CN100391141C - An error-tolerant communication channel coding parameter blind identification method - Google Patents
An error-tolerant communication channel coding parameter blind identification method Download PDFInfo
- Publication number
- CN100391141C CN100391141C CNB2005100279701A CN200510027970A CN100391141C CN 100391141 C CN100391141 C CN 100391141C CN B2005100279701 A CNB2005100279701 A CN B2005100279701A CN 200510027970 A CN200510027970 A CN 200510027970A CN 100391141 C CN100391141 C CN 100391141C
- Authority
- CN
- China
- Prior art keywords
- sup
- sub
- communication
- tolerant
- blind identification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Error Detection And Correction (AREA)
Abstract
Description
技术领域 technical field
本发明属智能通信与信息安全技术领域,具体涉及一种容误码的通信信道编码参数盲识别方法。The invention belongs to the technical field of intelligent communication and information security, and in particular relates to an error-tolerant communication channel coding parameter blind identification method.
技术背景technical background
在未来的智能移动通信、多点广播通信和信息截获领域中,随着时间和环境的变化需要随时改变信道编码方式,以便获得最优的通信效率和服务质量。在这种通信环境中,一般无法通过协议实现多方通信者的同步联络,因此需要接收多方能够仅通过信号的内容实现信道编码参数的快速盲识别,达到智能通信的目的。In the fields of intelligent mobile communication, multipoint broadcast communication and information interception in the future, it is necessary to change the channel coding method at any time with the change of time and environment in order to obtain the optimal communication efficiency and service quality. In this kind of communication environment, it is generally impossible to realize the synchronous communication of multi-party communicators through the protocol. Therefore, it is necessary for the receiving parties to realize fast blind identification of channel coding parameters only through the content of the signal, so as to achieve the purpose of intelligent communication.
信号盲识别(Blind Identification)技术是当今通信研究的前沿领域.其目标是为了在没有训练序列(Training Sequence)均衡信道的前提下建立正常的通信.盲识别技术在通信,信息论,控制论和系统论等领域有广阔的应用前景.Signal blind identification (Blind Identification) technology is the frontier of today's communication research. Its goal is to establish normal communication without training sequence (Training Sequence) equalization channel. Blind identification technology is widely used in communication, information theory, cybernetics and system It has broad application prospects in other fields.
设F是一个域,设Z是一个整数环,N是一个正整数.所谓卷积码的盲识别问题具体描述如下:设已知卷积码码序列的一部分序列,用整数环Z上的多项式表示:Ci(D)=ci0+ci1D+ci2D2+…+ciNDN,i=1,2…k。要求出能够生成该码字序列的卷积码编码器的生成多项式gi(D)=gi,0+gi,1D+…+gi,tDt,i=1,2…k。为简便起见,设k=2。Let F be a field, let Z be an integer ring, and N be a positive integer. The so-called blind recognition problem of convolutional codes is specifically described as follows: Assuming a part of the known convolutional code sequence, use the polynomial on the integer ring Z It means: C i (D)=c i0 +c i1 D+c i2 D 2 +...+c iN D N , i=1, 2...k. The generator polynomial g i (D)=g i,0 +g i,1 D+...+g i,t D t , i=1,2...k of the convolutional code encoder capable of generating the codeword sequence is required. For simplicity, let k=2.
可以采用高斯消元法求解gi(D),但Gauss消元法是不容错的,即,要求解的方程组中的系数矩阵中的每个系数不能有错误。在常规的通信中,误码率在10-2到10-3之间是经常发生的。为了能够在有误码的情况下实现卷积码和其他信道编码参数的识别,通常要采用大量的数据采集试验计算,通过数百次甚至数万次数据采集和试验计算,使得能够碰运气获得一组无误码的数据,然后解出线性方程组的解。而且高斯消元法的计算复杂度是O(N3)。例如,对7/8的卷积码通常要估计t=60,因此,至少需要采集约N=8×9×61=4392个连续无差错的比特。这样,在误码率是prob(eij=1)=0.005的条件下,必须要进行8×109多次的数据截获,才能够达到95%以上的概率选取到4392个无差错的比特。为了使得Gauss消元法有唯一解,约需要4×1010多次数据抽样和方程计算。可见采集数据量是非常巨大的,而且计算复杂性在3.2×1021以上次运算。The Gaussian elimination method can be used to solve g i (D), but the Gaussian elimination method is error-tolerant, that is, each coefficient in the coefficient matrix in the equation system to be solved cannot have errors. In conventional communication, bit error rates between 10 -2 and 10 -3 often occur. In order to be able to realize the identification of convolutional codes and other channel coding parameters in the case of bit errors, it is usually necessary to use a large number of data collection experiments and calculations. Through hundreds or even tens of thousands of data collections and experimental calculations, it is possible to obtain A set of error-free data, and then solve the solution of the linear equation system. Moreover, the computational complexity of the Gaussian elimination method is O(N 3 ). For example, t=60 is usually estimated for 7/8 convolutional codes, therefore, at least about N=8×9×61=4392 consecutive error-free bits need to be collected. In this way, under the condition that the bit error rate is prob(e ij =1)=0.005, 8×10 9 times of data interception must be performed to select 4392 error-free bits with a probability of more than 95%. In order to make the Gauss elimination method have a unique solution, about 4×10 10 times of data sampling and equation calculation are needed. It can be seen that the amount of collected data is very huge, and the computational complexity is more than 3.2×10 21 per operation.
为了实现BCH码的快速译码,Berlekamp(1968)[Berl]提出了关键方程KE,并给出了计算复杂性是O(N2)的著名的KE求解算法.Massey(1969)[Mass]把线性递归序列(LRS)的综合问题归结到求解KE方程,并给出了叠代算法.上述算法现称为Berlekamp-Massey算法(简称为BM算法)。In order to realize the fast decoding of BCH codes, Berlekamp (1968) [Berl] proposed the key equation KE, and gave the famous KE solution algorithm whose computational complexity is O(N 2 ). Massey (1969) [Mass] put The synthesis problem of linear recursive sequence (LRS) comes down to solving the KE equation, and an iterative algorithm is given. The above algorithm is now called Berlekamp-Massey algorithm (abbreviated as BM algorithm).
所谓关键方程KE是要求解如下的元素对(f(x),L)∈F[x]×Z,满足:The so-called key equation KE is to solve the following element pair (f(x), L)∈F[x]×Z, satisfying:
f(x)C1(x)≡b(x)modxN+1,f(x)C 1 (x)≡b(x)modx N+1 ,
并使得0≤degb(x)<L,f(0)≠0,degf(x)≤L,且L达到最小.And make 0≤degb(x)<L, f(0)≠0, degf(x)≤L, and L reaches the minimum.
由于求解KE的重要性,探求新算法和揭示现有算法的各种内在的联系是信息论等领域中长盛不衰的研究课题[Chen],[Heyd],[Kail],[Kuij].对LRS综合的有关算法的效率参数是密码分析的重要评价标准之一.而BM算法也作为RS码的标准译码算法做成了专用芯片,被广泛地应用于各种通信和多媒体存储中,改善了每个人的生活质量.Due to the importance of solving KE, exploring new algorithms and revealing the various internal connections of existing algorithms is a long-standing research topic in the fields of information theory [Chen], [Heyd], [Kail], [Kuij]. Yes The efficiency parameters of the LRS-related algorithms are one of the important evaluation criteria for cryptanalysis. The BM algorithm is also used as a standard decoding algorithm for RS codes and made into a dedicated chip, which is widely used in various communications and multimedia storage. quality of life for everyone.
本发明将无协议联络的容错信道编码快速盲识别问题,归结为一个齐次关键模方程HKME,并用两个变元的多项式环F[x,y]的齐次理想刻画齐次关键模方程.In the present invention, the problem of rapid blind recognition of error-tolerant channel coding without protocol communication is reduced to a homogeneous key module equation HKME, and the homogeneous key module equation is described by the homogeneous ideal of the polynomial ring F[x, y] with two variables.
HKME推广了KE。但其推广方向与G.L.Feng[Feng]和S,Sakata[Saka]的推广方向都不同。本发明研究的新方向有令人振奋的前途。在智能通信、信息截获、和密码分析等领域有重要的应用。HKME promotes KE. But its promotion direction is different from that of G.L.Feng[Feng] and S, Sakata[Saka]. This new direction of research holds exciting promise. It has important applications in the fields of intelligent communication, information interception, and cryptanalysis.
参考文献references
[Adam]W.W.Adams and P.Loustaunau,An Introduction to Gr\″obner Bases,Amer.Math.Society,1994.[Adam] W.W.Adams and P.Loustaunau, An Introduction to Gr\″obner Bases, Amer.Math.Society, 1994.
[Berl]E.R.Berlekamp,Algebraic Coding Theory,McGrw-Hill,New York,1968.[Berl] E.R. Berlekamp, Algebraic Coding Theory, McGrw-Hill, New York, 1968.
[Chen]M.H.Cheng,Generalised Berlekamp-Massey Algorithm,IEE Proceedings Communications,Vol.149(4),207-210,August 2002.[Chen] M.H.Cheng, Generalized Berlekamp-Massey Algorithm, IEE Proceedings Communications, Vol.149(4), 207-210, August 2002.
[Feng]G.L.Feng,K.K.Tzeng,A New Procedure for Decoding Cyclic and BCH Codes up to Actual MinimunDistance,IEEE Trans.on Inform.Theory,vol.40,No.5,1994,pp1364-1374.[Feng] G.L.Feng, K.K.Tzeng, A New Procedure for Decoding Cyclic and BCH Codes up to Actual MinimunDistance, IEEE Trans.on Inform.Theory, vol.40, No.5, 1994, pp1364-1374.
[Heyd]A.E.Heydtmann and J.M.Jensen,ON the Equivalence of the Berlekamp-Massey and the EuclideanAlgorithms for Decoding,IEEE Trans.Inform.Theory,vol.46(7),2614-2624,2000.[Heyd] A.E.Heydtmann and J.M.Jensen, ON the Equivalence of the Berlekamp-Massey and the Euclidean Algorithms for Decoding, IEEE Trans.Inform.Theory, vol.46(7), 2614-2624, 2000.
[Kail]T.Kailath,Encounters with the Berlekamp-Massey Algorithm,in Communication and Cryptography,edited by R.E.Blahut,etl.Kluwer Academic Publisher,pp.209-220,1994.[Kail] T. Kailath, Encounters with the Berlekamp-Massey Algorithm, in Communication and Cryptography, edited by R.E. Blahut, etl. Kluwer Academic Publisher, pp.209-220, 1994.
[Kuij]]M.Kuijper and J.C.Willems,″On constructing a shortest linear recurrence relation,″IEEE Trans.Automat.Contr.vol.42,No.11,p1554-1558,1997.[Kuij]] M.Kuijper and J.C.Willems, "On constructing a shortest linear recurrence relation," IEEE Trans.Automat.Contr.vol.42, No.11, p1554-1558, 1997.
[Lu05]陆佩忠,沈利,邹艳,罗向阳,删除卷积码的盲识别,中国科学E辑,35(2),173-185,2005.[Lu05] Lu Peizhong, Shen Li, Zou Yan, Luo Xiangyang, Blind recognition of deleted convolutional codes, Chinese Science Series E, 35(2), 173-185, 2005.
[Mass]Massey,J L,Shift-Register Synthesis and BCH Decoding,IEEE Trans.Info.Theory,15(1):122-127,1969.[Mass] Massey, J L, Shift-Register Synthesis and BCH Decoding, IEEE Trans. Info. Theory, 15(1): 122-127, 1969.
[Saka]S.Sakata,Synthesis of Two-Dimensional Linear Feedback Shift-Registers and Groebner Basis,LectureNotes in Comput.Sci.356,Springer-Verlag,Berlin,1989.[Saka]S.Sakata, Synthesis of Two-Dimensional Linear Feedback Shift-Registers and Groebner Basis, LectureNotes in Comput.Sci.356, Springer-Verlag, Berlin, 1989.
发明内容 Contents of the invention
本发明的目的在于提出一种运算复杂度低、适用面广的无协议联络的容误码通信信道编码参数盲识别方法。The purpose of the present invention is to propose a method for blind identification of error-tolerant communication channel coding parameters with low computational complexity and wide applicability for non-protocol communication.
本发明提出的容误码的通信信道编码参数盲识别方法,包括设计一个无协议联络的容错信道编码盲识别的结构化模型,建立该结构化模型的齐次关键模方程HKME;并提出求解该齐次关键模方程HKME的SY2SY的双合算法,对这个模型进行快速求解,从而实现无协议联络的容错信道编码快速盲识别。The method for blind recognition of error-tolerant communication channel coding parameters proposed by the present invention includes designing a structured model for blind recognition of fault-tolerant channel coding without protocol connection, establishing the homogeneous key module equation HKME of the structured model; and proposing to solve the method The SY2SY double-combination algorithm of the homogeneous key model equation HKME can quickly solve this model, so as to realize the fast blind identification of error-tolerant channel coding without protocol communication.
1、模型1. Model
序列综合问题可以描述为:已知序列c=(c0,c1,…,cN),求能生成序列c的次数最小的特征多项式。传统的线性递归序列综合模型如图3表示。The problem of sequence synthesis can be described as: given the sequence c=(c 0 , c 1 ,...,c N ), find the characteristic polynomial with the smallest degree that can generate the sequence c. The traditional linear recursive sequence synthesis model is shown in Figure 3.
由于在信息截获背景下所获取的原始信号必然有严重的误码。因此必须要寻找新的方法去求解信号参数盲识别的问题,迅速判别出信号数据格式,错乱形式,纠错编码方式和帧结构格式等。序列的容错综合分析是密码分析中的基本问题。Because the original signal obtained under the background of information interception must have serious bit errors. Therefore, it is necessary to find a new method to solve the problem of blind identification of signal parameters, quickly distinguish the signal data format, disordered form, error correction coding method and frame structure format, etc. Fault-tolerant synthetic analysis of sequences is a fundamental problem in cryptanalysis.
问题的难点在于容错性。与有限域上的含错线性方程的求解问题不同的是线性递归关系的级数没有限制。因此如果线性递归关系的级数太长,则用离散Walsh谱方法研究该课题是不可行的。The hard part of the problem is fault tolerance. Unlike the problem of solving linear equations with errors over finite fields, there is no limit to the series of linear recurrence relations. Therefore, if the series of the linear recurrence relation is too long, it is not feasible to use the discrete Walsh spectrum method to study the subject.
我们从分析递归序列与代数理想的全局性质入手,找到了求解该问题的许多方法。本发明采用一个新的数学模型刻划含错序列的综合问题。将原来用于描述BM算法的关键方程改造成为一个齐次理想方程。用一个关系理想来记录反映一条序列所有不同起点的种种局部序列的线性递归关系。因此本发明的模型大大地拓宽了Berlekamp(1968)关于序列综合的关键方程的数学模型的含义。我们的目标是要快速地计算出这个齐次关系理想,并进一步分析其分次代数结构。由于关系理想的刚性结构具有很强的容错性,因此,利用多项式代数模的多重Syzygy分解计算,和利用分次代数的一些全局性的特征参数(例如Hilbert函数),可以筛选出最合理的线性递归理想的生成元,从而得到关于含误码的线性递归序列综合问题的正确的解答。经过大量的现实实验数据分析表明:线性递归序列的容错综合问题可以转化成纯粹的计算代数几何问题。可以用计算代数几何的代数结构和算法规律,刻划线性递归关系的全局性质。这样就可以克服有限域上的随机变量无法用统计的方法揭示全局性质的困难。We start with analyzing the global properties of recursive sequences and algebraic ideals, and find many methods to solve this problem. The invention adopts a new mathematical model to characterize the comprehensive problem of error sequence. Transform the key equation originally used to describe the BM algorithm into a homogeneous ideal equation. A relational ideal is used to record the linear recurrence relations of various local sequences reflecting all the different starting points of a sequence. The model of the present invention therefore greatly broadens the meaning of Berlekamp's (1968) mathematical model of the key equations for sequence synthesis. Our goal is to quickly calculate this homogeneous relational ideal and further analyze its graded algebraic structure. Since the rigid structure of the ideal relation has strong fault tolerance, the most reasonable linear The recursive ideal generator leads to the correct solution to the error-involved linear recursive sequence synthesis problem. The data analysis of a large number of real experiments shows that the problem of fault-tolerant synthesis of linear recursive sequences can be transformed into a pure computational algebraic geometry problem. The algebraic structure and algorithm rules of computational algebraic geometry can be used to characterize the global properties of linear recurrence relations. In this way, the difficulty that random variables on finite fields cannot reveal global properties by statistical methods can be overcome.
图4.示意了本发明提出的一种无协议联络的容错信道编码盲识别的结构化模型。即对于收到的信号序列,经过合冲分解算法,找出与序列的每个局部都有关的全部递归关系的齐次理想结构,然后分次理想消解算法求出最优解。Fig. 4 shows a structural model of blind recognition of error-tolerant channel coding without protocol contact proposed by the present invention. That is, for the received signal sequence, the homogeneous ideal structure of all recursive relations related to each part of the sequence is found through the confluence decomposition algorithm, and then the optimal solution is obtained by the fractional ideal resolution algorithm.
2、齐次关键方程2. Homogeneous key equation
我们采用如下的方程刻画无协议联络的容错信道编码盲识别的结构化模型:We use the following equation to describe the structural model of blind recognition of fault-tolerant channel coding without protocol communication:
设F是一个域,F[x,y]是F上的多项式环;设Let F be a field and F[x,y] be a polynomial ring on F; let
Ci(x,y)=ci0yN+ci1xyN-1+ci2x2yN-2+…+ciNxN,i=1,2,…,k (1)是F[x,y]中的t个齐次多项式;设I=<xN+1,yN+1>是F[x,y]的由xN+1,yN+1生成的理想。C i (x, y) = c i0 y N + c i1 xy N-1 + c i2 x 2 y N-2 + ... + c iN x N , i = 1, 2, ..., k (1) is F t homogeneous polynomials in [x, y]; let I=<x N+1 , y N+1 > be the ideal of F[x, y] generated by x N+1 , y N+1 .
齐次关键模方程HKME:求F[x,y]-模Homogeneous key modular equation HKME: find F[x, y]-module
Γ(k)={(H1,...,Hk)∈F[x,y]k|H1C1(x,y)+…+HkCk(x,y)≡0modI}(2)的极小标准生成元。Γ (k) ={(H 1 ,...,H k )∈F[x,y] k |H 1 C 1 (x,y)+...+H k C k (x,y)≡0modI} The minimal standard generator of (2).
在上述关键模方程中,当k=1,问题变成了序列综合问题。如图2所示,线性递归序列(LRS)的综合问题是卷积码识别问题的特例,此时,只要将线性递归序列看成一个卷积码的码字,其中LRS是I(D)信息输出序列,而全0序列为编码序列的校验路输出序列,因为是恒等序列输出时省略。这是一个系统卷积码的码字。In the above key modulus equation, when k=1, the problem becomes a sequence synthesis problem. As shown in Figure 2, the synthesis problem of the linear recursive sequence (LRS) is a special case of the recognition problem of the convolutional code. At this time, as long as the linear recursive sequence is regarded as a codeword of the convolutional code, the LRS is the I(D) information The output sequence, and the all 0 sequence is the output sequence of the verification path of the coding sequence, because it is omitted when outputting the identity sequence. This is the codeword of a systematic convolutional code.
3、快速算法3. Fast algorithm
为容易理解本节的算法,我们简要地介绍GB基理论[Adam]。To facilitate the understanding of the algorithm in this section, we briefly introduce the GB basis theory [Adam].
设F是一个域,F[x1,…,xn]是域F上的有n个未定元x1,…,xn的多项式环。在F[x1,…,xn]的单项集合上定义一个项序“>”。这样,对于f∈F[x1,…,xn],f可以表示成
其中0≠αi∈F,αi=(ei1,...,ein)∈Z+ n,
设0≠f,g∈F[x1,…,xn],L=lcm(lp(f),lp(g)),即L是lp(f),lp(g)的最小公倍,则称
给定F[x1,…,xn]中两个多项式f,h和一个子集G={f1,…,ft},如果h=f-(c1X1f1+…+ctXtft),其中ci∈F,Xi是幂积项,满足lp(f)=Xilp(fi),lp(h)<lp(f),则记为
对K={f1,f2,…,fk}∈F[x1,…,xn],K的合冲是如下的F[x1,…,xn]上的有限生成模:For K={f 1 , f 2 ,...,f k }∈F[x 1 ,...,x n ], the resultant impulse of K is a finite generating module on F[x 1 ,...,x n ] as follows:
Syzygy(K)={(h1,...,hk)∈F[x1,…,xn]k|h1f1+…+hkfk=0}Syzygy(K)={(h 1 ,...,h k )∈F[x 1 ,...,x n ] k |h 1 f 1 +...+h k f k =0}
下面的快速算法,求齐次理想<K>的GB基和相应的合冲Syzygy(K)。The following fast algorithm finds the GB basis of the homogeneous ideal <K> and the corresponding combined Syzygy(K).
Sy2Sy双合算法具体步骤:The specific steps of Sy2Sy double combination algorithm:
输入:严格排序的齐次集合K={f0,f1,…,fl}Input: strictly sorted homogeneous set K={f 0 , f 1 ,...,f l }
输出:GB基G,使得<G>=<K>,和合冲Syzygy(K)的生成元集。Output: GB base G such that <G>=<K>, and the generator set of Syzygy(K).
(1)初始:(1) Initial:
设(f0,0,f1,0,...,fl,0)=(f0,f1,...,fl)。并设:Let (f 0,0 , f 1,0 , . . . , f l,0 )=(f 0 , f 1 , . . . , f l ). And set:
(degylp(f0),degxlp(f0))=mini=0,1,...,l(degylp(fi),degxlp(fi)),这里,整数向量(n1,m1)≤(n2,m2),当且仅当n1<n2,或者n1=n2且m1≤m2;设g0=f0,A(0)=I是单位矩阵,G={g0},K0={f1,…,fl}。(deg y lp(f 0 ), deg x lp(f 0 ))=min i=0, 1, . . . , l (deg y lp(f i ), deg x lp(f i )), here, Integer vector (n 1 , m 1 )≤(n 2 , m 2 ), if and only if n 1 <n 2 , or n 1 =n 2 and m 1 ≤m 2 ; let g 0 =f 0 , A ( 0) =I is the identity matrix, G={g 0 }, K 0 ={f 1 , . . . , f l }.
(2)假设第k步已完成如下算法:(2) Assume that step k has completed the following algorithm:
经挑选出集合G和已被G约化了的剩余多项式集合Kk,满足如下关系:The selected set G and the remaining polynomial set K k reduced by G satisfy the following relationship:
<G∪Kk>=<K>,<G∪K k >=<K>,
其中k=0,1,...,l.G={g0,g1,...,gk},Kk={f1,k,f2,k,...,fl,k},where k=0, 1, ..., lG = {g 0 , g 1 , ..., g k }, K k = {f 1, k , f 2, k , ..., f l, k },
并已计算出系数矩阵A(k)满足And the coefficient matrix A (k) has been calculated to satisfy
并记Ai (k)是矩阵A(k)的第i行,i=0,1,…,l。Also note that A i (k) is the ith row of matrix A (k) , i=0, 1, . . . , l.
(3)第k+1步要进行如下的计算:(3) Step k+1 needs to be calculated as follows:
1)挑选f0,k+1,f0,k+1是Kk中一个特殊的多项式fs,k,满足1) Selecting f 0, k+1 , f 0, k+1 is a special polynomial f s, k in K k , satisfying
2)计算
3)计算
上述各步已完成如下计算The above steps have been completed as follows
Kk+1={f1,k+1,…,fl,k+1}K k+1 = {f 1, k+1 ,..., f l, k+1 }
4)对应上述各步,计算系数矩阵:4) Corresponding to the above steps, calculate the coefficient matrix:
(4)停止条件:直到l步,使得f1,l=f2,l=…=fl,l=0。(4) Stop condition: until step 1, so that f 1,l =f 2,l =...=f l,l =0.
(5)输出:G和系数矩阵A(l)。(5) Output: G and coefficient matrix A (l) .
Sy2Sy实现由计算K的GB基G,伴随算出合冲Syzygy(K)的生成元A1 (l),…,Al (l),在各行向量Ai (l)中挑出多项式次数最小的行,就是综合(Synthesis)构造问题所需要的解。Sy2Sy realizes that by calculating the GB base G of K, along with calculating the generators A 1 (l) ,..., A l (l) of the combined Syzygy (K), pick out the smallest polynomial degree in each row vector A i (l) OK, it is the solution needed for the synthesis (Synthesis) construction problem.
这样将卷积码盲识别问题转化成Syzygy的计算问题,且Sy2Sy算法的计算复杂度是O(N2)。In this way, the problem of blind recognition of convolutional codes is transformed into a computing problem of Syzygy, and the computing complexity of the Sy2Sy algorithm is O(N 2 ).
如果是序列综合,求序列C1(x,y)的特征理想,则求如下理想的GB基和相应的Syzygy:If it is a sequence synthesis, to find the characteristic ideal of the sequence C 1 (x, y), then find the following ideal GB basis and the corresponding Syzygy:
K={f0=xN+1,f1=C1(x,y),f2=yN+1}K={f 0 =x N+1 , f 1 =C 1 (x,y), f 2 =y N+1 }
如果要求卷积码的盲识别,则求如下理想的GB基和相应的Syzygy:If blind recognition of convolutional codes is required, the following ideal GB basis and corresponding Syzygy are obtained:
K={xN+1,C1(x,y),...,Ck(x,y),yN+1}K={x N+1 , C 1 (x, y), . . . , C k (x, y), y N+1 }
只要计算出GB基,则相应的Syzygy也就同时伴随得到,而且计算复杂性的主项就是计算GB基的计算复杂性。As long as the GB basis is calculated, the corresponding Syzygy will be obtained at the same time, and the main item of computational complexity is the computational complexity of calculating the GB basis.
我们已经从理论上证明,SY2SY算法的计算复杂度是O(N2),其中N是观测到的抽样输入数据量。因此SY2SY算法在计算复杂性和空间复杂性等方面达到了几乎完美程度。We have proved theoretically that the computational complexity of the SY2SY algorithm is O(N 2 ), where N is the observed amount of sampled input data. Therefore, the SY2SY algorithm is almost perfect in terms of computational complexity and space complexity.
综上,本发明提出了一种无协议联络的容错信道编码盲识别的结构化模型,建立了描述该结构化模型的齐次关键方程(HKME),给出了求解该HKME的快速SY2SY算法。该算法利用了HKME的代数结构,通过求解二元多项式理想的GB基的计算过程,确定在计算过程中伴随出的该理想的合冲,由合冲达到综合构造。To sum up, the present invention proposes a structured model for blind recognition of fault-tolerant channel coding without protocol communication, establishes a homogeneous key equation (HKME) describing the structured model, and provides a fast SY2SY algorithm for solving the HKME. The algorithm utilizes the algebraic structure of HKME, and determines the ideal combination that accompanies the calculation process through the calculation process of solving the ideal GB basis of the binary polynomial, and achieves the comprehensive structure from the combination.
由Berlekamp提出的有重要意义的关键方程KE是本发明HKME在k=1时的特例。The significant key equation KE proposed by Berlekamp is a special case of HKME of the present invention when k=1.
由Berlekamp和Massey提出的BM算法是本发明SY2SY算法在在k=1时的特例。The BM algorithm proposed by Berlekamp and Massey is a special case of the SY2SY algorithm of the present invention when k=1.
本发明已将HKME利用和SY2SY算法开发成应用软件和芯片。并且,将其制作成通信和信息安全领域中的各种产品,包括:利用有限的观察到抽样数据,实现最小线性递归生成装置的综合构造器、流密码的密钥生成综合装置、代数编码参数的盲识别、循环码的译码器、快速求解大数分解中所涉及到的大规模稀疏线性方程组的应用软件。The present invention has developed HKME and SY2SY algorithms into application software and chips. And, it is made into various products in the field of communication and information security, including: using limited observed sampling data to realize the comprehensive constructor of the minimum linear recursive generation device, the key generation synthesis device of the stream cipher, and the algebraic encoding parameter The application software for blind identification, cyclic code decoder, and fast solution of large-scale sparse linear equations involved in the decomposition of large numbers.
附图说明 Description of drawings
图1卷积码的编码。g1(D),g2(D)是未知的需要求解的多项式,I(D)是未知的信息序列多项式,而C1(D),C2(D)是已知的有限长度的码字序列多项式。如何仅从有限长度的序列C1(D),C2(D)反推出卷积码的生成多项式g1(D),g2(D)是本发明提出的齐次关键模方程所要描述的问题。Figure 1 Encoding of convolutional codes. g 1 (D), g 2 (D) are unknown polynomials that need to be solved, I(D) is an unknown information sequence polynomial, and C 1 (D), C 2 (D) are known finite-length codes word sequence polynomial. How to deduce the generator polynomial g 1 (D) of convolutional code only from sequence C 1 (D) of finite length, C 2 (D), g 2 (D) is what the homogeneous key module equation proposed by the present invention will describe question.
图2表明LRS综合问题是卷积码盲识别问题的特例。Figure 2 shows that the LRS synthesis problem is a special case of the blind recognition problem of convolutional codes.
图3.常规的不容错的综合构造模型。Figure 3. Conventional fault-tolerant synthetic construction model.
图4.示意了一种无协议联络的容错信道编码盲识别的模型。Figure 4. Schematically shows a model for blind recognition of error-tolerant channel coding without protocol contact.
具体实施方式 Detailed ways
下面通过一个实际计算例子,描述本发明的计算过程。The calculation process of the present invention is described below through an actual calculation example.
计算例子Calculation example
我们已经获得两路序列:111110111000001101We have obtained two sequences: 111110111000001101
001011110010000111001011110010000111
求能够生成这两路序列的1/2码率的卷积码的生成多项式。为此设Find the generator polynomial that can generate the 1/2 code rate convolutional code of these two sequences. set for this
f0=x17+x16y+x15y2+x14y3+x13y4+x11y6+x10y7 f 0 =x 17 +x 16 y+x 15 y 2 +x 14 y 3 +x 13 y 4 +x 11 y 6 +x 10 y 7
+x9y8+x3y14+x2y15+y17 +x 9 y 8 +x 3 y 14 +x 2 y 15 +y 17
f1=x18 f 1 =x 18
f2=x15y2+x13y4+x12y5+x11y6+x10y7 f 2 =x 15 y 2 +x 13 y 4 +x 12 y 5 +x 11 y 6 +x 10 y 7
+x7y10+x2y15+xy16+y17 +x 7 y 10 +x 2 y 15 +xy 16 +y 17
f3=y18 f 3 =y 18
Step 0Step 0
f0,0=f0,该步对应双合算法步骤(1)f 0,0 =f 0 , this step corresponds to step (1) of double-combination algorithm
其中第k步中的表格的第一列表示矩阵A(k+1)的第1列和第3列。Wherein the first column of the table in the kth step represents the 1st column and the 3rd column of the matrix A (k+1) .
Step 1Step 1
f0,1=f2,0=f2,该步是对应SY2SY算法步骤(3),1)步f 0, 1 = f 2, 0 = f 2 , this step corresponds to SY2SY algorithm step (3), step 1)
Step 2Step 2
f0,2=f1,1,该步是对应SY2SY算法步骤(3),1)步f 0, 2 = f 1, 1 , this step corresponds to SY2SY algorithm step (3), step 1)
Step 3Step 3
f0,3=f1,2 f 0,3 =f 1,2
Step 4Step 4
f0,4=f2,3 f 0,4 =f 2,3
Step 5Step 5
f0,5=f1,4 f 0,5 =f 1,4
Step 6Step 6
f0,6=f3,5 f 0,6 = f 3,5
得到GB基G={f0,0,f0,1,f0,2,f0,3,f0,4,f0,5,f0,6},上述框中,第一列构成了矩阵A(l)。在A(l)中选出次数最小的行(即第2行),就是SY2SY算法的解,这里,也就得到卷积码的生成多项式:Get the GB base G={f 0,0 , f 0,1 , f 0,2 , f 0,3 , f 0,4 , f 0,5 , f 0,6 }, in the above box, the first column constitutes The matrix A (l) is obtained. Selecting the row with the smallest number of times (i.e. the second row) in A (l) is the solution of the SY2SY algorithm, here, the generator polynomial of the convolutional code is also obtained:
H1=x6+x4y2+x3y3+xy5+y6,H2=x6+x5y+x4y2+x3y3+y6.H 1 =x 6 +x 4 y 2 +x 3 y 3 +xy 5 +y 6 , H 2 =x 6 +x 5 y+x 4 y 2 +x 3 y 3 +y 6 .
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB2005100279701A CN100391141C (en) | 2005-07-21 | 2005-07-21 | An error-tolerant communication channel coding parameter blind identification method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB2005100279701A CN100391141C (en) | 2005-07-21 | 2005-07-21 | An error-tolerant communication channel coding parameter blind identification method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN1713559A CN1713559A (en) | 2005-12-28 |
| CN100391141C true CN100391141C (en) | 2008-05-28 |
Family
ID=35719018
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CNB2005100279701A Expired - Fee Related CN100391141C (en) | 2005-07-21 | 2005-07-21 | An error-tolerant communication channel coding parameter blind identification method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN100391141C (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101534168B (en) * | 2009-04-16 | 2011-11-23 | 中国电子科技集团公司第五十四研究所 | An error-tolerant RS code coding parameter blind identification method |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102201882B (en) * | 2010-03-23 | 2014-06-18 | 中国电子科技集团公司第三十六研究所 | Blind identification method for coding parameters of linear block codes |
| CN102201883B (en) * | 2010-03-23 | 2014-08-13 | 中国电子科技集团公司第三十六研究所 | Reed-solomon (RS) code coding parameter blind identification method |
| CN102244553B (en) * | 2010-05-11 | 2014-09-17 | 中国电子科技集团公司第三十六研究所 | Non-return-to-zero Turbo code encoding parameter blind identification method |
| CN102244555B (en) * | 2010-05-11 | 2014-06-18 | 中国电子科技集团公司第三十六研究所 | Blind identification method for coding parameter of Turbo code |
| CN102244554B (en) * | 2010-05-11 | 2014-06-18 | 中国电子科技集团公司第三十六研究所 | Blind recognition method of punctured Turbo coding parameters |
| CN104426555A (en) * | 2013-09-03 | 2015-03-18 | 电子科技大学 | Quasi-cyclic code blind recognition method based on submodule space Gr*bner base |
| CN108933606B (en) * | 2018-08-15 | 2021-07-27 | 电子科技大学 | A Blind Recognition Method of Systematic Convolutional Codes with Error Tolerance |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1167416A (en) * | 1997-03-28 | 1997-12-10 | 北京信威通信技术有限公司 | Method for testing spectrum spreading signal in code division multi-address radio communication system |
| WO1999044159A1 (en) * | 1998-02-27 | 1999-09-02 | Engage Technologies | System and method for building user profiles |
| US20040174894A1 (en) * | 1998-09-22 | 2004-09-09 | Hughes Electronics Corporation | System and method for transmitting data in frame format using an R-Rake retransmission technique with blind identification of data frames |
| EP1465338A2 (en) * | 2003-04-01 | 2004-10-06 | Thales | Fourth order autodidact identification method and device for identifying an underdetermined mixture of signals |
-
2005
- 2005-07-21 CN CNB2005100279701A patent/CN100391141C/en not_active Expired - Fee Related
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1167416A (en) * | 1997-03-28 | 1997-12-10 | 北京信威通信技术有限公司 | Method for testing spectrum spreading signal in code division multi-address radio communication system |
| WO1999044159A1 (en) * | 1998-02-27 | 1999-09-02 | Engage Technologies | System and method for building user profiles |
| US20040174894A1 (en) * | 1998-09-22 | 2004-09-09 | Hughes Electronics Corporation | System and method for transmitting data in frame format using an R-Rake retransmission technique with blind identification of data frames |
| EP1465338A2 (en) * | 2003-04-01 | 2004-10-06 | Thales | Fourth order autodidact identification method and device for identifying an underdetermined mixture of signals |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101534168B (en) * | 2009-04-16 | 2011-11-23 | 中国电子科技集团公司第五十四研究所 | An error-tolerant RS code coding parameter blind identification method |
Also Published As
| Publication number | Publication date |
|---|---|
| CN1713559A (en) | 2005-12-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102694625A (en) | Polarization code decoding method for cyclic redundancy check assistance | |
| CN103312457B (en) | Convolutional coding parameters total blindness recognition methods | |
| Merhav | Error exponents of typical random codes | |
| Gabrys et al. | Codes in the Damerau distance for DNA storage | |
| CN100391141C (en) | An error-tolerant communication channel coding parameter blind identification method | |
| Wu et al. | Blind recognition of BCH code based on Galois field Fourier transform | |
| Suo et al. | Performance analysis for finite length LT codes via classical probability evaluation | |
| Colombier et al. | Message-recovery Profiled Side-channel Attack on the Classic McEliece Cryptosystem. | |
| Pacher et al. | An information reconciliation protocol for secret-key agreement with small leakage | |
| Baldi et al. | Performance bounds for QC-MDPC codes decoders | |
| Katz et al. | On the necessity of binning for the distributed hypothesis testing problem | |
| CN107332570A (en) | The polarization code encoding method of segmentation cascade Hash sequences | |
| Weinberger et al. | The DNA storage channel: Capacity and error probability | |
| Xu et al. | Revisit two memoryless state‐recovery cryptanalysis methods on A5/1 | |
| Jiang et al. | Toward Lower Repair Bandwidth and Optimal Repair Complexity of Piggybacking Codes With Small Sub-Packetization | |
| Imrane et al. | Machine learning for decoding linear block codes: case of multi-class logistic regression model | |
| Fossorier et al. | Modeling block decoding approaches for the fast correlation attack | |
| Kopparty et al. | High Rate Multivariate Polynomial Evaluation Codes | |
| Sun et al. | A new error correction scheme for physical unclonable function | |
| Cassuto et al. | Efficient compression of long arbitrary sequences with no reference at the encoder | |
| Szpankowski | Algorithms, combinatorics, information, and beyond | |
| CN111510164B (en) | A kind of Turbo code component encoder identification method and system | |
| Fossorier et al. | A unified analysis for the fast correlation attack | |
| Guruswami | List decoding in average-case complexity and pseudorandomness | |
| Guruswami et al. | Extractors and condensers from univariate polynomials |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| C17 | Cessation of patent right | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080528 Termination date: 20110721 |