffic information merging method, device and system |
CN101908276A (en) * | 2010-07-29 | 2010-12-08 | 北京世纪高通科技有限公司 | Method and device for evaluating traffic information |
CN102024325B (en) * | 2010-12-23 | 2012-07-25 | 福建工程学院 | Traffic jam point identification method based on floating car technology |
CN102201163A (en) * | 2011-04-12 | 2011-09-28 | 北京世纪高通科技有限公司 | Information processing method based on RDS-TMC |
CN102280029A (en) * | 2011-07-20 | 2011-12-14 | 北京世纪高通科技有限公司 | traffic information quality monitoring method and device |
CN102368355B (en) * | 2011-10-19 | 2014-04-02 | 北京世纪高通科技有限公司 | Method and system for rapid updating of traffic data |
CN102521985A (en) * | 2012-01-06 | 2012-06-27 | 北京捷易联科技有限公司 | Traffic information evaluation method and device |
CN102737502A (en) * | 2012-06-13 | 2012-10-17 | 天津大学 | Method for predicting road traffic flow based on global positioning system (GPS) data |
CN104183128B (en) * | 2013-05-22 | 2018-03-30 | 高德软件有限公司 | Traffic behavior determines method and device |
CN105279965B (en) * | 2015-09-30 | 2017-11-03 | 百度在线网络技术(北京)有限公司 | A kind of subsections mergence method and apparatus based on road conditions |
CN105486322B (en) * | 2016-01-14 | 2020-07-03 | 上海博泰悦臻网络技术服务有限公司 | Method and system for acquiring road condition information of regional roads |
CN106251642B (en) * | 2016-09-18 | 2018-10-26 | 北京航空航天大学 | A kind of public transport road chain speed calculation method based on real-time bus GPS data |
CN106781472A (en) * | 2016-12-16 | 2017-05-31 | 北京世纪高通科技有限公司 | A kind of road conditions detection method and device based on public transport car data |
CN106781507A (en) * | 2017-02-22 | 2017-05-31 | 百度在线网络技术(北京)有限公司 | Method and apparatus for generating traffic information and test road conditions identifying system |
CN108734955B (en) * | 2017-04-14 | 2021-06-11 | 腾讯科技(深圳)有限公司 | Method and device for predicting road condition state |
CN107886718B (en) * | 2017-11-01 | 2020-09-11 | 沈阳世纪高通科技有限公司 | Road condition analysis method, device and network system |
CN110440788B (en) * | 2018-05-03 | 2022-07-22 | 北京百度网讯科技有限公司 | Navigation prompting method crossing single-line road, server and computer readable medium |
CN109872533B (en) * | 2019-02-21 | 2020-12-04 | 弈人(上海)科技有限公司 | Lane-level real-time traffic information processing method based on spatial data |
CN111739283B (en) * | 2019-10-30 | 2022-05-20 | 腾讯科技(深圳)有限公司 | Road condition calculation method, device, equipment and medium based on clustering |
CN111739293A (en) * | 2020-06-10 | 2020-10-02 | 广东世纪高通科技有限公司 | Data fusion method and device |
CN113053107B (en) * | 2020-12-23 | 2022-08-02 | 沈阳世纪高通科技有限公司 | Method and device for calculating road congestion and slowness state by combining free flow |
CN113689715B (en) * | 2021-07-20 | 2023-04-28 | 新奇点智能科技集团有限公司 | Information pushing method, device, electronic equipment and computer readable storage medium |
CN113779430B (en) * | 2021-10-29 | 2022-12-13 | 腾讯科技(深圳)有限公司 | Road network data generation method and device, computing equipment and storage medium |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998015935A1 (en) * | 1996-10-10 | 1998-04-16 | Mannesmann Ag | Method and device for transmitting data on traffic assessment |
EP0884708A2 (en) * | 1997-06-12 | 1998-12-16 | MANNESMANN Aktiengesellschaft | Method and device for traffic condition prognosis |
US20030125874A1 (en) * | 2001-02-23 | 2003-07-03 | Takumi Fushiki | Method of presuming traffic conditions by using floating car data and system for presuming and presenting traffic conditions by using floating data |
JP2004227317A (en) * | 2003-01-23 | 2004-08-12 | Matsushita Electric Ind Co Ltd | Probe car system and equipment |
JP2004258884A (en) * | 2003-02-25 | 2004-09-16 | Matsushita Electric Ind Co Ltd | Fcd information collecting method and probe car system |
CN1710624A (en) * | 2005-06-02 | 2005-12-21 | 上海交通大学 | Method for Obtaining the Average Speed of Urban Road Network Traffic Flow Interval |
-
2006
- 2006-12-25 CN CNB2006101682713A patent/CN100463009C/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998015935A1 (en) * | 1996-10-10 | 1998-04-16 | Mannesmann Ag | Method and device for transmitting data on traffic assessment |
EP0884708A2 (en) * | 1997-06-12 | 1998-12-16 | MANNESMANN Aktiengesellschaft | Method and device for traffic condition prognosis |
US20030125874A1 (en) * | 2001-02-23 | 2003-07-03 | Takumi Fushiki | Method of presuming traffic conditions by using floating car data and system for presuming and presenting traffic conditions by using floating data |
JP2004227317A (en) * | 2003-01-23 | 2004-08-12 | Matsushita Electric Ind Co Ltd | Probe car system and equipment |
JP2004258884A (en) * | 2003-02-25 | 2004-09-16 | Matsushita Electric Ind Co Ltd | Fcd information collecting method and probe car system |
CN1710624A (en) * | 2005-06-02 | 2005-12-21 | 上海交通大学 | Method for Obtaining the Average Speed of Urban Road Network Traffic Flow Interval |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104217588A (en) * | 2013-05-31 | 2014-12-17 | 张伟伟 | Method, server and system for acquiring real-time traffic information |
CN105096590A (en) * | 2014-04-23 | 2015-11-25 | 株式会社日立制作所 | Traffic information generation method and device |
CN105096590B (en) * | 2014-04-23 | 2019-07-26 | 株式会社日立制作所 | Traffic information generating method and traffic information generating device |
Also Published As
Publication number | Publication date |
---|---|
CN1975800A (en) | 2007-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100463009C (en) | A traffic information fusion processing method and system | |
CN104134349B (en) | A kind of public transport road conditions disposal system based on traffic multisource data fusion and method | |
Yuan et al. | T-drive: driving directions based on taxi trajectories | |
US11460312B2 (en) | Method, apparatus, and computer program product for determining lane level traffic information | |
WO2019047905A1 (en) | Road traffic analysis system, method and apparatus | |
CN104123841B (en) | The acquisition methods of a kind of vehicle arrival time and system | |
Liu et al. | Exploiting heterogeneous human mobility patterns for intelligent bus routing | |
CN105865472A (en) | Vehicle-mounted navigation method based on least oil consumption | |
Miwa et al. | Route identification and travel time prediction using probe-car data | |
US10943474B2 (en) | Method, apparatus, and computer program product for detecting changes in road traffic condition | |
CN102436466A (en) | Bus transfer query method based on GIS classification | |
CN103745089A (en) | Multi-dimensional public transport operation index evaluation method | |
CN107063278A (en) | A kind of Vehicular navigation system, air navigation aid and its vehicle | |
EP3821388A1 (en) | Method, apparatus, and computer program product for evaluating public transportation use | |
CN101739824A (en) | Data fusion technology-based traffic condition estimation method | |
CN103403496A (en) | Method for determining and verifying navigation priority settings using sounding data | |
CN103714696A (en) | High-speed traffic information access processing system | |
CN104269059A (en) | City path travel time forecasting method based on multi-source data fusion | |
US20220205799A1 (en) | Method, apparatus, and computer program product for determining benefit of restricted travel lane | |
Pandey et al. | Assessment of Level of Service on urban roads: a revisit to past studies. | |
CN104217591A (en) | Dynamic road condition detecting method and system | |
CN114078322B (en) | Bus running state evaluation method, device, equipment and storage medium | |
EP4152292B1 (en) | Snap to road, popular routes, popular stops, predicting roadway speed, and contiguous region identification | |
CN110232485B (en) | Cloud computing-based transportation analysis decision system | |
Ling et al. | Reliable feeder bus schedule optimization in a multi-mode transit system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |