CN100412870C - Portal personalized recommendation service method and system using meta-recommendation engine - Google Patents
Portal personalized recommendation service method and system using meta-recommendation engine Download PDFInfo
- Publication number
- CN100412870C CN100412870C CNB2006100988670A CN200610098867A CN100412870C CN 100412870 C CN100412870 C CN 100412870C CN B2006100988670 A CNB2006100988670 A CN B2006100988670A CN 200610098867 A CN200610098867 A CN 200610098867A CN 100412870 C CN100412870 C CN 100412870C
- Authority
- CN
- China
- Prior art keywords
- unit
- portal
- recommendation
- interest model
- interest
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Information Transfer Between Computers (AREA)
Abstract
本发明公开了一种采用元推荐引擎的门户个性化推荐服务方法和系统,提出了门户用户兴趣模型的构建,包括门户用户兴趣模型的初始创建和后续更新;提出采用元推荐引擎的独立于门户平台的个性化推荐服务体系架构,元推荐引擎能够分析用户及用户群的关联及个性化兴趣变化,将信息资源和推荐算法统一组织并合理选择控制,优化推送产生更全面多样的个性化推荐结果;在资源展现方面,实现门户个性化推荐服务的系统能够将预测推荐的多种Web资源内容对象封装为门户组件,向门户用户进行生动直观的个性化显示,提供一种更高层的个性化控制。综合利用门户平台已有的个性化资源和技术手段,提供独立灵活的服务中间件或服务代理,以完成个性化推荐服务。
The invention discloses a portal personalized recommendation service method and system using a meta-recommendation engine, and proposes the construction of a portal user's interest model, including the initial creation and subsequent update of the portal user's interest model; The personalized recommendation service architecture of the platform, the meta-recommendation engine can analyze the relationship between users and user groups and the changes in personalized interests, organize information resources and recommendation algorithms in a unified way and choose and control them reasonably, and optimize the push to generate more comprehensive and diverse personalized recommendation results ; In terms of resource display, the system for realizing portal personalized recommendation service can encapsulate various predicted and recommended Web resource content objects into portlets, which can provide vivid and intuitive personalized display to portal users and provide a higher level of personalized control . Comprehensively utilize the existing personalized resources and technical means of the portal platform to provide independent and flexible service middleware or service agents to complete personalized recommendation services.
Description
技术领域 technical field
本发明涉及门户(Portal)技术,特别是指一种采用元推荐引擎的门户个性化推荐服务方法和系统.The present invention relates to portal (Portal) technology, in particular to a portal personalized recommendation service method and system using a meta-recommendation engine.
背景技术 Background technique
个性化推荐服务能够主动地为互联网(Internet)用户提供多样化、智能化的个性化服务,以最快捷的方式展现出来,协助用户高效全面地获取有用的环球网(Web)资源信息.目前,能够实现个性化推荐服务的系统已经成为网络信息系统的重要组成部分,尤其是在电子商务、数字图书馆、远程教育等大型门户应用领域中的作用更为突出.随着Web 2.0时代的到来,资源整合及基于门户平台的个性化服务手段正愈发丰富.目前,有方法采用中央数据库存储所有基于规则的推荐算法,为用户动态灵活选择进行推荐,但这种方案在兴趣挖掘和应用扩展方面的分析根本没有或较为简单,主要应用于电子商务等简单Web推荐系统中,不能提供门户应用的支持。由于门户平台所支持的服务和架构各异、适应需求不灵活等问题,门户个性化推荐服务领域存在着很多问题。Personalized recommendation service can proactively provide Internet users with diversified and intelligent personalized services, display them in the fastest way, and assist users to efficiently and comprehensively obtain useful World Wide Web (Web) resource information. At present, The system that can realize personalized recommendation service has become an important part of the network information system, especially in the large-scale portal application fields such as e-commerce, digital library, and distance education. With the advent of the Web 2.0 era, Resource integration and personalized service methods based on portal platforms are becoming more and more abundant. At present, there are methods that use a central database to store all rule-based recommendation algorithms and provide dynamic and flexible choices for users to make recommendations. There is no or relatively simple analysis of , and it is mainly used in simple Web recommendation systems such as e-commerce, and cannot provide support for portal applications. Due to the different services and structures supported by the portal platform and the inflexibility of adapting to the needs, there are many problems in the field of portal personalized recommendation services.
首先,当前门户所提供的个性化推荐服务机制对平台自身的依赖性都很大,需加载定制或二次开发相同系列的服务构件才能完成,与平台的耦合非常紧密;同时,利用门户技术进行个性化兴趣挖掘和推荐服务的综合应用方案还根本没有,无法提供较完备灵活的、面向门户的个性化推荐服务体系架构,还需要对系统架构集成、相关算法策略和接口设计方面进行更深入的研究。First of all, the personalized recommendation service mechanism provided by the current portal is very dependent on the platform itself, and it needs to be loaded with customized or secondary development of the same series of service components to complete, and the coupling with the platform is very close; at the same time, using portal technology There is no comprehensive application scheme for personalized interest mining and recommendation services, and it is impossible to provide a relatively complete and flexible portal-oriented personalized recommendation service architecture. Further research is needed on system architecture integration, related algorithm strategies and interface design. Research.
其次,近年来的个性化推荐服务的技术方案多关注于将各种成熟推荐算法综合利用的组合推荐方式,但如何根据复杂情况,向用户提供灵活、全面且高质量的推荐结果,一直是讨论热点问题。虽然已有一些组合推荐系统在元推荐模式方面进行了尝试性研究,但未能综合考虑用户兴趣模型的作用及在门户个性化实现中的应用特点。用户兴趣模型主要用于个性化服务应用中对用户兴趣的描述,也作为推荐服务的计算对象,前期在Web系统中研究较多,也包括综合Web的使用挖掘,目前门户平台中的用户兴趣模型创建方法较少有涉及。元推荐是指综合多种预测分析算法,进行更全面准确的推荐计算.目前已有的采用中央数据库存储所有推荐算法,为用户动态灵活选择进行推荐的方法中,其元推荐系统架构模式一般强调数据层集成各种推荐系统的异构性处理,即将分散独立的推荐系统整合在一起,相对都是不透明的,因此仍倾向于系统整合,未考虑推荐算法组合选择策略细节,不适用于易于部署、不受平台和资源牵制的轻量级通用需求.Secondly, in recent years, the technical solutions of personalized recommendation services have mostly focused on the combined recommendation method that comprehensively utilizes various mature recommendation algorithms. However, how to provide users with flexible, comprehensive and high-quality recommendation results according to complex situations has always been a topic of discussion. Hot Issues. Although some combined recommender systems have been tentatively researched on the meta-recommendation model, they have not considered the role of the user interest model and its application characteristics in the realization of portal personalization. The user interest model is mainly used to describe user interests in personalized service applications, and is also used as a calculation object for recommendation services. There are many studies in the Web system in the early stage, including comprehensive Web usage mining. The current user interest model in the portal platform Create methods are less involved. Meta-recommendation refers to the synthesis of various predictive analysis algorithms to perform more comprehensive and accurate recommendation calculations. Among the existing methods that use a central database to store all recommendation algorithms and provide users with dynamic and flexible choices for recommendations, the meta-recommendation system architecture model generally emphasizes The data layer integrates the heterogeneity processing of various recommendation systems, that is, the integration of scattered and independent recommendation systems, which is relatively opaque, so it still tends to system integration, does not consider the details of the recommendation algorithm combination selection strategy, and is not suitable for easy deployment , Lightweight general requirements that are not restricted by platforms and resources.
再次,为满足更多应用场景,重点不应仅仅在于如何提升推荐算法的性能或伸缩性,而是应该通过创新模式和途径辅助用户进行高效便利的门户个性化应用.例如,将推荐控制模式从传统的向用户推荐什么扩展为如何向用户及该用户的相似兴趣用户群推荐不重复的、有意义的内容,并能够生动、直观、快捷地展现出来.Again, in order to meet more application scenarios, the focus should not only be on how to improve the performance or scalability of the recommendation algorithm, but should assist users in efficient and convenient portal personalized applications through innovative models and approaches. For example, the recommendation control mode should be changed from The traditional what to recommend to the user is extended to how to recommend non-repetitive and meaningful content to the user and the user's similar interest user groups, and can be displayed vividly, intuitively and quickly.
综上所述,基于门户平台,将个性化兴趣挖掘和推荐服务相结合,向用户提供灵活、全面且高质量的推荐结果,成为亟待解决的问题。To sum up, based on the portal platform, combining personalized interest mining and recommendation services to provide users with flexible, comprehensive and high-quality recommendation results has become an urgent problem to be solved.
发明内容 Contents of the invention
有鉴于此,本发明一个目的在于提供一种采用元推荐引擎的门户个性化推荐服务系统,本发明的另一个目的在于提供一种采用元推荐引擎的门户个性化推荐服务方法,将个性化兴趣挖掘和推荐服务相结合,向用户提供灵活、全面且高质量的推荐结果.In view of this, an object of the present invention is to provide a portal personalized recommendation service system using a meta-recommendation engine. Another object of the present invention is to provide a portal personalized recommendation service method using a meta-recommendation engine. The mining and recommendation service are combined to provide users with flexible, comprehensive and high-quality recommendation results.
为了达到上述目的,本发明提供的采用元推荐引擎的门户个性化推荐服务系统包括:数据管理单元、数据存储单元、兴趣挖掘单元、兴趣模型构建单元训练分类单元、相似性计算单元、元推荐引擎和WWW资源索引存储单元In order to achieve the above object, the portal personalized recommendation service system using a meta-recommendation engine provided by the present invention includes: a data management unit, a data storage unit, an interest mining unit, an interest model construction unit, a training classification unit, a similarity calculation unit, and a meta-recommendation engine and WWW resource index storage unit
数据管理单元,用于辅助管理训练分类单元、或相似性计算单元与数据存储单元的数据通信和调用;The data management unit is used to assist in managing the data communication and calling of the training classification unit, or the similarity calculation unit and the data storage unit;
数据存储单元,用于存储门户用户和/或门户用户群的兴趣模型库,该兴趣模型库包括门户用户和/或门户用户群的兴趣度模型库和访问事务集,数据存储单元中进一步存储有推荐算法集;The data storage unit is used to store the interest model library of the portal user and/or the portal user group, and the interest model library includes the interest degree model library and the access transaction set of the portal user and/or the portal user group, and is further stored in the data storage unit. Recommended algorithm set;
兴趣挖掘单元,位于门户平台中,用于获取门户用户的个性化描述文件,隐式跟踪并捕获登录门户用户的兴趣内容和访问行为模式,并将获取到的信息提供给兴趣模型构建单元;The interest mining unit, located in the portal platform, is used to obtain personalized description files of portal users, implicitly track and capture the interest content and access behavior patterns of logged-in portal users, and provide the obtained information to the interest model construction unit;
兴趣模型构建单元,用于对获取的兴趣数据进行规范化处理,根据处理后的信息构建门户用户的兴趣模型,并将构建的门户用户兴趣模型提供给训练分类单元和相似性计算单元;An interest model construction unit, configured to standardize the acquired interest data, construct a portal user interest model according to the processed information, and provide the constructed portal user interest model to the training classification unit and the similarity calculation unit;
训练分类单元,用于通过数据管理单元调用数据存储单元中存储的兴趣模型,将来自兴趣模型构建单元的兴趣模型与来自数据存储单元的兴趣模型进行近邻聚类的反馈学习,然后将反馈学习结果通过数据管理单元更新数据存储单元中存储的门户用户兴趣模型并提供给相似性计算单元;The training classification unit is used to call the interest model stored in the data storage unit through the data management unit, and perform the feedback learning of the nearest neighbor clustering on the interest model from the interest model construction unit and the interest model from the data storage unit, and then feed back the learning result Update the portal user interest model stored in the data storage unit through the data management unit and provide it to the similarity calculation unit;
相似性计算单元,用于通过数据管理单元调用数据存储单元中存储的兴趣模型,根据来自兴趣模型构建单元的兴趣模型、来自训练分类单元的反馈学习更新结果及其他来自数据存储单元的兴趣模型进行相似性计算,然后将相似性计算结果提供给元推荐引擎;The similarity calculation unit is used to call the interest model stored in the data storage unit through the data management unit, and perform the calculation according to the interest model from the interest model construction unit, the feedback learning update result from the training classification unit, and other interest models from the data storage unit. Similarity calculation, and then provide the similarity calculation result to the meta recommendation engine;
元推荐引擎,用于通过数据管理单元调用数据存储单元中存储的兴趣模型,根据来自数据存储单元的兴趣模型和来自相似性计算单元的相似性计算结果,确定推荐控制策略及推荐算法的选择和组合,然后根据来自相似性计算单元的相似性计算结果进行预测过滤分析,并根据预测分析结果和推荐控制策略及推荐算法,执行计算确定推荐结果,根据确定的推荐结果调用万维网WWW资源索引存储单元中存储的WWW资源索引,将WWW资源封装为含Web页面内容的门户组件,并推送给门户用户;The meta-recommendation engine is used to call the interest model stored in the data storage unit through the data management unit, and determine the selection and selection of the recommendation control strategy and the recommendation algorithm according to the interest model from the data storage unit and the similarity calculation result from the similarity calculation unit. Combining, and then performing predictive filtering analysis according to the similarity calculation results from the similarity calculation unit, and performing calculations to determine the recommended results according to the predicted analysis results, recommended control strategies and recommendation algorithms, and calling the World Wide Web WWW resource index storage unit according to the determined recommended results The WWW resource index stored in the WWW resource is packaged as a portlet containing Web page content, and pushed to the portal user;
WWW资源索引存储单元,用于存储WWW资源索引。The WWW resource index storage unit is used for storing the WWW resource index.
所述元推荐引擎包括:推荐选择器、预测分析单元和推荐资源展现单元,The meta-recommendation engine includes: a recommendation selector, a predictive analysis unit and a recommended resource presentation unit,
推荐选择器,用于通过数据管理单元调用数据存储单元中存储的兴趣模型,根据来自数据存储单元的兴趣模型和来自相似性计算单元的相似性计算结果,确定推荐控制策略及推荐算法的选择和组合,然后提供给预测分析单元,并向预测分析单元提供来自相似性计算单元的相似性计算结果;The recommendation selector is used to call the interest model stored in the data storage unit through the data management unit, and determine the selection and selection of the recommended control strategy and the recommendation algorithm according to the interest model from the data storage unit and the similarity calculation result from the similarity calculation unit. Combining, and then providing to the predictive analysis unit, and providing the similarity calculation result from the similarity calculation unit to the predictive analysis unit;
预测分析单元,用于根据来自相似性计算单元的相似性计算结果进行预测过滤分析,并根据预测分析结果和来自推荐选择器的推荐控制策略及推荐算法,执行计算确定推荐结果,确定的推荐结果通过调用WWW资源索引存储单元中存储的WWW资源索引提供给推荐资源展现单元;The predictive analysis unit is used to perform predictive filtering analysis according to the similarity calculation results from the similarity calculation unit, and perform calculations to determine the recommended results according to the predictive analysis results and the recommended control strategy and recommendation algorithm from the recommended selector, and the determined recommended results Provide the recommended resource presentation unit by calling the WWW resource index stored in the WWW resource index storage unit;
推荐资源展现单元,用于将来自预测分析单元的WWW资源封装为含Web页面内容的门户组件,并推送给门户用户.The recommended resource presentation unit is used to package the WWW resources from the predictive analysis unit into portlets containing web page content and push them to portal users.
所述推荐资源展现单元,包括:门户组件Portlet配置管理单元、Portlet会话管理单元、请求命令分析单元、Web页面获取单元、响应标记处理单元和WSRP接口封装单元,The recommended resource presentation unit includes: a Portlet configuration management unit, a Portlet session management unit, a request command analysis unit, a Web page acquisition unit, a response tag processing unit and a WSRP interface encapsulation unit,
Portlet配置管理单元,用于维护当前环球网Web应用封装为符合远程门户组件Web服务Portlet的封装机制WA2WP提供的所有Portlet的元数据;The portlet configuration management unit is used to maintain the metadata of all portlets provided by the encapsulation mechanism WA2WP of the current World Wide Web web application to conform to the encapsulation mechanism of the remote portlet component Web service Portlet;
Portlet会话管理单元,用于实现对会话对象的整个生命周期进行管理;Portlet session management unit, used to manage the entire life cycle of session objects;
请求命令分析单元,用于接收推荐结果所包含的资源链接的封装展现请求以及访问资源用户请求,分析请求参数和会话数据确定所要访问的目标资源,定位目标统一资源定位符URL,获取和准备访问目标资源所需的请求参数和会话数据;The request command analysis unit is used to receive the encapsulation display request of the resource link contained in the recommendation result and the user request for accessing the resource, analyze the request parameters and session data to determine the target resource to be accessed, locate the target URL, obtain and prepare for access Request parameters and session data required by the target resource;
Web页面获取单元,用于根据来自请求命令分析单元的目标URL、请求参数和会话数据,访问Web应用,获得返回的页面标记内容及Cookie数据,并提供给响应标记处理单元;The web page acquisition unit is used to access the web application according to the target URL, request parameters and session data from the request command analysis unit, obtain the returned page mark content and cookie data, and provide it to the response mark processing unit;
响应标记处理单元,用于对Web页面获取单元返回的超文本标记信息进行封装前的预处理,得到Web资源页面片断,然后提供给WSRP接口封装单元;The response tag processing unit is used to preprocess the hypertext tag information returned by the Web page acquisition unit before encapsulation, obtain the Web resource page fragment, and then provide it to the WSRP interface encapsulation unit;
WSRP接口封装单元,用于将Web资源页面片断封装为门户组件显示在门户个性化桌面上。The WSRP interface encapsulation unit is used for encapsulating web resource page fragments as portlets and displaying them on the portal personalized desktop.
训练分类单元进一步用于:对已建立兴趣模型的用户或用户群标识进行存储,如果没有存储用户或用户群标识,则通过数据管理单元将训练分类后的兴趣模型提供给数据存储单元进行存储.The training and classification unit is further used to: store the user or user group ID for which the interest model has been established, and if no user or user group ID is stored, provide the trained and classified interest model to the data storage unit for storage through the data management unit.
实现门户个性化推荐服务的系统进一步包括隐私保护单元;所述兴趣挖掘单元用于将获取到的信息提供给隐私保护单元;所述隐私保护单元用于对来自兴趣挖掘单元的信息嵌入安全标记,以进行私有化过滤保护,然后提供给兴趣模型构建单元。The system for realizing portal personalized recommendation service further includes a privacy protection unit; the interest mining unit is used to provide the obtained information to the privacy protection unit; the privacy protection unit is used to embed a security mark in the information from the interest mining unit, For privatization filtering protection, and then provided to the interest model building unit.
本发明提供的采用元推荐引擎的门户个性化推荐服务方法包括:The portal personalized recommendation service method using the meta-recommendation engine provided by the present invention includes:
A、对门户用户的兴趣进行挖掘,获取门户用户的个性化描述文件,隐式跟踪并捕获登录门户用户的兴趣内容和访问行为模式;A. Mining the interests of portal users, obtaining personalized description files of portal users, implicitly tracking and capturing the interests and access behavior patterns of logged-in portal users;
B、进行规范化处理,抽取与门户用户兴趣相关的信息,并判断是否创建新的门户用户的兴趣模型,如果是,则创建新的门户用户兴趣模型,否则,对已有门户用户兴趣模型进行更新;B. Perform standardized processing, extract information related to portal user interests, and determine whether to create a new portal user interest model, if so, create a new portal user interest model, otherwise, update the existing portal user interest model ;
C、将构建的门户用户兴趣模型与存储的门户用户兴趣模型进行训练分类;C. Training and classifying the constructed portal user interest model and the stored portal user interest model;
D、根据构建的门户用户兴趣模型、存储的门户用户兴趣模型以及反馈学习结果,进行相似性计算;D. Carry out similarity calculation according to the constructed portal user interest model, the stored portal user interest model and the feedback learning results;
E、根据存储的兴趣模型和相似性计算结果,确定推荐控制策略及推荐算法的选择和组合,根据相似性计算结果进行预测过滤分析,然后根据预测分析结果和确定的推荐控制策略及推荐算法,执行计算确定推荐结果,并根据确定的推荐结果调用存储的WWW资源索引;E. According to the stored interest model and similarity calculation results, determine the selection and combination of recommended control strategies and recommendation algorithms, perform predictive filtering analysis according to the similarity calculation results, and then according to the predicted analysis results and the determined recommended control strategies and recommendation algorithms, Executing calculations to determine the recommended results, and calling the stored WWW resource index according to the determined recommended results;
F、将调用的WWW资源索引封装为含Web页面内容的门户组件,并推送给门户用户。F. Encapsulate the invoked WWW resource index into a portlet containing web page content, and push it to the portal user.
所述步骤A与步骤B之间,进一步包括:对获取到的信息嵌入安全标记。Between step A and step B, it further includes: embedding a security mark into the acquired information.
所述步骤C为:根据构建的门户用户兴趣模型进行特征训练,提取兴趣内容、行为特征初步划分兴趣模型的类别以及兴趣资源内容的类别,并不断对门户用户兴趣模型进行更新.The step C is: perform feature training according to the constructed portal user interest model, extract interest content and behavior characteristics to preliminarily divide the category of the interest model and the category of interest resource content, and continuously update the portal user interest model.
所述步骤D为:在已有分类的基础上进行用户兴趣模型间的相似匹配和比较,产生目标门户用户的近邻集.The step D is: on the basis of the existing classification, similar matching and comparison between user interest models are performed to generate a neighbor set of target portal users.
步骤E中所述预测过滤分析,为:在选定目标门户用户近邻集的基础之上,对该目标门户用户未浏览或未知兴趣的资源进行预测.The predictive filtering analysis described in step E is: based on the selected target portal user's neighbor set, predict the resources that the target portal user has not browsed or has unknown interests.
本发明中,提出了门户用户兴趣模型的构建,包括初始创建门户用户兴趣模型和后续对门户用户兴趣模型的更新;提出采用元推荐引擎的独立于门户平台的个性化推荐服务体系架构,元推荐引擎能够分析用户及用户群的关联及个性化兴趣变化,将信息资源和推荐算法统一组织并合理选择控制,优化推送产生更全面多样的个性化推荐结果;在资源展现方面,实现门户个性化推荐服务的系统能够将预测推荐的多种Web资源内容对象封装为门户组件,向门户用户进行生动直观的个性化显示,提供一种更高层的个性化控制。综合利用门户平台已有的个性化资源和技术手段,提供独立灵活的服务中间件或服务代理,以完成个性化推荐服务.In the present invention, the construction of the portal user interest model is proposed, including the initial creation of the portal user interest model and the subsequent update of the portal user interest model; a personalized recommendation service architecture independent of the portal platform using a meta-recommendation engine, meta-recommendation The engine can analyze the relationship between users and user groups and changes in personalized interests, organize information resources and recommendation algorithms in a unified manner and rationally select and control them, and optimize pushes to generate more comprehensive and diverse personalized recommendation results; in terms of resource display, realize portal personalized recommendations The service system can encapsulate various predicted and recommended Web resource content objects into portlets, which can be vividly and intuitively displayed to portal users and provide a higher level of personalized control. Comprehensively utilize the existing personalized resources and technical means of the portal platform to provide independent and flexible service middleware or service agents to complete personalized recommendation services.
附图说明 Description of drawings
图1示出了本发明中实现门户个性化推荐服务的系统结构示意图;Fig. 1 shows a schematic structural diagram of a system realizing portal personalized recommendation service in the present invention;
图2示出了本发明中实现门户个性化推荐服务的流程图;Fig. 2 shows the flow chart of realizing portal personalized recommendation service among the present invention;
图3示出了本发明中门户用户兴趣模型构建过程示意图;Fig. 3 shows a schematic diagram of the construction process of the portal user interest model in the present invention;
图4示出了本发明中数据集的数据结构示意图;Fig. 4 shows the data structure diagram of data set among the present invention;
图5示出了本发明中元推荐控制策略示意图;Fig. 5 shows a schematic diagram of the meta-recommendation control strategy in the present invention;
图6示出了本发明中推荐资源展现机制示意图;Fig. 6 shows a schematic diagram of the presentation mechanism of recommended resources in the present invention;
图7示出了本发明中推荐资源展现实现流程图。Fig. 7 shows a flow chart of implementing recommended resource presentation in the present invention.
具体实施方式 Detailed ways
本发明中,提出了门户用户兴趣模型的构建,包括初始创建门户用户兴趣模型和后续对门户用户兴趣模型的更新;提出采用元推荐引擎的独立于门户平台的个性化推荐服务体系架构,元推荐引擎能够分析用户及用户群的关联及个性化兴趣变化,将信息资源和推荐算法统一组织并合理选择控制,优化推送产生更全面多样的个性化推荐结果;在资源展现方面,实现门户个性化推荐服务的系统能够将预测推荐的多种Web资源内容对象封装为门户组件,向门户用户进行生动直观的个性化显示,提供一种更高层的个性化控制。In the present invention, the construction of the portal user interest model is proposed, including the initial creation of the portal user interest model and the subsequent update of the portal user interest model; a personalized recommendation service architecture independent of the portal platform using a meta-recommendation engine, meta-recommendation The engine can analyze the relationship between users and user groups and changes in personalized interests, organize information resources and recommendation algorithms in a unified manner and rationally select and control them, and optimize pushes to generate more comprehensive and diverse personalized recommendation results; in terms of resource display, realize portal personalized recommendations The service system can encapsulate various predicted and recommended Web resource content objects into portlets, which can be vividly and intuitively displayed to portal users and provide a higher level of personalized control.
通过离线处理过程为在线处理过程提供前期数据维护保障,降低在线计算的复杂度,可由训练分类单元、数据管理单元和数据存储单元三部分构成。基于门户用户兴趣内容模型和历史访问事务的信息进行近邻聚类和训练学习,将数据按照与各种兴趣相关的信息进行分类,存储于数据集的兴趣度模型库和访问事务集中,在进行训练分类和相似性计算时,对这些数据进行调用。数据集选用轻量级数据组织方式,复杂的非结构化数据可采用配置连接方式进行数据通信,便于服务的灵活部署和应用.此外,门户个性化推荐服务所需的推荐算法集也集中存放于数据集中.轻量级数据组织方式是指仅保留存储读取功能的小型数据库,尽量不采用资源占用率较大的专门大型数据库。Through the offline processing process, it provides early data maintenance guarantee for the online processing process and reduces the complexity of online calculation. It can be composed of three parts: training classification unit, data management unit and data storage unit. Based on the portal user interest content model and historical access transaction information, perform neighbor clustering and training learning, classify the data according to information related to various interests, store them in the interest degree model library of the data set and access transaction collection, and perform training These data are used for classification and similarity calculation. The data set adopts a lightweight data organization method, and complex unstructured data can be used for data communication through configuration connections, which is convenient for the flexible deployment and application of services. In addition, the recommendation algorithm set required for the portal personalized recommendation service is also centrally stored in Data centralization. Lightweight data organization refers to small databases that only retain storage and reading functions, and try not to use specialized large databases with large resource usage.
在线处理过程包括对门户用户的兴趣挖掘、兴趣构型的创建及更新、以及元推荐引擎推送推荐内容的三个步骤。The online processing process includes three steps: mining interest of portal users, creating and updating interest configuration, and pushing recommended content by meta-recommendation engine.
首先,对门户用户的兴趣进行挖掘,获取门户用户的个性化描述文件,隐式跟踪并捕获登录门户用户的兴趣内容和访问行为模式。由于是隐式获取门户用户的兴趣信息,应该在获取后到规范化处理的过程中,保证用户隐私的安全性,可通过对获取到的信息嵌入安全标记来进行私有化过滤保护。First, mine the interests of portal users, obtain personalized description files of portal users, implicitly track and capture the content of interest and access behavior patterns of portal users. Since the interest information of portal users is acquired implicitly, the security of user privacy should be guaranteed during the process from acquisition to normalization, and privatization and filtering protection can be carried out by embedding security tags into the acquired information.
其次,对门户用户的个性化描述文件和访问事务集进行规范化处理,构建门户用户及其所属用户群的兴趣模型,对门户用户每次的兴趣衰减变化进行动态调整更新,并不断用于进行训练分类的反馈学习,并且基于数据集中的兴趣模型库进行更精确的用户或用户群的聚类以及兴趣的相似性计算。Secondly, standardize the personalized description files and access transaction sets of portal users, construct the interest model of portal users and their user groups, dynamically adjust and update each portal user's interest decay, and continuously use it for training Classified feedback learning, and based on the interest model library in the data set, perform more accurate clustering of users or user groups and calculation of interest similarity.
继而,获取门户用户的兴趣模型和相似性分类后,通过门户用户及门户用户群的推荐控制策略动态进行推荐算法的选择和组合,然后进行相应的预测过滤计算,推荐结果的具体内容来源于通过万维网(World Wide Web,WWW)资源检索得到的分类索引库,并最终转化封装为含Web页面内容的门户组件推送给门户用户.Then, after obtaining the interest model and similarity classification of portal users, the selection and combination of recommendation algorithms are dynamically performed through the recommendation control strategy of portal users and portal user groups, and then corresponding prediction and filtering calculations are performed. The specific content of the recommendation results comes from the The classified index library retrieved from World Wide Web (WWW) resources is finally transformed and packaged into a portlet containing Web page content and pushed to portal users.
图1示出了本发明中实现门户个性化推荐服务的系统结构示意图,如图:所示,实现门户个性化推荐服务的系统包括兴趣挖掘单元101、兴趣模型构建单元103、训练分类单元104、数据管理单元105、相似性计算单元106、推荐选择器107、数据存储单元108、预测分析单元109、WWW资源索引存储单元110和推荐资源展现单元111.Fig. 1 has shown the system structural diagram that realizes portal personalized recommendation service in the present invention, as shown in the figure: as shown, the system that realizes portal personalized recommendation service includes interest mining unit 101, interest model construction unit 103, training classification unit 104, Data management unit 105, similarity calculation unit 106, recommendation selector 107, data storage unit 108, predictive analysis unit 109, WWW resource index storage unit 110 and recommended resource presentation unit 111.
数据管理单元105用于辅助管理训练分类单元104、或相似性计算单元106与数据存储单元108的数据通信和调用。The data management unit 105 is used to assist in the management of data communication and calls between the training classification unit 104 , or the similarity calculation unit 106 and the data storage unit 108 .
数据存储单元108用于存储门户用户和/或门户用户群的兴趣模型库,该兴趣模型库包括门户用户和/或门户用户群的兴趣度模型库和访问事务集,数据存储单元108中进一步存储有推荐算法集。Data storage unit 108 is used for storing the interest model storehouse of portal user and/or portal user group, and this interest model storehouse comprises portal user and/or portal user group's degree of interest model storehouse and access transaction set, further stores in data storage unit 108 There are sets of recommended algorithms.
兴趣挖掘单元101位于门户平台中,用于获取门户用户的个性化描述文件,隐式跟踪并捕获登录门户用户的兴趣内容和访问行为模式,并将获取到的信息提供给兴趣模型构建单元103.The interest mining unit 101 is located in the portal platform, and is used to obtain the personalized description files of portal users, implicitly track and capture the interest content and access behavior patterns of logged-in portal users, and provide the obtained information to the interest model construction unit 103.
兴趣模型构建单元103用于对获取的兴趣数据进行规范化处理,根据处理后的信息构建门户用户的兴趣模型,并将构建的门户用户兴趣模型提供给训练分类单元104和相似性计算单元106.The interest model construction unit 103 is used to normalize the acquired interest data, construct the portal user interest model according to the processed information, and provide the constructed portal user interest model to the training classification unit 104 and the similarity calculation unit 106.
如果门户用户的兴趣模型还不存在,则训练分类单元104首先用于通过数据管理单元105将训练分类后的兴趣模型提供给数据存储单元108进行存储·无论门户用户的兴趣模型是否已经存在,训练分类单元104均用于通过数据管理单元105调用数据存储单元108中存储的兴趣模型,将来自兴趣模型构建单元103的兴趣模型与来自数据存储单元108的兴趣模型进行近邻聚类的反馈学习,然后将反馈学习结果通过数据管理单元105更新数据存储单元108中存储的门户用户兴趣模型并提供给相似性计算单元106.训练分类单元104可对已建立兴趣模型的用户或用户群标识进行存储,这样,训练分类单元104可通过存储的标识确定来自兴趣模型构建单元103的兴趣模型是否已经存在。If the interest model of the portal user does not exist yet, then the training classification unit 104 is first used to provide the interest model after the training classification to the data storage unit 108 for storage by the data management unit 105. No matter whether the interest model of the portal user already exists, the training The classification unit 104 is used to call the interest model stored in the data storage unit 108 through the data management unit 105, and the interest model from the interest model construction unit 103 and the interest model from the data storage unit 108 are used for feedback learning of neighbor clustering, and then The feedback learning result is updated by the data management unit 105 through the portal user interest model stored in the data storage unit 108 and provided to the similarity calculation unit 106. The training classification unit 104 can store the user or user group identification of the established interest model, like this , the training classification unit 104 can determine whether the interest model from the interest model construction unit 103 already exists through the stored identifier.
相似性计算单元106用于通过数据管理单元105调用数据存储单元108中存储的兴趣模型,根据来自兴趣模型构建单元103的兴趣模型、来自训练分类单元104的反馈学习更新结果及其他来自数据存储单元108的兴趣模型进行更精确的相似性计算,然后将相似性计算结果提供给推荐选择器107。The similarity calculation unit 106 is used to call the interest model stored in the data storage unit 108 through the data management unit 105, according to the interest model from the interest model construction unit 103, the feedback learning update result from the training classification unit 104 and other information from the data storage unit The interest model of 108 performs more accurate similarity calculation, and then provides the similarity calculation result to the recommendation selector 107.
推荐选择器107用于通过数据管理单元105调用数据存储单元108中存储的兴趣模型,根据来自数据存储单元108的兴趣模型和来自相似性计算单元106的相似性计算结果,确定推荐控制策略及推荐算法的选择和组合,然后提供给预测分析单元109,并向预测分析单元109提供来自相似性计算单元106的相似性计算结果。The recommendation selector 107 is used to call the interest model stored in the data storage unit 108 through the data management unit 105, and determine the recommended control strategy and recommendation according to the interest model from the data storage unit 108 and the similarity calculation result from the similarity calculation unit 106. The selection and combination of algorithms are then provided to the predictive analysis unit 109 , and the similarity calculation results from the similarity calculation unit 106 are provided to the predictive analysis unit 109 .
预测分析单元109用于根据来自相似性计算单元106的相似性计算结果进行预测过滤分析,并根据预测分析结果和来自推荐选择器107的推荐控制策略及推荐算法,执行计算确定推荐结果,确定的推荐结果通过调用WWW资源索引存储单元110中存储的WWW资源索引提供给推荐资源展现单元111。The predictive analysis unit 109 is used to perform predictive filtering analysis according to the similarity calculation results from the similarity calculation unit 106, and perform calculations to determine the recommended results according to the predictive analysis results and the recommended control strategy and recommendation algorithm from the recommended selector 107, and the determined The recommendation result is provided to the recommended resource presentation unit 111 by calling the WWW resource index stored in the WWW resource index storage unit 110 .
WWW资源索引存储单元110用于存储WWW资源索引。The WWW resource index storage unit 110 is used for storing the WWW resource index.
推荐资源展现单元111用于将来自预测分析单元109的WWW资源封装为含Web页面内容的门户组件,并推送给门户用户。The recommended resource presentation unit 111 is used to package the WWW resources from the predictive analysis unit 109 into portlets containing Web page content, and push them to portal users.
以上所述推荐选择器107、预测分析单元109和推荐资源展现单元111组成了元推荐引擎.The above-mentioned recommendation selector 107, predictive analysis unit 109 and recommended resource presentation unit 111 constitute a meta-recommendation engine.
兴趣挖掘单元101与兴趣模型构建单元103之间可进一步包括隐私保护单元102,兴趣挖掘单元101用于将获取到的信息提供给隐私保护单元102;隐私保护单元102用于对来自兴趣挖掘单元101的信息嵌入安全标记,以进行私有化过滤保护,然后提供给兴趣模型构建单元103.Between the interest mining unit 101 and the interest model construction unit 103, a privacy protection unit 102 can be further included, and the interest mining unit 101 is used to provide the obtained information to the privacy protection unit 102; The information of is embedded in the security mark for privatization filtering protection, and then provided to the interest model construction unit 103.
图2示出了本发明中实现门户个性化推荐服务的流程图,如图2所示,实现门户个性化推荐服务的具体过程包括以下步骤:Fig. 2 shows the flow chart of realizing portal personalized recommendation service among the present invention, as shown in Fig. 2, the concrete process of realizing portal personalized recommendation service comprises the following steps:
步骤201:对门户用户的兴趣进行挖掘,获取门户用户的个性化描述文件,隐式跟踪并捕获登录门户用户的兴趣内容和访问行为模式。Step 201: Mining the interests of portal users, obtaining personalized description files of portal users, implicitly tracking and capturing interest content and access behavior patterns of portal users.
步骤202:由于是隐式获取门户用户的兴趣信息,应该在获取后到规范化处理的过程中,保证用户隐私的安全性,可通过对获取到的信息嵌入安全标记来进行私有化过滤保护.Step 202: Since the portal user's interest information is acquired implicitly, the security of user privacy should be ensured during the process from acquisition to normalization processing, and privatization filtering protection can be performed by embedding security tags into the acquired information.
步骤203:对进行了私有化过滤保护的信息进行规范化处理,抽取与门户用户兴趣相关的信息.Step 203: Standardize the information protected by privatization filtering, and extract information related to portal user interests.
步骤204:判断是否创建新的门户用户的兴趣模型,如果是,则执行步骤205;否则,执行步骤206.可对已创建过兴趣模型的门户用户的标识进行存储.这样,如果已经存储有当前门户用户的标识,则表示已经针对相应门户用户创建过兴趣模型,不需要创建新的门户用户的兴趣模型;如果未存储当前门户用户的标识,则表示还未针对相应门户用户创建兴趣模型,需要创建新的门户用户的兴趣模型。Step 204: Determine whether to create a new portal user's interest model, if yes, then execute step 205; otherwise, execute step 206. The identifier of the portal user who has created an interest model can be stored. In this way, if the current portal user has been stored Portal user ID, it means that the interest model has been created for the corresponding portal user, and there is no need to create a new portal user’s interest model; if the current portal user’s ID is not stored, it means that the interest model has not been created for the corresponding portal user. Create new portal user interest models.
步骤205:创建新的门户用户兴趣模型,然后继续执行步骤207。Step 205: Create a new portal user interest model, and then proceed to step 207.
步骤206:对已有门户用户兴趣模型进行更新,然后继续执行步骤207。Step 206: Update the existing portal user interest model, and then proceed to step 207.
门户用户兴趣模型是关于门户用户兴趣偏好、使用行为模式的可计算描述,描述对象是指登录门户的具有个性化服务权限的各类用户、登录的已注册用户,结构上可考虑门户用户个体及门户用户群两种。本发明中所描述的门户用户群是一种区别于门户用户所属组织结构的、更灵活动态的虚拟概念,根据门户用户实际的兴趣相似度进行聚类.随着门户用户的兴趣衰减变化,其所属的门户用户群也会随之变化.相对地,门户用户群保持的兴趣比单一的门户用户更为稳定持久,因此也可作为元推荐引擎在预测计算时的参考依据。The portal user interest model is a computable description of the portal user's interest preferences and usage behavior patterns. The description objects refer to various users who log in to the portal with personalized service permissions and registered users who log in. In terms of structure, individual portal users and There are two types of portal user groups. The portal user group described in the present invention is a more flexible and dynamic virtual concept that is different from the organizational structure of portal users, and is clustered according to the actual interest similarity of portal users. As the interest decay of portal users changes, its The portal user group to which it belongs will also change accordingly. Relatively, the interest maintained by the portal user group is more stable and durable than that of a single portal user, so it can also be used as a reference for the meta-recommendation engine in predicting calculations.
针对于步骤201~步骤206,创建和更新门户用户兴趣模型的过程即是隐式实现将门户用户感兴趣内容和访问行为相结合的动态兴趣挖掘过程,包括如图3所示的以下几个环节,首先,获取门户用户的门户平台兴趣描述文件(UserProfile,UP),然后对UP进行隐私保护,进行私有化过滤保护,将安全标记嵌入UP;其次,对UP进行数据预处理,进行特征扩充、挖掘兴趣类、规范化访问事务集;再次,构建门户用户兴趣模型,将UP扩展为UP′,建立多元组<U,I(A+C),G>;最后,进行降维的规范化处理,降低计算复杂度,生成门户用户兴趣模型.For steps 201 to 206, the process of creating and updating the portal user interest model is to implicitly realize the dynamic interest mining process that combines the portal user's interested content and access behavior, including the following steps as shown in Figure 3 , firstly, obtain the portal platform interest description file (UserProfile, UP) of the portal user, then perform privacy protection on UP, perform privatization filtering protection, and embed security tags into UP; secondly, perform data preprocessing on UP, perform feature expansion, Mining interest categories and standardizing access transaction sets; thirdly, building a portal user interest model, extending UP to UP′, and establishing a multigroup <U, I(A+C), G>; finally, performing normalization processing for dimensionality reduction, reducing Computational complexity to generate a portal user interest model.
下面对图3所述的具体操作进行更为详细的描述。The specific operation shown in FIG. 3 will be described in more detail below.
如果门户用户u在T时间段内对其个性化桌面依次进行了设置和访问操作,并浏览了M个各不相同页面的Tab集合{t1,t2…,tM}以及N个门户组件Portlet集合{p1,p2…,pN}.If the portal user u sets up and accesses his personalized desktop sequentially within T time period, and browses the Tab collection {t 1 , t 2 ..., t M } of M different pages and N portlet components Collection of Portlets {p 1 , p 2 ..., p N }.
一方面,广度优先提取相应的兴趣内容主题进行特征描述和扩充,设置InterestContent(p,t)用于描述门户用户兴趣内容的兴趣度函数,则InterestContent(p,t)可表示为On the one hand, breadth first extracts the corresponding interest content topics for feature description and expansion, and sets InterestContent(p, t) to describe the interest degree function of the portal user's interest content, then InterestContent(p, t) can be expressed as
InterestContent(p,t)=F((Feature(p,t),Weight(p,t)),FeatureExpand(p,t)) (1)InterestContent(p, t) = F((Feature(p, t), Weight(p, t)), FeatureExpand(p, t)) (1)
其中,Feature()和Weight()分别为提取特征函数和权重函数,提取特征是指提取内容的主题、关键词等;FeatureExpand()则用于扩充对相关主题特征的描述.加权过程是对提取的特征按照兴趣重要程度和关联度分别进行加权重的,通常可分等级表示.Among them, Feature() and Weight() are the extraction feature function and weight function respectively, and the extraction feature refers to the subject, keywords, etc. of the extracted content; FeatureExpand() is used to expand the description of related subject features. The weighting process is to extract The features are weighted according to the importance of interest and the degree of relevance, and can usually be expressed in grades.
另一方面,将门户用户的行为模式和访问过程进行规范化处理,可重点针对点击、布局、编辑和引用等几种行为操作进行动态跟踪和捕获,近似反映典型的门户用户兴趣行为.设置InterestAction(u,p,t)为描述门户用户行为的兴趣度函数,则InterestAction(u,p,t)可表示为On the other hand, by standardizing the behavior patterns and access process of portal users, we can focus on dynamic tracking and capture of several behavior operations such as click, layout, editing, and reference, which approximately reflect typical portal user interest behaviors. Setting InterestAction( u, p, t) is the interest degree function describing portal user behavior, then InterestAction(u, p, t) can be expressed as
InterestAction(u,p,t)=G(u,Click(p),Arrange(p),Edit(p),Quate(p),Freq(t),Duration(t)) (2)InterestAction(u, p, t) = G(u, Click(p), Arrange(p), Edit(p), Quate(p), Freq(t), Duration(t)) (2)
其中,Click(p)、Arrange(p)、Edit(p)和Quate(p)分别用于描述门户用户点击、布局、编辑和引用门户组件的行为,Freq()为返回访问的次数,Duration()为返回访问的驻留时间。Among them, Click(p), Arrange(p), Edit(p) and Quate(p) are respectively used to describe the behaviors of portal users clicking, layouting, editing and quoting portlets, Freq() is the number of return visits, and Duration( ) is the dwell time of the return visit.
考虑到门户用户行为与内容间兴趣改变的交互适应性,可利用图论定义生成访问事务序列,定义每个门户用户的访问事务是门户用户对门户的一条访问路径as={p,t,Feature(p,t),InterestAction(u,p,t)},门户用户访问事务集是每个门户用户在不同时间段里对门户的访问路径集AS={u,{as},T},进而综合比较门户用户间的兴趣内容、兴趣行为及访问事务的相似性,设定门户用户所属的门户用户群UserGroup类别.Considering the interactive adaptability between portal user behavior and content interest changes, the graph theory definition can be used to generate access transaction sequences, and the access transaction of each portal user is defined as an access path of portal users to the portal as={p,t,Feature (p, t), InterestAction(u, p, t)}, the portal user access transaction set is the access path set AS={u, {as}, T} of each portal user to the portal in different time periods, and then Comprehensively compare the similarity of the portal users' interest content, interest behavior and access transactions, and set the portal user group UserGroup category to which the portal users belong.
将获取到的UP进行私有化过滤保护和数据清洗预处理后,进行兴趣内容与行为相结合、稳定与突出兴趣相结合的兴趣扩展描述.基于语义结构建立较完备的适用于门户用户的兴趣描述文件UP′,UP或UP′多为基于可扩展标记语言(Extensible Markup Language,XML)的资源定义框架(Resource DefinitionFramework,RDF)文件,抽取特征多元组<User,<InterestContent,InterestAction>,UserGroup>构建门户用户兴趣的矢量模型。After the obtained UP is privatized, filtered, protected, and preprocessed by data cleaning, an extended description of interests that combines interest content and behavior, and stability and outstanding interests is carried out. Based on the semantic structure, a relatively complete interest description suitable for portal users is established. File UP', UP or UP' are mostly resource definition framework (Resource Definition Framework, RDF) files based on Extensible Markup Language (XML), and are constructed by extracting feature tuples <User, <InterestContent, InterestAction>, UserGroup> Vector mockup of portal user interests.
此外,引入菲波那契数列(The Fibonacci Numbers)描述函数Fibo(),采用将渐进遗忘和滑动窗口相结合的方式,解决因门户用户兴趣漂移的模型更新问题.限定用户兴趣类别的窗口数L,并且选定门户用户访问同一相关内容的时间间隔,如天数,动态将门户用户关注度最小的一个兴趣移出窗口,以保证门户用户兴趣模型及时有效的更新.定义针对某一路径的q=Interval(as,as′),并获取门户用户的访问时间间隔,权重更新关系可表示为In addition, the Fibonacci Numbers description function Fibo() is introduced, and the method of combining progressive forgetting and sliding windows is used to solve the problem of model update due to the drift of portal user interests. Limit the number of windows L of user interest categories , and select the time interval for portal users to visit the same related content, such as the number of days, and dynamically move the interest with the least attention of portal users out of the window to ensure timely and effective update of the portal user interest model. Define q=Interval for a certain path (as, as′), and obtain the access time interval of portal users, the weight update relationship can be expressed as
Weight′(p,t)=Weight(p,t)+Feedback(q)/Fibo(L) (3)Weight'(p,t)=Weight(p,t)+Feedback(q)/Fibo(L) (3)
其中,Feedback()为描述门户用户兴趣漂移的反馈函数,表示为Among them, Feedback() is the feedback function describing the interest drift of portal users, expressed as
所有兴趣度模型库和访问事务集都通过训练分类模块加载到数据集中进行集中维护,其中,描述门户用户兴趣内容的兴趣度函数InterestContent(p,t)和描述门户用户行为的兴趣度函数InterestAction(u,p,t)可存储于兴趣度模型库中,描述门户用户访问路径的函数as和描述门户用户访问路径集的函数AS可存储于访问事务集中.这种数据处理的粒度和方式,充分考虑了用户兴趣模型的完备性以及门户特点,因此易于扩展,既便于进行门户用户相似度比较计算,同时又有利于与门户整合的兼容和扩展.All interest degree model libraries and access transaction sets are loaded into the data set through the training classification module for centralized maintenance, among them, the interest degree function InterestContent(p, t) describing the portal user's interest content and the interest degree function InterestAction(p, t) describing the portal user behavior u, p, t) can be stored in the interest degree model library, the function as describing the access path of the portal user and the function AS describing the access path set of the portal user can be stored in the access transaction set. The granularity and method of this data processing are sufficient Considering the completeness of the user interest model and the characteristics of the portal, it is easy to expand, it is convenient for the comparison and calculation of portal user similarity, and it is also conducive to the compatibility and expansion of portal integration.
步骤207:将构建的门户用户兴趣模型与存储的门户用户兴趣模型进行训练分类.所述构建的门户用户兴趣模型包括初始创建的门户用户兴趣模型和经过更新的门户用户兴趣模型.训练分类是根据构建的门户用户兴趣模型进行特征训练,提取兴趣内容、行为特征等初步划分兴趣模型的类别以及兴趣资源内容的类别,并不断对门户用户兴趣模型进行更新.其中划分方法包括门户用户兴趣模型间、资源间的相似性比较.需要综合考虑门户用户兴趣模型在兴趣内容、行为以及初步用户群等方面的描述。Step 207: Train and classify the constructed portal user interest model and the stored portal user interest model. The constructed portal user interest model includes the initially created portal user interest model and the updated portal user interest model. The training classification is based on The constructed portal user interest model conducts feature training, extracts the content of interest, behavioral characteristics, etc. to initially classify the categories of interest models and the categories of interest resource content, and continuously updates the portal user interest model. The division methods include portal user interest models, Similarity comparison between resources. It is necessary to comprehensively consider the description of the portal user interest model in terms of interest content, behavior, and preliminary user groups.
步骤208:根据构建的门户用户兴趣模型、存储的门户用户兴趣模型以及反馈学习结果,进行更精确的相似性计算.进行步骤210中的预测过滤的近邻计算依据就是相似性计算算法,即在已有分类的基础上进行用户兴趣模型间的相似匹配和比较.相似性越高,产生近邻的概率就越大,因此是一个聚类过程。同时由于考虑了前端返回的门户用户兴趣模型漂移更新结果,因此本步骤的相似性计算过程更加精确和充分.最后产生目标门户用户的近邻集。Step 208: According to the constructed portal user interest model, the stored portal user interest model and the feedback learning results, perform more accurate similarity calculation. The basis for the neighbor calculation in step 210 is the similarity calculation algorithm. Similar matching and comparison between user interest models are carried out on the basis of classification. The higher the similarity, the greater the probability of generating close neighbors, so it is a clustering process. At the same time, since the drift update result of the portal user interest model returned by the front end is considered, the similarity calculation process in this step is more accurate and sufficient. Finally, a neighbor set of the target portal user is generated.
步骤209:根据存储的兴趣模型和相似性计算结果,确定推荐控制策略及推荐算法的选择和组合。Step 209: According to the stored interest model and similarity calculation results, determine the selection and combination of recommended control strategies and recommended algorithms.
步骤210:根据相似性计算结果进行预测过滤分析,然后根据预测分析结果和确定的推荐控制策略及推荐算法,执行计算确定推荐结果,并根据确定的推荐结果调用存储的WWW资源索引,具体是指预测过程是在选定目标门户用户u近邻集的基础之上,对该目标门户用户未浏览或未知兴趣的资源进行预测,通常是基于近邻的相关兴趣历史或相似兴趣内容规则,然后从预测的结果中选出系统认为目标门户用户会感兴趣的资源推荐给该目标门户用户。Step 210: Carry out predictive filtering analysis according to the similarity calculation results, and then perform calculations to determine the recommendation results according to the predictive analysis results and the determined recommendation control strategy and recommendation algorithm, and call the stored WWW resource index according to the determined recommendation results, specifically referring to The prediction process is to predict the resources that the target portal user has not browsed or unknown interest on the basis of the selected target portal user u’s neighbor set, usually based on the neighbor’s related interest history or similar interest content rules, and then from the predicted From the results, the resources that the system thinks the target portal user will be interested in are selected and recommended to the target portal user.
步骤211:将调用的WWW资源索引封装为含Web页面内容的门户组件,并推送给门户用户.Step 211: Encapsulate the invoked WWW resource index into a portlet containing web page content, and push it to the portal user.
本发明中,个性化推荐服务中的元推荐是指通过综合考虑门户用户个性化兴趣的各种需求,将信息资源和推荐算法统一组织控制并选择推送的过程,实现数据和计算的高度管理控制.不同的推荐算法模型可互为其它推荐模型的输入,不同于组合推荐中特征互为输入的概念,也就是说不再以每次的计算结果作为下一次的输入,而是直接将算法模型整体作为输入,最后综合考虑计算结果.In the present invention, meta-recommendation in the personalized recommendation service refers to the process of organizing and controlling information resources and recommendation algorithms in a unified manner and selecting and pushing information resources and recommendation algorithms by comprehensively considering various needs of portal users’ personalized interests, so as to realize high-level management and control of data and computing .Different recommendation algorithm models can be the input of other recommendation models, which is different from the concept of feature mutual input in combined recommendation, that is to say, instead of using each calculation result as the next input, the algorithm model is directly The whole is used as input, and finally the calculation results are considered comprehensively.
数据集统一存储和维护元推荐服务相关的属性集变量,并利用数据管理模块统一操作调用,基本数据结构的接口如图4所示.包括兴趣模型库、访问事务集、推荐算法集、推荐记录、推荐内容索引、用户索引和资源展现记录等,并引入上下文三元组<Content,User,TimeStamp>,以保证元推荐引擎的灵活选择。The data set uniformly stores and maintains the attribute set variables related to the meta-recommendation service, and uses the data management module to uniformly operate and call. The interface of the basic data structure is shown in Figure 4. It includes the interest model library, access transaction set, recommendation algorithm set, and recommendation records , recommended content index, user index, and resource display records, etc., and introduce the context triple <Content, User, TimeStamp> to ensure the flexible selection of the meta-recommendation engine.
表兴趣内容模型(InterestModel)和访问序列(AccessSquence)分别对应兴趣内容模型库和访问事务集.表用户(User)维护门户用户的基本信息,作为更新及相似计算的参考.表推荐记录(RecomRecord)用于记录每次推荐过程的算法选择和预测推送结果,其中,属性用户名(User)、推荐算法(RecomAlgorithem)、用户推荐内容(UserContent)和用户群推荐内容(UserGroupContent)都是辅助上下文的外键标识,即作为数据库的外键,时间戳(TimeStamp)记录推荐时间戳,是否推荐(IfPresented)标识是否将资源展现在门户上.表推荐内容(Content)是作为WWW资源索引库的同步映射,预测分析后提取资源链接等信息作为推荐资源展现模块的配置参数,并记录在表(推荐展示)Presentation中.Table InterestModel and AccessSequence correspond to Interest Model Library and Access Transaction Set respectively. Table User maintains the basic information of portal users as a reference for update and similar calculation. Table Recommendation Record (RecomRecord) It is used to record the algorithm selection and prediction push results of each recommendation process, among which, the attributes user name (User), recommendation algorithm (RecomAlgorithem), user recommendation content (UserContent) and user group recommendation content (UserGroupContent) are all external to the auxiliary context The key identifier is used as the foreign key of the database, the time stamp (TimeStamp) records the recommended time stamp, and whether it is recommended (IfPresented) indicates whether the resource is displayed on the portal. The table recommended content (Content) is a synchronous mapping of the WWW resource index library After predictive analysis, resource links and other information are extracted as configuration parameters of the recommended resource display module, and recorded in the table (recommended display) Presentation.
推荐算法是实现推荐服务功能的特定计算方法的逻辑结构,是推荐任务的核心.根据兴趣挖掘的输入,通过相应预测分析计算出推荐结果。本文的元推荐服务架构中并未限制推荐算法的类别和数目,每种算法的初始键值用于启动相关推荐算法,表RecomAlgorithem中最大键值(MaxKey)设定该初始键值的最大阈值,最大阈值用于区分各算法的级别。在原型中,通过综合考虑对门户用户/门户用户群兴趣内容和行为的特点分析,定义推荐算法如下几种.The recommendation algorithm is the logical structure of a specific calculation method that realizes the recommendation service function, and is the core of the recommendation task. According to the input of interest mining, the recommendation results are calculated through corresponding predictive analysis. The meta-recommendation service architecture in this article does not limit the category and number of recommendation algorithms. The initial key value of each algorithm is used to start the relevant recommendation algorithm. The maximum key value (MaxKey) in the table RecomAlgorithem sets the maximum threshold of the initial key value. The maximum threshold is used to distinguish the level of each algorithm. In the prototype, by comprehensively considering the analysis of the characteristics of the portal user/portal user group’s interest content and behavior, the recommendation algorithm is defined as follows.
基于内容的过滤:不直接对页面进行聚类,抽取门户组件内容特征进行聚类。其中内容特征权重一致化处理的计算方法如下:Content-based filtering: Do not directly cluster pages, but extract portlet content features for clustering. The calculation method of content feature weight uniform processing is as follows:
权重的设定方法、即初始键值根据WWW资源内容的索引间的相似性计算并获得,然后设定等级,便于数值的选定。The weight setting method, that is, the initial key value is calculated and obtained according to the similarity between indexes of WWW resource content, and then the level is set to facilitate the selection of the value.
基于访问事务模式匹配:通过访问事务的序列特征进行检索、匹配路径的过程,与基于规则的预测计算相类似。同一事务聚类内用户之间的访问模式相似,不同事务聚类中用户间的访问模式不同。其中访问事务序列特征权重表示访问力度,与相关序列特征有关,计算方法如下:Pattern matching based on access transactions: The process of searching and matching paths through the sequence characteristics of access transactions is similar to rule-based predictive calculations. The access patterns among users in the same transaction cluster are similar, and the access patterns among users in different transaction clusters are different. Among them, the access transaction sequence feature weight represents the access strength, which is related to the relevant sequence feature, and the calculation method is as follows:
基于项目的协同过滤:基于相似项目兴趣,构造k近邻集合{UserGroup}k.并根据k的互邻关系发现兴趣的自然聚类,依据最近邻居评分向目标门户用户产生参考推荐.定义Rate(u,p,t)=R(InterestAction(u,p,t)),通过隐式获取门户用户行为反馈映射表示评分,则门户用户u通过最近邻居集得到的对于内容的协同预测算法如下:Item-based collaborative filtering: Based on similar item interests, construct a set of k-nearest neighbors {UserGroup} k , and discover natural clusters of interest based on the k-neighborhood relationship, and generate reference recommendations to target portal users based on the nearest neighbor score. Define Rate(u , p, t) = R(InterestAction(u, p, t)), and obtain portal user behavior feedback mapping to express score implicitly, then the collaborative prediction algorithm for content obtained by portal user u through the nearest neighbor set is as follows:
其中,v是属于门户用户u的近邻集合,即门户用户u的相似用户;Sim()表示门户用户u与v之间的相似性,Rate()表示门户用户评分的平均值。可结合兴趣内容的联合出现频率,定义初始键值。Among them, v is the neighbor set belonging to portal user u, that is, users similar to portal user u; Sim() indicates the similarity between portal user u and v, and Rate() indicates the average score of portal users. The initial key value can be defined in combination with the joint frequency of occurrence of the content of interest.
综合过滤排序(Top-N):综合考虑门户用户及所属门户用户群的兴趣相互作用,按照全面优先化原则进行过滤筛选,并按Top-N方式分类排序。Comprehensive filtering and sorting (Top-N): comprehensively consider the interest interaction between portal users and their portal user groups, filter and screen according to the principle of comprehensive prioritization, and sort and sort according to the Top-N method.
元推荐控制策略是推荐选择器107的核心,通过策略配置建立门户用户兴趣模型与推荐算法的连接组合,包括门户用户/门户用户群推荐控制和推荐算法组合控制两方面的策略,通过如图5所示的并行组合调度方式提供灵活控制和全面新颖的资源预测,其中,①表示基于内容的过滤和/或基于访问事务模式的匹配,②表示基于团体的部分匹配,③表示基于项目的协同过滤,④表示综合过滤排序.本文原型采用的组合思路方式包括混合(mixed)、层叠(cascade)和特征扩充(feature augmentation).其中,混合是指同时采用多种技术给出多种推荐结果;层叠是指由一种推荐技术先产生粗糙算法,另一种推荐技术在此基础上进行进一步精确计算;特征扩充是指一种推荐技术获得结果附加上特征嵌入另一种推荐技术作为输入.The meta-recommendation control strategy is the core of the recommendation selector 107. The connection combination of portal user interest model and recommendation algorithm is established through policy configuration, including portal user/portal user group recommendation control and recommendation algorithm combination control. As shown in Figure 5 The parallel combined scheduling approach shown provides flexible control and comprehensive novel resource prediction, where ① denotes content-based filtering and/or matching based on access transaction patterns, ② denotes community-based partial matching, and ③ denotes item-based collaborative filtering , ④ means comprehensive filtering and sorting. The combination ideas adopted by the prototype in this paper include mixed, cascade and feature augmentation. Among them, mixing refers to using multiple technologies to give multiple recommendation results at the same time; cascading It means that a rough algorithm is first generated by one recommendation technology, and another recommendation technology performs further precise calculation on this basis; feature expansion refers to the addition of feature embedding to the results obtained by one recommendation technology and another recommendation technology as input.
门户用户/门户用户群推荐控制策略将门户用户兴趣模型先分解为作用于门户用户私有和门户用户群的两个子部分,进而分别提取门户用户突出的变化的个性化兴趣以及代表门户用户群的稳定的、持久的个性化兴趣,最后合并作用于预测分析的参考.对于门户用户兴趣模型的优化处理,可分步采用特征扩充和层叠方式进行,简化单值分解(Singular Value Decomposition,SVD),由粗糙到精确获取邻居集,降低计算复杂度,解决稀疏性和扩展性问题。The portal user/portal user group recommendation control strategy decomposes the portal user interest model into two sub-parts that act on the portal user's private and portal user groups, and then extracts the prominent and changing personalized interests of portal users and the stability of representative portal user groups. Finally, it is combined with the reference for predictive analysis. For the optimization of the portal user interest model, feature expansion and cascading methods can be adopted step by step, and Singular Value Decomposition (SVD) can be simplified. Get the neighbor set from rough to precise, reduce the computational complexity, and solve the problems of sparsity and scalability.
推荐算法组合控制策略用于在各环节自动选取适当的推荐算法进行预测分析,各自产生推荐结果作为下一步的输入,最终获得门户用户的突出兴趣预测结果和门户用户群的兴趣预测结果,再混合过滤不相关且无意义的推荐,可引入限定优先级的选择键值控制优先级,得到门户用户的个性化兴趣预测结果.其中,为扩展门户用户群的兴趣内容,可改进优化分类方式,采用基于团体的部分相似性匹配方法,增大项目选取的广度和未知内容的新意,解决奇异发现问题,以推荐更精确全面的邻居预测推荐集,推荐结果可用于其他相似用户群.The recommendation algorithm combination control strategy is used to automatically select the appropriate recommendation algorithm for prediction and analysis in each link, and each generates a recommendation result as the input of the next step, and finally obtains the prediction results of outstanding interest of portal users and the prediction results of interest of portal user groups, and then mixes them To filter irrelevant and meaningless recommendations, the selection key value with limited priority can be introduced to control the priority, and the personalized interest prediction results of portal users can be obtained. Among them, in order to expand the interest content of portal user groups, the classification method can be improved and optimized, using The group-based partial similarity matching method increases the breadth of item selection and the novelty of unknown content, solves the problem of singularity discovery, and recommends a more accurate and comprehensive neighbor prediction recommendation set. The recommendation results can be used for other similar user groups.
综合过滤排序选取预测结果的基本思想是:引入阈值Threshold作为保证推荐效率辅助门限,过滤时以用户类别、时间条件、是否展示等作为判定条件,滤除无意义或权重不在兴趣范围内的内容,并按照键值KeyValue进行Top-N方式的排序推选,成功推送后应将IfPresented标志位置为TURE。The basic idea of comprehensive filtering and sorting selection of prediction results is: introduce threshold Threshold as an auxiliary threshold to ensure recommendation efficiency, use user category, time condition, and whether to display, etc. And perform Top-N sorting and selection according to the key value KeyValue. After successful push, the IfPresented flag should be set to TRUE.
不同的元推荐控制策略采用不同的模型和推荐算法提供不同的推荐服务,并由元推荐引擎推动.为满足不同的推荐需求,元推荐引擎可同时启动多个元推荐控制策略,通过加载策略配置,启动不同的推荐过程.元推荐引擎的控制过程包括引擎的启动或停止、推荐算法的启动或停止。Different meta-recommendation control strategies use different models and recommendation algorithms to provide different recommendation services, and are promoted by the meta-recommendation engine. In order to meet different recommendation requirements, the meta-recommendation engine can start multiple meta-recommendation control strategies at the same time, by loading the policy configuration , to start different recommendation processes. The control process of the meta-recommendation engine includes the start or stop of the engine and the start or stop of the recommendation algorithm.
预测分析单元109作为推荐算法的执行体,遵循推荐控制器107的调用策略运行相关推荐算法.采用前面所述的优化改进策略解决稀疏性、可扩展性、冷开始以及奇异发现等热点问题.As the executor of the recommendation algorithm, the predictive analysis unit 109 runs the relevant recommendation algorithm according to the calling strategy of the recommendation controller 107. The optimization and improvement strategy mentioned above is used to solve hot issues such as sparsity, scalability, cold start and singularity discovery.
由于预测需要考虑结果的新颖程度和推荐时机,不可重复和影响其它推荐的呈现,因此,可引入基于更新的门户用户兴趣模型的学习反馈机制进行适当的动态调整.原则是内容和权重优于时间因素。Since the prediction needs to consider the novelty of the results and the timing of the recommendation, it cannot be repeated and affect the presentation of other recommendations. Therefore, a learning feedback mechanism based on the updated portal user interest model can be introduced to make appropriate dynamic adjustments. The principle is that content and weight are better than time factor.
由于推荐资源多为普通的Web应用,因此,面向门户的推荐资源转化表达是一个较为关键的问题.本发明的推荐资源展现单元111可采用一种将Web应用封装为符合远程门户组件Web服务(Web Services for Remote Portlets.WSRP)Portlet的封装机制(Web Application to WSRP Portlet,WA2WP),如图6所示。通过实现一个独立于门户平台的WSRP生产者代理服务,将推荐目标资源映射并封装为相应的Portlet,并以符合WSRP接口规范的方式发布,从而实现与Portal的无缝集成和直观展现。Since most of the recommended resources are common Web applications, the transformation and expression of portal-oriented recommended resources is a key issue. The recommended resource presentation unit 111 of the present invention can adopt a method of encapsulating a Web application into a web service ( The encapsulation mechanism of Web Services for Remote Portlets.WSRP) Portlet (Web Application to WSRP Portlet, WA2WP), as shown in Figure 6. By implementing a WSRP producer agent service independent of the portal platform, the recommended target resources are mapped and packaged into corresponding portlets, and released in a manner conforming to the WSRP interface specification, so as to achieve seamless integration and intuitive display with the Portal.
WA2WP由Portlet配置管理单元、Portlet会话管理单元、WSRP接口封装单元、请求命令分析单元、Web页面获取单元和响应标记处理单元。其中,Portlet配置管理单元用于维护当前WA2WP提供的所有Portlet的元数据,可从数据集表Presentation中提取相应资源参数,采用XML格式的文件进行动态配置,如图所示;Portlet会话管理单元用于实现对会话对象的整个生命周期进行管理;请求命令分析单元用于分析收到的、推荐结果所包含的资源链接的封装展现请求以及访问资源用户请求,定位目标Portlet,进而定位目标统一资源定位符(Uniform Resource Locator,URL),获取和准备访问目标资源所需的请求参数和会话数据;Web页面获取单元用于根据来自请求命令分析单元的目标URL请求参数和会话数据,访问Web应用,获得返回的页面标记内容及Cookie数据,并提供给响应标记处理单元;响应标记处理单元用于对获取的页面标记内容进行处理,使其成为符合WSRP规范的合法有效的Portlet标记片断;WSRP接口封装单元用于实现提供Portal或其他聚合程序访问的、符合WSRP规范的服务接口。WA2WP consists of Portlet configuration management unit, Portlet session management unit, WSRP interface encapsulation unit, request command analysis unit, Web page acquisition unit and response mark processing unit. Among them, the portlet configuration management unit is used to maintain the metadata of all portlets provided by the current WA2WP. It can extract the corresponding resource parameters from the data set table Presentation, and use XML format files for dynamic configuration, as shown in the figure; the portlet session management unit uses To realize the management of the entire life cycle of the session object; the request command analysis unit is used to analyze the encapsulation display request of the resource link contained in the recommendation result and the resource access user request received, locate the target Portlet, and then locate the target unified resource location character (Uniform Resource Locator, URL), to obtain and prepare the request parameters and session data required to access the target resource; the Web page acquisition unit is used to access the Web application according to the target URL request parameters and session data from the request command analysis unit, and obtain The returned page tag content and cookie data are provided to the response tag processing unit; the response tag processing unit is used to process the obtained page tag content to make it a legal and valid Portlet tag fragment that complies with the WSRP specification; the WSRP interface encapsulation unit It is used to implement a service interface that conforms to the WSRP specification and provides Portal or other aggregator access.
基本工作流程及数据交互过程如图7所示:请求命令分析单元接收推荐结果所包含的资源链接的封装展现请求以及访问资源用户请求,分析请求参数和会话数据确定所要访问的目标资源,通过Web页面获取单元访问并获得Web资源页面,可包括页面标记内容及Cookie数据,响应标记处理单元对Web页面获取单元返回的超文本标记信息进行封装前的预处理,得到Web资源页面片断,然后提供给WSRP接口封装单元,WSRP接口封装单元最后将处理结果即Web资源页面片断封装为门户组件显示在门户个性化桌面上,Web资源页面片断为符合WSRP规范的合法有效的Portlet标记片断。The basic workflow and data interaction process are shown in Figure 7: the request command analysis unit receives the encapsulation display request of the resource link contained in the recommendation result and the user request for accessing the resource, analyzes the request parameters and session data to determine the target resource to be accessed, and sends the request through the Web The page acquisition unit accesses and obtains the web resource page, which may include page tag content and cookie data, and the response tag processing unit preprocesses the hypertext tag information returned by the web page acquisition unit before encapsulation, obtains the web resource page fragment, and then provides it to The WSRP interface encapsulation unit, the WSRP interface encapsulation unit finally encapsulates the processing result, that is, the web resource page fragment into a portlet and displays it on the portal personalized desktop, and the web resource page fragment is a legal and effective Portlet markup fragment conforming to the WSRP specification.
在资源展现的更新方面,考虑用户的个性化兴趣差异和使用习惯,组织形式基本依据推送权重分布进行,推送权重可以依据时间重要性、新颖程度等进行加权得到,通过推荐栏目频道并标识更新时间信息的方式逐步推送。如果门户用户修改布局或删除项目,根据用户兴趣模型的更新反馈可以动态调整适应.In terms of resource display updates, considering the user's individual interest differences and usage habits, the organization form is basically based on the push weight distribution. The push weight can be weighted based on time importance, novelty, etc., by recommending column channels and identifying the update time Information is pushed step by step. If the portal user modifies the layout or deletes an item, it can be dynamically adjusted and adapted according to the updated feedback of the user interest model.
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围.这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。Obviously, those skilled in the art can carry out various modifications and variations to the present invention without departing from the spirit and scope of the present invention. Like this, if these modifications and variations of the present invention belong to the claims of the present invention and within the scope of equivalent technologies thereof, It is intended that the present invention also encompasses such changes and modifications.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100988670A CN100412870C (en) | 2006-07-17 | 2006-07-17 | Portal personalized recommendation service method and system using meta-recommendation engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100988670A CN100412870C (en) | 2006-07-17 | 2006-07-17 | Portal personalized recommendation service method and system using meta-recommendation engine |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1967533A CN1967533A (en) | 2007-05-23 |
CN100412870C true CN100412870C (en) | 2008-08-20 |
Family
ID=38076306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006100988670A Expired - Fee Related CN100412870C (en) | 2006-07-17 | 2006-07-17 | Portal personalized recommendation service method and system using meta-recommendation engine |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100412870C (en) |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101127743B (en) * | 2007-09-29 | 2010-06-09 | 中国电信股份有限公司 | Media push service method and system based on home gateway middleware |
CN101339563B (en) * | 2008-08-15 | 2010-06-02 | 北京航空航天大学 | An Interest Model Updating Method for Singular Discovery Recommendation |
CN101359995B (en) * | 2008-09-28 | 2011-05-04 | 腾讯科技(深圳)有限公司 | Method and apparatus providing on-line service |
CN101373486B (en) * | 2008-10-16 | 2010-06-02 | 北京航空航天大学 | A Personalized Summary System Based on User Interest Model |
CN101415010B (en) * | 2008-11-26 | 2012-07-04 | 涂彦晖 | WEB browsing apparatus and operation method |
CN102196366B (en) * | 2010-03-08 | 2015-04-22 | 中国移动通信集团公司 | Identification method and system of communication user group |
CN101976259A (en) * | 2010-11-03 | 2011-02-16 | 百度在线网络技术(北京)有限公司 | Method and device for recommending series documents |
CN102467542B (en) * | 2010-11-11 | 2016-06-15 | 腾讯科技(深圳)有限公司 | Obtain the method for user's similarity, device and user and recommend method, system |
CN102073720B (en) * | 2011-01-10 | 2014-01-22 | 北京航空航天大学 | FR method for optimizing personalized recommendation results |
CN102637178A (en) * | 2011-02-14 | 2012-08-15 | 北京瑞信在线系统技术有限公司 | Music recommending method, music recommending device and music recommending system |
CN102650997B (en) * | 2011-02-25 | 2015-07-15 | 腾讯科技(深圳)有限公司 | Element recommending method and device |
CN102129462B (en) * | 2011-03-11 | 2014-06-18 | 北京航空航天大学 | Method for optimizing collaborative filtering recommendation system by aggregation |
CN102890673A (en) * | 2011-07-18 | 2013-01-23 | 阿里巴巴集团控股有限公司 | Method and system for displaying website information |
CN104380285B (en) | 2012-03-09 | 2019-01-18 | 诺基亚技术有限公司 | Method and apparatus for performing incremental updates of recommendation models |
CN103324619B (en) * | 2012-03-20 | 2016-10-05 | 阿里巴巴集团控股有限公司 | A kind of recommendation method based on the Internet and commending system |
CN102737120B (en) * | 2012-06-01 | 2015-05-27 | 西安交通大学 | Personalized network learning resource recommendation method |
CN103823805B (en) * | 2012-11-16 | 2018-10-19 | 腾讯科技(深圳)有限公司 | Community-based correlation note commending system and recommendation method |
CN103020282A (en) * | 2012-12-28 | 2013-04-03 | 深圳市彩讯科技有限公司 | General mixed association recommendation development platform and association recommendation method |
CN104281622B (en) | 2013-07-11 | 2017-12-05 | 华为技术有限公司 | Information recommendation method and device in a kind of social media |
CN103544290A (en) * | 2013-10-29 | 2014-01-29 | 深圳市同洲电子股份有限公司 | Method and system for displaying individualized recommendation pages through fingerprint identification |
CN104090893B (en) * | 2013-12-13 | 2015-11-18 | 深圳市腾讯计算机系统有限公司 | Proposed algorithm optimization method, Apparatus and system |
CN103678652B (en) * | 2013-12-23 | 2017-02-01 | 山东大学 | Information individualized recommendation method based on Web log data |
CN104008428B (en) * | 2014-05-19 | 2017-07-11 | 上海交通大学 | Service of goods requirement forecasting and resource preferred disposition method |
CN104268760B (en) * | 2014-09-24 | 2017-06-13 | 同济大学 | A kind of user interest is obtained and transmission method and its system |
CN104331471A (en) * | 2014-11-03 | 2015-02-04 | 刘瑞 | Personalized information recommendation system |
CN105404666B (en) * | 2015-11-12 | 2018-11-02 | 华中师范大学 | A kind of learning process serializing recommendation method |
CN106936864A (en) * | 2015-12-29 | 2017-07-07 | 国网智能电网研究院 | A kind of privacy of user guard method and system |
CN107193831A (en) * | 2016-03-15 | 2017-09-22 | 阿里巴巴集团控股有限公司 | Information recommendation method and device |
CN107544981B (en) * | 2016-06-25 | 2021-06-01 | 华为技术有限公司 | Content recommendation method and device |
CN107635004B (en) * | 2017-09-26 | 2020-12-08 | 杭州控客信息技术有限公司 | Personalized service customization method in intelligent home system |
CN109992331A (en) * | 2017-12-28 | 2019-07-09 | 重庆南华中天信息技术有限公司 | The common function portal assembly dynamic adjusting method and system of Behavior-based control analysis |
CN109165351B (en) * | 2018-08-27 | 2021-11-26 | 成都信息工程大学 | Service component search recommendation method based on semantics |
CN109271303B (en) * | 2018-09-06 | 2021-11-02 | 上海华云互越数据技术有限公司 | Software configuration recommendation method |
CN109255081B (en) * | 2018-09-26 | 2022-02-01 | 郑州云海信息技术有限公司 | Portal service navigation method and system based on cloud platform |
CN111127053B (en) * | 2018-10-30 | 2023-06-30 | 阿里巴巴华南技术有限公司 | Page content recommendation method and device and electronic equipment |
US11669431B2 (en) * | 2019-01-11 | 2023-06-06 | Google Llc | Analytics personalization framework |
CN112765374A (en) * | 2020-07-27 | 2021-05-07 | 上海斐杰教育科技有限公司 | Education resource screening system and method for information push |
CN113779419B (en) * | 2021-11-15 | 2022-04-01 | 北京达佳互联信息技术有限公司 | Resource recommendation method and device, electronic equipment and storage medium |
CN116127203B (en) * | 2023-04-17 | 2023-07-25 | 杭州实在智能科技有限公司 | RPA service component recommendation method and system combining page information |
CN116738059A (en) * | 2023-06-30 | 2023-09-12 | 厦门她趣信息技术有限公司 | One-stop intelligent algorithm recommendation method, platform and storage medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1203399A (en) * | 1997-04-22 | 1998-12-30 | 三菱电机株式会社 | Media information recommending apparatus |
WO2000017792A1 (en) * | 1998-09-18 | 2000-03-30 | Amazon.Com, Inc. | Collaborative recommendations using item-to-item similarity mappings |
JP2002092024A (en) * | 2000-09-18 | 2002-03-29 | Sony Corp | Server and service providing method and program storage medium |
JP2005070864A (en) * | 2003-08-27 | 2005-03-17 | Dainippon Printing Co Ltd | Information recommendation device, information recommendation method, computer, and recording medium |
CN1629884A (en) * | 2003-12-15 | 2005-06-22 | 皇家飞利浦电子股份有限公司 | Information recommendation system and method |
-
2006
- 2006-07-17 CN CNB2006100988670A patent/CN100412870C/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1203399A (en) * | 1997-04-22 | 1998-12-30 | 三菱电机株式会社 | Media information recommending apparatus |
WO2000017792A1 (en) * | 1998-09-18 | 2000-03-30 | Amazon.Com, Inc. | Collaborative recommendations using item-to-item similarity mappings |
JP2002092024A (en) * | 2000-09-18 | 2002-03-29 | Sony Corp | Server and service providing method and program storage medium |
JP2005070864A (en) * | 2003-08-27 | 2005-03-17 | Dainippon Printing Co Ltd | Information recommendation device, information recommendation method, computer, and recording medium |
CN1629884A (en) * | 2003-12-15 | 2005-06-22 | 皇家飞利浦电子股份有限公司 | Information recommendation system and method |
Non-Patent Citations (4)
Title |
---|
基于Web使用挖掘的个性化推荐服务研究. 鲜学丰.河海大学硕士学位论文. 2006 * |
基于Web挖掘的个性化推荐服务研究. 丁一.华中科技大学硕士学位论文. 2004 * |
基于Web日志和缓存数据挖掘的个性化推荐系统. 王勋,凌云,费玉莲.情报学报,第24卷第3期. 2005 * |
基于数据挖掘的Web个性化信息推荐系统. 何波,王越.计算机工程与应用. 2006 * |
Also Published As
Publication number | Publication date |
---|---|
CN1967533A (en) | 2007-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100412870C (en) | Portal personalized recommendation service method and system using meta-recommendation engine | |
JP6016843B2 (en) | Method, system, and computer program for dynamic generation of user-driven semantic networks and media integration | |
CN103136337B (en) | For distributed knowledge data mining device and the method for digging of complex network | |
Lin et al. | A survey of fuzzy web mining | |
CN105653691B (en) | Management of information resources method and managing device | |
CN118210983A (en) | Intelligent adaptive retrieval enhancement system, method and storage medium | |
CN101894351A (en) | Tourism multimedia information personalized service system based on multi-intelligent Agent | |
US9123006B2 (en) | Techniques for parallel business intelligence evaluation and management | |
Wang et al. | A novel blockchain oracle implementation scheme based on application specific knowledge engines | |
CN105007314B (en) | Towards the big data processing system of magnanimity readers ' reading data | |
Gonçalves | Streams, structures, spaces, scenarios, and societies (5S): A formal digital library framework and its applications | |
Zhang | Application of data mining technology in digital library. | |
CN103412903B (en) | The Internet of Things real-time searching method and system predicted based on object of interest | |
CN117573880A (en) | A rolling process data element model and data space construction method and system | |
Jiang et al. | Research on BIM-based construction domain text information management | |
Raftopoulos et al. | Mining user queries with Markov chains: Application to online image retrieval | |
Amer-Yahia et al. | Building community-centric information exploration applications on social content sites | |
Shang et al. | Intelligent optimization method of resource recommendation service of mobile library based on digital twin technology | |
Li et al. | A study on the collaborative management method of product design cycle knowledge | |
Korger et al. | The SECCO ontology for the retrieval and generation of security concepts | |
Tagarelli | XML Data Mining: Models, Methods, and Applications: Models, Methods, and Applications | |
Zhang | [Retracted] Optimization of an Intelligent Music‐Playing System Based on Network Communication | |
Xinlin et al. | Precise Positioning and Personalized Recommendation Algorithm of Smart Library Based on User Portrait | |
Ling-ping et al. | Application of Three-dimensional Digital Model in Digital Archive Ubiquitous Intelligent Service | |
Kumar et al. | Web data mining using xML and agent framework |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080820 Termination date: 20110717 |