CN100367295C - Intelligent image steganalysis system based on three-layer architecture - Google Patents
Intelligent image steganalysis system based on three-layer architecture Download PDFInfo
- Publication number
- CN100367295C CN100367295C CNB2006100184941A CN200610018494A CN100367295C CN 100367295 C CN100367295 C CN 100367295C CN B2006100184941 A CNB2006100184941 A CN B2006100184941A CN 200610018494 A CN200610018494 A CN 200610018494A CN 100367295 C CN100367295 C CN 100367295C
- Authority
- CN
- China
- Prior art keywords
- steganalysis
- module
- image
- feature vector
- training
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Image Analysis (AREA)
Abstract
本发明公开了一种基于三层架构的智能图像隐写分析系统,包括综合数据库、图像库、综合数据库管理模块、图像库管理模块、特征矢量预提取模块、隐写分析总控模块和攻击模块,以及用于针对隐写算法已公布且有对应的专用隐写分析算法的专用隐写分析模块、针对隐写算法已公布尚无对应的专用隐写分析算法的分类训练的通用隐写分析模块和针对隐写算法未公布的广义通用隐写分析模块。本发明采用三层架构,针对隐写算法所属类型构建专门的隐写分析子系统,具有准确性和适用性;利用专家系统将现有的专用隐写分析方法建成模型库和规则库,并通过人机交互不断更新隐写分析规则库,具有智能性;采用主元素特征提取与样本图像库分类训练相结合,提高计算效率和准确性。
The invention discloses an intelligent image steganalysis analysis system based on a three-layer architecture, including a comprehensive database, an image library, a comprehensive database management module, an image library management module, a feature vector pre-extraction module, a steganalysis master control module and an attack module , as well as a dedicated steganalysis module for steganalysis algorithms that have been announced and have corresponding dedicated steganalysis algorithms, and a general steganalysis module for classification training for steganalysis algorithms that have been announced but have no corresponding dedicated steganalysis algorithms and an unpublished generalized general steganalysis module for steganographic algorithms. The present invention adopts a three-layer structure, and constructs a special steganalysis subsystem for the type of steganography algorithm, which has accuracy and applicability; uses an expert system to build the existing special steganalysis method into a model library and a rule library, and passes Human-computer interaction continuously updates the steganalysis rule library, which is intelligent; the combination of main element feature extraction and sample image library classification training improves computing efficiency and accuracy.
Description
技术领域 technical field
本发明属于计算机安全领域,具体涉及一种基于三层架构的智能图像隐写分析系统。The invention belongs to the field of computer security, and in particular relates to an intelligent image steganalysis system based on a three-layer structure.
背景技术 Background technique
目前,实现隐秘通信的主要技术是隐写术,隐写术是信息隐藏的重要分支。隐写术研究如何将要传送的信息以不可感知的方式隐藏于各种载体中(如:文本、图像、音频、视频等)。近年来,随着网络技术和多媒体技术的发展,隐写术获得了长足的进步,已被军事机构、政府部门、金融机构等涉及国计民生的重要部门采用,更被恐怖分子用来在互连网上互通消息。隐写术的滥用给国家和社会带来了潜在的严重危害,如何有效监督隐写术的使用、防止隐写术的非法应用,成为国家安全部门关切的问题。因而,产生了一种与隐写术相对抗的技术—隐写分析。隐写分析是对隐写术的攻击,目的是为了检测秘密消息的存在以至破坏隐秘通信,隐写分析是解决非法使用隐写术问题的关键技术。隐写分析技术的提高有利于防止隐写术的非法应用,可以起到防止机密资料流失、揭示非法信息、打击恐怖主义、预防灾难发生的作用,从而保证国家的安全和社会的稳定。At present, the main technology to realize covert communication is steganography, which is an important branch of information hiding. Steganography studies how to hide the information to be transmitted in various carriers (such as: text, image, audio, video, etc.) in an imperceptible way. In recent years, with the development of network technology and multimedia technology, steganography has made great progress, and has been adopted by military agencies, government departments, financial institutions and other important departments related to the national economy and people's livelihood, and even used by terrorists to communicate on the Internet information. The abuse of steganography has brought potential serious harm to the country and society. How to effectively supervise the use of steganography and prevent the illegal application of steganography has become a concern of national security departments. Therefore, a technology that is opposed to steganography - steganalysis has been produced. Steganalysis is an attack on steganography, the purpose is to detect the existence of secret information and destroy the secret communication. Steganalysis is the key technology to solve the problem of illegal use of steganography. The improvement of steganalysis technology is conducive to preventing the illegal application of steganography, and can prevent the loss of confidential information, reveal illegal information, combat terrorism, and prevent disasters, thereby ensuring national security and social stability.
图像隐写分析的基本工作原理是,首先对检测图像进行特征提取,根据图像的特征是否被改变和改变的程度来判别图像是否隐藏图像。根据特征提取与隐写算法的关系,图像隐写分析可以分成两类:一类是针对某种具体的隐写方法提取其专有特征,根据这些专有特征进行判别,可称为专用隐写分析(如:Fridrich J.,Goljan M.,Du R..″Reliable detection of LSBsteganography in color and grayscale images″.Proceedings of ACMMultimedia Workshops-Multimedia and Security,2001,27-30和Dumitrescu S.,Xiaolin Wu,Zhe Wang.″Detection of LSB steganographyvia sample pair analysis″.IEEE Transactions on SignalProcessing,2003,Vol.51(7),1995-2007等);另一类是寻找独立于具体的隐写方法之外的特征,根据这些特征进行判别,可称为通用隐写分析技术(如:Avcibas Ismail,Memon Nasir,Sankur Bulent.″Steganalysis usingimage quality metrics″.IEEE Transactions on ImageProcessing,2003,Vol.12(2),221-229和Hany Farid.″Detectingsteganographic messages in digital images″.DartmouthCollege,Technology Report:TR20012412,2000等)。专用隐写分析技术可以准确检测隐藏图像采用某种隐写方法,准确性高但适用性低。通用隐写分析技术在整体上准确性不如专用隐写分析技术,但适用性高。因此,要使隐写分析走向实际应用,单凭某一种或某一类隐写分析算法还是远远不够的。The basic working principle of image steganalysis is to extract the features of the detected image first, and judge whether the image hides the image according to whether the features of the image have been changed and the degree of change. According to the relationship between feature extraction and steganography algorithm, image steganalysis can be divided into two categories: one is to extract its proprietary features for a specific steganographic method, and to distinguish based on these proprietary features, which can be called special steganography Analysis (eg: Fridrich J., Goljan M., Du R.. "Reliable detection of LSBsteganography in color and grayscale images". Proceedings of ACMMultimedia Workshops-Multimedia and Security, 2001, 27-30 and Dumitrescu S., Xiaolin Wu, Zhe Wang. "Detection of LSB steganography via sample pair analysis". IEEE Transactions on Signal Processing, 2003, Vol.51(7), 1995-2007, etc.); the other type is to find features independent of specific steganographic methods, Discrimination based on these features can be called a general steganalysis technique (such as: Avcibas Ismail, Memon Nasir, Sankur Bulent. "Steganalysis using image quality metrics". IEEE Transactions on Image Processing, 2003, Vol.12(2), 221-229 and Hany Farid. "Detecting steganographic messages in digital images". Dartmouth College, Technology Report: TR20012412, 2000, etc.). Dedicated steganalysis technology can accurately detect hidden images using a certain steganographic method with high accuracy but low applicability. The overall accuracy of general steganalysis technology is not as good as that of special steganalysis technology, but its applicability is high. Therefore, it is far from enough to rely on a certain or a certain type of steganalysis algorithm in order to make steganalysis come into practical application.
发明内容 Contents of the invention
本发明的目的在于提供一种基于三层架构的智能图像隐写分析系统,该系统具有较高的可用性和准确性,并具有较短响应时间。The object of the present invention is to provide an intelligent image steganalysis system based on a three-layer architecture, which has high usability and accuracy and short response time.
本发明提供的基于三层架构的智能图像隐写分析系统,其特征在于:该系统包括综合数据库、图像库、综合数据库管理模块、图像库管理模块、特征矢量预提取模块、隐写分析总控模块、专用隐写分析模块、分类训练的通用隐写分析模块、广义通用隐写分析模块和攻击模块。其中:The intelligent image steganalysis system based on the three-layer architecture provided by the present invention is characterized in that the system includes a comprehensive database, an image library, a comprehensive database management module, an image library management module, a feature vector pre-extraction module, and a steganalysis master control system. module, a dedicated steganalysis module, a generalized steganalysis module for classification training, a generalized generalized steganalysis module, and an attack module. in:
综合数据库用于存储支持本系统运行的数据;The comprehensive database is used to store data supporting the operation of the system;
图像库用于存储原始图像和隐藏消息后的图像;The image library is used to store the original image and the image after hiding the message;
综合数据库管理模块用于对综合数据库中的数据进行维护;图像库管理模块用于对图像库进行维护,并在综合数据库中对图像简要信息进行记录;The comprehensive database management module is used to maintain the data in the comprehensive database; the image database management module is used to maintain the image database and record the brief information of the image in the comprehensive database;
特征矢量预提取模块用于预先提取图像库中图像的特征矢量信息,提取的特征矢量信息存入综合数据库中;The feature vector pre-extraction module is used to pre-extract the feature vector information of the image in the image library, and the extracted feature vector information is stored in the comprehensive database;
隐写分析总控模块用于调度专用隐写分析模块、分类训练的通用隐写分析模块、广义通用隐写分析模块和攻击模块,实现对检测图像的隐写分析;The steganalysis master control module is used to schedule the special steganalysis module, the general steganalysis module for classification training, the generalized general steganalysis module and the attack module, to realize the steganalysis of the detection image;
专用隐写分析模块在隐写分析总控模块的控制下,依据推理机的推理结果,从模型库中选择合适的专用隐写分析算法,对检测图像进行隐写分析,如果分析结果有隐藏消息,则把检测图像传送给攻击模块,否则把检测图像传送给分类训练的通用隐写分析模块,并把隐写分析结果写入综合数据库;Under the control of the steganalysis master control module, the dedicated steganalysis module selects an appropriate dedicated steganalysis algorithm from the model library according to the reasoning results of the reasoning machine, and conducts steganalysis on the detected image. If there is a hidden message in the analysis result , the detection image is transmitted to the attack module, otherwise the detection image is transmitted to the general steganalysis module for classification training, and the steganalysis result is written into the comprehensive database;
分类训练的通用隐写分析模块在隐写分析总控模块的控制下,针对检测图像所使用的隐写算法是已公布但目前还没有对应的专用隐写分析算法的情况,依据综合数据库中的图像简要信息表和图像特征矢量表构造训练子集集合,从专用隐写分析模块传送来的图像中提取特征矢量集合,把特征矢量集合中的矢量分别投射到对应训练子集上进行训练并获得隐写分析结果,如果分析结果有隐藏消息,则把检测图像传送给攻击模块,否则把检测图像传送给广义通用隐写分析模块,并把隐写分析结果写入综合数据库;The general steganalysis module for classification training is under the control of the steganalysis master control module, and the steganalysis algorithm used for detecting images has been published but there is no corresponding dedicated steganalysis algorithm. According to the comprehensive database The image brief information table and the image feature vector table construct the training subset set, extract the feature vector set from the image sent by the special steganalysis module, and project the vectors in the feature vector set to the corresponding training subset for training and obtain Steganalysis result, if there is a hidden message in the analysis result, the detection image is sent to the attack module, otherwise the detection image is sent to the generalized general steganalysis module, and the steganalysis result is written into the comprehensive database;
广义通用隐写分析模块在隐写分析总控模块的控制下,针对检测图像所使用的隐写算法未公布的情况,依据综合数据库中的图像简要信息表和图像特征矢量表构造训练集,从分类训练的通用隐写分析模块传送来的图像中提取特征矢量,把特征矢量投射到训练集上进行训练并获得隐写分析结果,如果分析结果有隐藏消息,则把检测图像传送给攻击模块,否则不对检测图像作任何处理,直接输出检测图像;Under the control of the steganalysis master control module, the generalized general steganalysis module constructs a training set according to the image brief information table and image feature vector table in the comprehensive database for the situation that the steganographic algorithm used for detecting images has not been announced, from The feature vector is extracted from the image sent by the general steganalysis module of classification training, and the feature vector is projected onto the training set for training and obtains the steganalysis result. If there is a hidden message in the analysis result, the detection image is sent to the attack module. Otherwise, do not do any processing on the detection image, and directly output the detection image;
攻击模块在隐写分析总控模块的控制下,对从专用隐写分析模块、分类训练的通用隐写分析模块或广义通用隐写分析模块传送来的检测图像进行攻击,输出攻击后的图像。Under the control of the steganalysis master control module, the attack module attacks the detected image transmitted from the special steganalysis module, the generalized steganalysis module for classification training or the generalized generalized steganalysis module, and outputs the attacked image.
本发明的基于三层架构的智能图像隐写分析系统具有以下优点及效果:The intelligent image steganalysis system based on the three-layer structure of the present invention has the following advantages and effects:
(1)三层过滤,协同工作(1) Three-layer filtering, collaborative work
本系统包含三个串行的隐写分析子系统:专用隐写分析子系统;分类训练的通用隐写分析子系统;广义通用隐写分析子系统。实现了专用隐写分析方法和通用隐写分析方法的紧密耦合,充分发挥专用隐写分析算法的准确性和通用隐写分析算法的可用性的优点,同时还实现了两种隐写分析方法的劣势互补,使得隐写分析系统可以达到实际使用要求。This system contains three serial steganalysis subsystems: dedicated steganalysis subsystem; generalized steganalysis subsystem for classification training; generalized generalized steganalysis subsystem. The tight coupling between the special steganalysis method and the general steganalysis method is realized, and the advantages of the accuracy of the special steganalysis algorithm and the usability of the general steganalysis algorithm are fully utilized, and the disadvantages of the two steganalysis methods are also realized Complementary, so that the steganalysis system can meet the actual use requirements.
(2)高可用性和准确性(2) High availability and accuracy
本系统在实施时,瞄准准确性和可用性两大性能指标,在系统构建时采取了一些新颖策略,如:针对专用隐写分析算法构建基于专家系统技术的专用隐写分析子系统,发挥专用隐写分析算法群体优势,提高可用性;针对通用隐写算法,分别构建分类训练的通用隐写分析子系统和广义通用隐写分析子系统,特别是在分类训练的通用隐写分析子系统中,训练子集是针对特定隐写算法构造的精简敏感集合,在满足通用隐写分析算法可用性同时,提高其准确性。During the implementation of this system, aiming at the two major performance indicators of accuracy and usability, some novel strategies were adopted in the system construction, such as: constructing a special steganalysis subsystem based on expert system technology for the special steganalysis algorithm, and making full use of the special steganalysis algorithm. Write analysis algorithm group advantages to improve usability; for general steganalysis algorithms, construct a generalized steganalysis subsystem for classification training and a generalized generalized steganalysis subsystem, especially in the generalized steganalysis subsystem for classification training, training The subset is a simplified sensitive set constructed for a specific steganographic algorithm, which can improve the accuracy of the general steganalysis algorithm while meeting the availability.
(3)较短响应时间(3) Short response time
为了缩短响应时间,采取措施有:①针对两个通用隐写分析模块,采取了特征矢量预提取技术,把图像库中提取的特征矢量存入综合数据库的特征矢量表中,这样避免每次隐写分析都需要进行特征矢量提取,可以缩短响应时间;②在分类训练的通用隐写分析系统中,特征矢量的元素更少,可以降低计算复杂性,进而可以缩短响应时间。In order to shorten the response time, the following measures are taken: ①According to the two general steganalysis modules, the feature vector pre-extraction technology is adopted, and the feature vectors extracted from the image library are stored in the feature vector table of the comprehensive database, so as to avoid each steganalysis. All writing analysis requires feature vector extraction, which can shorten the response time; ②In the general steganalysis system for classification training, the feature vector has fewer elements, which can reduce the computational complexity and shorten the response time.
(4)智能性(4) intelligence
本系统中,采用了人工智能领域的专家系统和模式识别技术,使得隐写分析过程智能化,通过人机交互,提高隐写分析的各项性能。In this system, the expert system and pattern recognition technology in the field of artificial intelligence are used to make the process of steganalysis intelligent, and the performance of steganalysis is improved through human-computer interaction.
附图说明 Description of drawings
图1为本发明系统的结构示意图;Fig. 1 is the structural representation of the system of the present invention;
图2为本发明系统的隐写分析流程图;Fig. 2 is the steganalysis flow chart of the system of the present invention;
图3知识库中规则的树型表示示意图;A schematic tree representation of rules in the knowledge base in Fig. 3;
图4隐写分析综合决策模块流程图;Figure 4 is a flow chart of the steganalysis comprehensive decision-making module;
图5为专用隐写分析模块的结构示意图;Fig. 5 is a schematic structural diagram of a dedicated steganalysis module;
图6为分类训练的通用隐写分析模块结构示意图;Fig. 6 is a schematic structural diagram of a general steganalysis module for classification training;
图7为广义通用隐写分析模块的结构示意图。FIG. 7 is a schematic structural diagram of a generalized generalized steganalysis module.
具体实施方式 Detailed ways
根据隐秘通信可能采用的隐写算法及该隐写算法是否有对应的专用隐写分析算法等因素,将隐写算法划分为三类:①隐写算法已公布,并有对应的专用隐写分析算法;②隐写算法已公布,目前还没有对应的专用隐写分析算法;③隐写算法未公布。本发明针对三类隐写算法,构建一个三层架构的智能图像隐写分析系统,三层架构分别为:一、专用隐写分析子系统(适用于隐秘通信所采用的隐写算法属于情况①);二、分类训练的通用隐写分析子系统(适用于隐秘通信所采用的隐写算法属于情况②);三、广义通用隐写分析子系统(适用于隐秘通信所采用的隐写算法属于情况③)。According to the steganographic algorithm that may be used in covert communication and whether the steganographic algorithm has a corresponding dedicated steganalysis algorithm and other factors, the steganographic algorithm is divided into three categories: ①The steganographic algorithm has been published, and there is a corresponding dedicated steganalysis algorithm Algorithm; ②The steganographic algorithm has been published, but there is no corresponding dedicated steganalysis algorithm; ③The steganographic algorithm has not been published. The present invention aims at three types of steganography algorithms, and builds an intelligent image steganalysis system with a three-layer structure. ); 2. Generalized steganalysis subsystem for classification training (the steganalysis algorithm used for covert communication belongs to the case ②); 3. Generalized generalized steganalysis subsystem (the steganalysis algorithm used for covert communication belongs to Situation ③).
下面结合附图和具体实施方式对本发明做进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
如图1所示,本发明系统包括十大部分:综合数据库104、图像库105、综合数据库管理模块2、图像库管理模块3、特征矢量预提取模块4、隐写分析总控模块5、专用隐写分析模块6、分类训练的通用隐写分析模块7、广义通用隐写分析模块8和攻击模块9。As shown in Figure 1, the system of the present invention includes ten parts:
其中隐写分析总控模块5用于调度专用隐写分析模块6、分类训练的通用隐写分析模块7、广义通用隐写分析模块8和攻击模块9,实现对检测图像的隐写分析。在隐写分析总控模块5的控制下,专用隐写分析模块6依据推理机的推理结果,从模型库中选择合适的专用隐写分析算法,对检测图像101进行隐写分析,如果分析结果有隐藏消息,则把检测图像101传送给攻击模块9,否则把检测图像101传送给分类训练的通用隐写分析模块7,并把隐写分析结果写入综合数据库104;在隐写分析总控模块5的控制下,针对检测图像所使用的隐写算法为已公布,目前还没有对应的专用隐写分析算法的情况,分类训练的通用隐写分析模块7依据综合数据库104中的图像简要信息表和图像特征矢量表构造训练子集集合,从专用隐写分析模块6传送来的图像中提取特征矢量集合,把特征矢量集合分别投射到对应训练子集上进行训练并获得隐写分析结果,如果分析结果有隐藏消息,则把检测图像101传送给攻击模块9,否则把检测图像101传送给广义通用隐写分析模块8,并把隐写分析结果写入综合数据库104;在隐写分析总控模块5的控制下,针对检测图像所使用的隐写算法未公布的情况,广义通用隐写分析模块8,并把隐写分析结果写入综合数据库104;在隐写分析总控模块5的控制下,针对检测图像所使用的隐写算法未公布的情况,广义通用隐写分析模块8依据综合数据库104中的图像简要信息表和图像特征矢量表构造训练集,从分类训练的通用隐写分析模块7传送来的图像中提取特征矢量,把特征矢量投射到训练集上进行训练并获得隐写分析结果,如果分析结果有隐藏消息,则把检测图像101传送给攻击模块9,否则不对检测图像101作任何处理,直接输出检测图像。在隐写分析总控模块5的控制下,攻击模块9对从专用隐写分析模块6、分类训练的通用隐写分析模块7或广义通用隐写分析模块8传送来的检测图像101进行攻击,输出攻击后的图像102。The steganalysis master control module 5 is used to schedule the special steganalysis module 6, the general steganalysis module 7 for classification training, the generalized general steganalysis module 8 and the attack module 9, to realize the steganalysis of the detected image. Under the control of the steganalysis master control module 5, the special-purpose steganalysis module 6 selects a suitable special-purpose steganalysis algorithm from the model library according to the inference result of the reasoning machine, and performs steganalysis on the detection image 101. If the analysis result If there is a hidden message, then the detection image 101 is sent to the attack module 9, otherwise the detection image 101 is sent to the general steganalysis module 7 of classification training, and the steganalysis result is written into the
图像库管理模块3负责对通用隐写分析所使用的图像库105进行维护,并在综合数据库104中对图像简要信息进行记录;特征矢量预提取模块4提取预先提取图像库105中图像的特征矢量信息,提取的特征矢量信息存入综合数据库104中。The image library management module 3 is responsible for maintaining the image library 105 used for general steganalysis, and recording the brief information of the image in the
下面分别对各部分作具体的说明。Each part will be described in detail below.
(1)综合数据库104(1)
综合数据库104用于存储支持本系统运行的相关数据,综合数据库中数据表包括:图像简要信息表(见表1)、图像特征矢量表(见表2)、检测图像初始参数表(见表3)、专用隐写结果表(见表4)和分类训练的通用隐写分析结果表(见表5)。The
表1图像简要信息表Table 1 Image Brief Information Table
各字段说明如下:Each field is described as follows:
文件名:图像的文件名称;filename: the filename of the image;
隐写算法:对于原始图像该字段值为NULL,否则为隐写算法的名称;Steganography algorithm: For the original image, this field value is NULL, otherwise it is the name of the steganography algorithm;
隐写算法类型:若该图像为原始图像,该字段值为0;若为隐藏消息后的图像,该字段取值为1表明隐藏图像的隐写算法有对应的专用隐写分析算法,字段为取值2表明还没有对应的专用隐写分析算法。Steganographic algorithm type: If the image is an original image, the value of this field is 0; if it is an image after hiding a message, the value of this field is 1, indicating that the steganographic algorithm of the hidden image has a corresponding dedicated steganalysis algorithm, and the field is A value of 2 indicates that there is no corresponding dedicated steganalysis algorithm.
表2图像特征矢量表Table 2 Image feature vector table
各字段的说明如下:The description of each field is as follows:
编号:特征矢量唯一编号;Number: the unique number of the feature vector;
隐写算法:同表1;Steganography algorithm: same as Table 1;
隐写算法类型:同表1;Steganographic algorithm type: same as Table 1;
元素名称:组成特征矢量的元素名称,如均值-u,方差-σ;Element name: the name of the element that makes up the feature vector, such as mean-u, variance-σ;
元素值:特征提取的元素值。Element value: The element value of feature extraction.
表3检测图像初始参数表Table 3 Initial parameter table of detection image
各字段的说明如下:The description of each field is as follows:
任务号:执行隐写分析任务编号,能唯一标识隐写分析任务,其编号自动产生;Task number: the task number for performing steganalysis, which can uniquely identify the steganalysis task, and its number is automatically generated;
文件名:检测图像的文件名;File name: the file name of the detected image;
尺寸:检测图像的尺寸;size: detect the size of the image;
文件格式:检测图像的文件格式。File format: detect the file format of the image.
表4专用隐写分析结果表Table 4 Dedicated Steganalysis Results Table
各字段解释如下:The fields are explained as follows:
任务号:执行隐写分析任务编号,能唯一标识隐写分析任务,其编号自动产生;Task number: the task number for performing steganalysis, which can uniquely identify the steganalysis task, and its number is automatically generated;
隐写分析算法:所采用的专用隐写分析算法的名称;Steganalysis algorithm: the name of the dedicated steganalysis algorithm used;
检测结果:存储隐写分析的结果,有隐藏消息是1,否则为0。Detection result: store the result of steganalysis, if there is a hidden message, it is 1, otherwise it is 0.
表5分类训练的通用隐写分析中间结果表Table 5 Intermediate result table of general steganalysis for classification training
各字段的说明如下:The description of each field is as follows:
任务号:执行隐写分析任务编号,能唯一标示一次隐写分析任务,其编号自动产生;Task number: the task number for performing steganalysis, which can uniquely mark a steganalysis task, and its number is automatically generated;
训练集:训练集所对应的隐写算法的名称;Training set: the name of the steganography algorithm corresponding to the training set;
检测值:通用隐写算法对该训练集训练的结果。Detection value: the result of training the general steganography algorithm on the training set.
(2)图像库105(2) Image library 105
图像库105包括原始图像库(没有隐藏消息的图像集合)和隐藏消息后的图像库(隐藏消息后的图像集合)。在本系统中,图像库以文件的格式存放在计算机硬盘上,并在综合数据库的图像简要信息表(见表1)中记录图象文件简要信息。The image library 105 includes an original image library (a collection of images without a hidden message) and an image library after a message is hidden (a collection of images after a message is hidden). In this system, the image library is stored in the computer hard disk in the form of a file, and the brief information of the image file is recorded in the image brief information table (see Table 1) of the comprehensive database.
(3)综合数据库管理模块2(3) Integrated
本模块用于对综合数据库104中的数据实现维护(添加、删除、修改、查询、备份等)。This module is used to maintain (add, delete, modify, query, backup, etc.) the data in the
(4)图像库管理模块3(4) Image library management module 3
本模块用于对图像库105中的图像文件和综合数据库中图像简要信息表进行维护(添加、删除、修改、查询)。This module is used to maintain (add, delete, modify, query) the image files in the image library 105 and the image brief information table in the comprehensive database.
(5)特征矢量预提取模块4(5) Feature vector pre-extraction module 4
分类训练的通用隐写分析模块7和广义通用隐写分析模块8进行隐写分析时需要提取图像库105中图像的特征矢量。为了缩短隐写分析的响应时间,避免每一次隐写分析都要进行图像特征矢量提取,特征矢量预提取模块4从图像库105中预先提取图像的特征矢量并存入综合数据库104的图像特征矢量表(见表2),这样在隐写分析时可以直接使用图像特征矢量表构造特征矢量训练集,图像的特征矢量在特征矢量表中以特征矢量元素为基本单位进行存储,即每一元素为一条记录。The generalized steganalysis module 7 and the generalized generalized steganalysis module 8 for classification training need to extract the feature vectors of the images in the image library 105 when performing steganalysis. In order to shorten the response time of steganalysis and avoid image feature vector extraction for every steganalysis, the feature vector pre-extraction module 4 pre-extracts the feature vector of the image from the image library 105 and stores it in the image feature vector of the
(6)隐写分析总控模块5(6) Steganalysis master control module 5
如图2所示,对于一幅待检测的图像,隐写分析总控模块5首先调度专用隐写分析模块6进行隐写分析,如果分析结果表明有隐藏消息,则启动攻击模块9对该图像进行攻击并输出攻击后的图像;否则,启动分类训练的通用隐写分析模块7进行隐写分析;紧接着,如果通用隐写分析模块7隐写分析表明检测图像没有隐藏消息,则启动广义通用隐写分析模块8进行隐写分析;否则启动攻击模块9对该图像进行攻击并输出攻击后的图像;最后,如果广义通用对隐写分析模块8隐写分析表明检测图像没有隐写消息,则不作任何处理;否则启动攻击模块9对该图像进行攻击并输出攻击后的图像。不难看出,本发明实现了专用隐写分析技术和通用隐写分析技术的紧密耦合,充分发挥各自的优点,同时还实现彼此劣势互补,大大提高了隐写分析系统的准确性和可用性。As shown in Figure 2, for an image to be detected, the steganalysis master control module 5 first dispatches the special steganalysis module 6 to carry out steganalysis, if the analysis result shows that there is a hidden message, then starts the attack module 9 to detect the image. Attack and output the image after the attack; otherwise, start the general steganalysis module 7 of classification training to carry out steganalysis; then, if the steganalysis of the general steganalysis module 7 shows that the detection image has no hidden message, then start the generalized general steganalysis module 7. Steganalysis module 8 carries out steganalysis; Otherwise, start attack module 9 to attack the image and output the image after the attack; finally, if the generalized generalized steganalysis module 8 steganalysis shows that there is no steganographic message in the detection image, then Do not do any processing; otherwise start the attack module 9 to attack the image and output the image after the attack. It is not difficult to see that the present invention realizes the close coupling of the special steganalysis technology and the general steganalysis technology, fully exerts their respective advantages, and at the same time realizes the complementarity of each other's disadvantages, greatly improving the accuracy and usability of the steganalysis system.
(7)专用隐写分析模块6(7) Dedicated steganalysis module 6
专用隐写分析模块6针对专用隐写分析算法构建专家系统。该专家系统是利用隐写分析领域知识和推理,来解决图像隐写分析问题的智能软件系统。由于专家系统具有持久性、可靠性、稳定性以及决策可理解性等优点,为隐写分析人员提供科学、准确、高效的决策支持。同时为了弥补专家系统计算能力较弱缺点,加入隐写分析模型库,增强系统的决策支持能力。The dedicated steganalysis module 6 builds an expert system for the dedicated steganalysis algorithm. The expert system is an intelligent software system that uses steganalysis domain knowledge and reasoning to solve image steganalysis problems. Due to the advantages of persistence, reliability, stability and decision comprehensibility of expert system, it provides scientific, accurate and efficient decision support for steganalyzers. At the same time, in order to make up for the weak computing power of the expert system, a steganalysis model library is added to enhance the decision support capability of the system.
根据专用隐写分析领域知识的描述,建立面向专用隐写分析算法的专用隐写分析模块的结构,如图5所示,从功能上看,该模块包括以下部分:知识库110、模型库111、知识库管理模块61、图像参数信息获取模块62、模型库管理模块63、推理机64、隐写分析综合决策模块65和人机交互模块66。上述各个部分的具体功能描述如下:According to the description of special steganalysis field knowledge, the structure of special steganalysis module facing special steganalysis algorithm is established, as shown in Figure 5, from the functional point of view, this module includes the following parts:
●知识库110:又称规则库,规则用产生式(IF P THEN Q,表示如果事实P成立,则执行行为Q)表示。通过收集专用图像隐写分析知识和经验,筛选出目前典型的一些专用隐写分析算法,并依据专用隐写分析算法针对的图像类型(调色板图像、真彩色图像、JPEG图像等)、隐写算法类型(LSB隐写算法、QIM隐写算法等)以及隐写分析算法有效性,建立规则库。为了对规则库的构建有更好理解,下面以示例形式介绍,图3是一个三层规则库的树形表示示例,该规则树中事实P和行为Q所涉及的变量定义如下:①变量Rspesial表示专用隐写分析结果,如果其值为真则表示当前图像中隐藏有水印,否则没有水印信息,该变量初始值为假;②变量IDcur_scheme表示当前选择的隐写分析算法的编号;③变量IDpre_scheme表示前一次选择的隐写分析算法的编号,第一层中,该变量值为0;④变量Endmark表示结束标志,如果为真则表示准备结束,否则为假,初始值为假;⑤变量Iclass表示当前隐写分析的图像类型的标识号(例如,调色板图像Iclass=1、真彩色图像Iclass=2、JPEG图像Iclass=3等)。图3中的路径n所涉及的规则可具体表示如下:●Knowledge base 110: also known as rule base, the rules are represented by production formula (IF P THEN Q, which means that if the fact P is established, then the behavior Q will be executed). By collecting the knowledge and experience of special image steganalysis, some typical special steganalysis algorithms are screened out, and according to the image type (palette image, true color image, JPEG image, etc.) Write algorithm type (LSB steganography algorithm, QIM steganography algorithm, etc.) and the effectiveness of steganalysis algorithm, and establish a rule base. In order to have a better understanding of the construction of the rule base, the following is an example. Figure 3 is a tree representation example of a three-layer rule base. The variables involved in the fact P and behavior Q in the rule tree are defined as follows: ① variable Rs pesial indicates the result of special steganalysis, if its value is true, it means that there is a hidden watermark in the current image, otherwise there is no watermark information, the initial value of this variable is false; ②The variable ID cur_scheme indicates the number of the currently selected steganalysis algorithm;③ The variable ID pre_scheme indicates the number of the steganalysis algorithm selected last time. In the first layer, the value of this variable is 0; ④The variable End mark indicates the end mark. If it is true, it means that the preparation is over, otherwise it is false, and the initial value is false. ; ⑤ The variable I class represents the identification number of the current steganalyzed image type (for example, palette image I class =1, true color image I class =2, JPEG image I class =3, etc.). The rules involved in path n in Figure 3 can be specifically expressed as follows:
if P1n then Q1n;if P 1n then Q 1n ;
if P2n then Q2n;if P 2n then Q 2n ;
if P3n then Q3n;if P 3n then Q 3n ;
其中in
P1n:(IDpre_scheme=0)∧(Endmark==false)∧(Iclass==n)∧(Rsspecial==false);P 1n : (ID pre_scheme = 0)∧(End mark ==false)∧(I class ==n)∧(Rs special ==false);
Q1n:IDcur_scheme:=A1n;Q 1n : ID cur_scheme: = A 1n ;
P2n:(IDpre_scheme==A1n)∧(Endmark==false)∧(Iclass==n)∧(Rsspecial==false);P 2n : (ID pre_scheme ==A 1n )∧(End mark ==false)∧(I class ==n)∧(Rs special ==false);
Q2n:IDcur_scheme:=A2n;Q 2n : ID cur_scheme := A 2n ;
P3n:(IDpre_scheme==A2n)∧(Endmark==false)∧(Iclass==n)∧(Rsspecial==false);P 3n : (ID pre_scheme ==A 2n )∧(End mark ==false)∧(I class ==n)∧(Rs special ==false);
Q3n:Endmark:=trueQ 3n : End mark : = true
从规则表达式中,不难发现,推理机64依据此规则进行推理的结果只能有两种结果:①将要选择的的隐写分析算法编号;②专用隐写分析结束标志。隐写分析综合决策模块65正是根据此结果,确定是调用模型库当前选择隐写分析算法还是结束专用隐写分析。From the regular expression, it is not difficult to find that the inference engine 64 can only have two results according to this rule: ① the number of the steganalysis algorithm to be selected; ② a dedicated steganalysis end sign. Based on this result, the steganalysis comprehensive decision-making module 65 determines whether to call the steganalysis algorithm currently selected by the model library or end the dedicated steganalysis.
●模型库111:通过收集专用图像隐写分析知识和经验,筛选出目前典型的一些专用隐写分析算法,并用程序代码实现算法的功能,隐写算法功能的实现也称为数学模型,这些数学模型存储在模型库111中;●Model library 111: By collecting special image steganalysis knowledge and experience, some typical special steganalysis algorithms are screened out, and the functions of the algorithms are realized with program codes. The realization of steganographic algorithm functions is also called a mathematical model. The models are stored in the
●知识库管理模块61:对知识库110规则进行维护(增加、删除、修改、查询);Knowledge base management module 61: maintain the
●图像参数信息获取模块62:获取检测图像的简单参数,并写入综合数据库104的检测图像初始参数表,见表3;Image parameter information acquisition module 62: obtain the simple parameters of the detection image, and write the detection image initial parameter table of the
●模型库管理模块63:本模块负责对模型库111中的隐写分析算法模型进行维护(增加、删除、修改、查询);●Model library management module 63: this module is responsible for maintaining (adding, deleting, modifying, querying) the steganalysis algorithm model in the
●推理机64:推理机64工作原理接收从隐写分析综合决策模块65传来的事实,直接在知识库中匹配规则并执行匹配的规则,最终获得推理结果,该推理结果传送到隐写分析综合决策模块65和人机交互模块66。Inference engine 64: The working principle of the inference engine 64 is to receive the facts transmitted from the steganalysis comprehensive decision-making module 65, directly match the rules in the knowledge base and execute the matching rules, and finally obtain the inference result, which is sent to the steganalysis Comprehensive decision-making module 65 and human-computer interaction module 66.
●隐写分析综合决策模块65:该模块工作流程图如图5所示,具体步骤步骤为:Steganalysis comprehensive decision-making module 65: the working flow chart of this module is shown in Figure 5, and the specific steps are as follows:
①构造事实P:对知识库中规则所涉及的变量Rsspesial、IDcur_scheme、IDpre_scheme、Endmark、Iclass赋值,如果第一次进入该模块,则IDcur_scheme:=0、IDpre_scheme:=0、Endmark:=false、Rsspesial:=jalse、Iclass为检测图像的类型值;否则进行IDpre_scheme:=IDcur_scheme赋值操作;① Construct fact P: Assign values to the variables Rs spesial , ID cur_scheme , ID pre_scheme , End mark , and I class involved in the rules in the knowledge base. If you enter this module for the first time, then ID cur_scheme : = 0, ID pre_scheme : = 0 , End mark :=false, Rs spesial :=jalse, I class are the type value of detection image; Otherwise carry out ID pre_scheme :=ID cur_scheme assignment operation;
②调用推理机:把事实P传给推理机,并获得推理结果,如果推理结果中Endmark为真,则转向步骤④;②Call the inference engine: pass the fact P to the inference engine, and obtain the inference result, if the End mark in the inference result is true, turn to step ④;
③调用隐写算法模型:根据变量IDcur_scheme的值,从模型库中选择隐写分析算法对检测图像进行隐写分析,如果隐写分析结果有隐藏图像,则对变量Rsspesial赋值为true跳到步骤④,否则进入步骤①重复执行;③Call the steganographic algorithm model: According to the value of the variable ID cur_scheme , select the steganographic analysis algorithm from the model library to perform steganographic analysis on the detected image. If the steganographic analysis result has a hidden image, assign true to the variable Rs spesial and jump to Step ④, otherwise go to step ① and repeat;
④隐写分析结果处理:如果Rsspesial==true,则向人机交互模块66提示有隐藏消息,否则提示没有隐藏消息,并将隐写分析结果写入综合数据库104的专用隐写分析结果表,见表4。④ steganalysis result processing: if Rs spesial ==true, then prompt to human-computer interaction module 66 that there is hidden message; , see Table 4.
●人机交互模块66:人机交互的接口,负责接收隐写分析人员给出的指令,同时把推理或隐写分析综合决策模块处理结果返回给隐写分析人员。●Human-computer interaction module 66: an interface for human-computer interaction, responsible for receiving instructions given by steganalyzers, and returning the processing results of reasoning or steganalysis comprehensive decision-making module to steganalyzers.
(8)分类训练的通用隐写分析模块7(8) General steganalysis module for classification training 7
如图6所示,分类训练的通用隐写分析模块包括:主元素特征矢量子集构造模块71、主元素特征矢量提取模块72、通用隐写分析模块73和隐写分析决策模块74。其中,主元素特征矢量子集构造模块71根据综合数据库104中图像简要信息表,筛选出表中隐写算法类型字段取值为2的隐写算法集A={Ai|1≤i≤n},并针对每一种隐写算法Ai,依据图像特征矢量表构造主元素特征矢量子集Ωi,其中Ωi=I0∪Ii,I0表示由原始图像库提取的特征矢量构造的主元素特征矢量子集,Ii表示隐写算法Ai隐写后的图像库构造的主元素特征矢量子集。所谓主元素特征矢量是通用隐写分析算法在该训练集上进行隐写分析时比较敏感的元素组成的矢量,因而,每一特征矢量子集的特征矢量元素由对应的隐写算法决定。As shown in FIG. 6 , the general steganalysis module for classification training includes: a principal element feature vector subset construction module 71 , a principal element feature vector extraction module 72 , a general steganalysis module 73 and a steganalysis decision module 74 . Among them, the main element feature vector subset construction module 71 filters out the steganographic algorithm set A={A i |1≤i≤n in which the value of the steganographic algorithm type field in the table is 2 according to the image brief information table in the comprehensive database 104 }, and for each steganography algorithm A i , construct the principal element feature vector subset Ω i according to the image feature vector table, where Ω i =I 0 ∪I i , and I 0 represents the feature vector construction extracted from the original image library The subset of principal element feature vectors, I i represents the subset of principal element feature vectors constructed by the steganographic algorithm A i steganographic image library. The so-called principal element eigenvector is a vector composed of elements that are more sensitive when the general steganalysis algorithm conducts steganalysis on the training set. Therefore, the eigenvector elements of each eigenvector subset are determined by the corresponding steganographic algorithm.
主元素特征矢量提取模块72负责针对每一隐写算法Ai,参照对应的主元素特征矢量子集Ωi,从检测图像提取主元素特征矢量Vi,其中主元素特征矢量Vi的元素和主元素特征矢量子集Ωi中的矢量元素相同。The principal element feature vector extraction module 72 is responsible for extracting the principal element feature vector V i from the detection image with reference to the corresponding principal element feature vector subset Ω i for each steganography algorithm A i , wherein the elements of the principal element feature vector V i and The vector elements in the principal element feature vector subset Ω i are the same.
通用隐写分析模块73具有训练功能,它针对每一隐写算法Ai,把对应的主元素特征矢量Vi投射到主元素特征矢量子集Ωi上进行训练,获得训练结果Dti,并把该结果作为隐写分析中间结果,写入综合数据库104的分类训练的通用隐写分析中间结果表,见表5,并传送给隐写分析决策模块74。The general steganalysis module 73 has a training function. For each steganographic algorithm A i , it projects the corresponding principal element feature vector V i onto the principal element feature vector subset Ω i for training, and obtains the training result Dt i , and The result is used as the steganalysis intermediate result, written into the general steganalysis intermediate result table of classification training in the
隐写分析决策模块74首先根据训练结果集Dt={Dt1,Dt2,......,Dtn},计算出集合Dt的最大值Dtmax,即Dtmax=max{Dt1,Dt2,......,Dtn}。然后把Dtmax和综合数据库104中的检测阈值T进行比较,如果Dtmax≥T则提示有隐藏消息,否则提示没有隐藏消息。The steganalysis decision-making module 74 firstly calculates the maximum value Dt max of the set Dt according to the training result set Dt={Dt 1 , Dt 2 , . . . , Dt n }, that is, Dt max =max{Dt 1 , Dt2 ,..., Dtn }. Then compare Dt max with the detection threshold T in the
从以上隐写分析原理不难发现,针对精简的高敏感子集隐写分析,一方面可以提高隐写分析的准确性,另一方面可以降低算法的复杂性。From the above principles of steganalysis, it is not difficult to find that for the simplified steganalysis of highly sensitive subsets, on the one hand, the accuracy of steganalysis can be improved, and on the other hand, the complexity of the algorithm can be reduced.
(9)广义通用隐写分析模块8(9) Generalized general steganalysis module 8
如图7所示,广义通用隐写分析模块8包括特征矢量集构造模块81、特征矢量提取模块82和具有训练功能的通用隐写分析模块83。其中,特征矢量集构造模块81根据综合数据库104中图像简要信息表106与图像特征矢量表107构造特征矢量集Ω,其中Ω=I0∪Isteg,I0表示由原始图像库提取的特征矢量构造的特征矢量子集,Isteg表示所有隐写算法隐写后的图像库构造的特征矢量子集。As shown in FIG. 7 , the generalized generalized steganalysis module 8 includes a feature vector set
特征矢量提取模块82从检测图像提取特征矢量v,其中特征矢量v的元素和特征矢量集Ω中的矢量元素相同。The feature
通用隐写分析模块83具有训练功能,把特征矢量v投射到特征矢量集Ω上进行训练,获得训练结果Dt,然后把Dt和综合数据库104中的检测阈值T进行比较,如果Dt≥T则提示有隐藏消息,否则提示没有隐藏消息。The
从结构图中,似乎广义通用隐写分析模块8和基于主元素特征通用隐写分析模块7隐写分析基本类同,如均采用相同的隐写分析方法。然而,同基于主元素特征通用隐写分析模块7相比,广义通用隐写分析模块在训练集的构造和特征矢量提取等方面有自己的特色,具体表现在:①特征矢量集构造模块81构造的特征矢量集Ω中,隐藏图像的特征矢量集所对应的隐写算法更为广泛,是所有已公布的隐写算法;②特征矢量集Ω中的特征矢量是由对所有隐写算法均敏感的元素组成。From the structure diagram, it seems that the generalized generalized steganalysis module 8 and the generalized steganalysis module 7 based on principal element features are basically similar in steganalysis, for example, both adopt the same steganalysis method. However, compared with the general steganalysis module 7 based on principal element features, the generalized general steganalysis module has its own characteristics in the construction of the training set and feature vector extraction, which are specifically shown in: ①Construction of the feature vector set
由于特征矢量集的特征矢量元素的选取和图像库的选取很好地平衡隐写分析算法对所有隐写算法的敏感性,因而适用性广,可以有效弥补前两个隐写分析模块在该性能指标方面不足。Since the selection of the feature vector elements of the feature vector set and the selection of the image library balance the sensitivity of the steganalysis algorithm to all steganographic algorithms, it has wide applicability and can effectively make up for the performance of the first two steganalysis modules. Insufficient indicators.
(10)攻击模块9(10) Attack module 9
对检测图像进行攻击,目标是使得攻击后的检测图像中不能正确提取隐秘消息,即破坏隐秘通信的进行,同时力图破解隐秘消息。The goal of attacking the detection image is to make the secret message not be extracted correctly in the detection picture after the attack, that is, to destroy the progress of the secret communication, and at the same time try to crack the secret message.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB2006100184941A CN100367295C (en) | 2006-03-07 | 2006-03-07 | Intelligent image steganalysis system based on three-layer architecture |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB2006100184941A CN100367295C (en) | 2006-03-07 | 2006-03-07 | Intelligent image steganalysis system based on three-layer architecture |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN1818925A CN1818925A (en) | 2006-08-16 |
| CN100367295C true CN100367295C (en) | 2008-02-06 |
Family
ID=36918933
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CNB2006100184941A Expired - Fee Related CN100367295C (en) | 2006-03-07 | 2006-03-07 | Intelligent image steganalysis system based on three-layer architecture |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN100367295C (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| HK1165184A2 (en) * | 2011-08-10 | 2012-09-28 | Easy Printing Network Limited | A method for retrieving associated information using an image |
| CN102594619A (en) * | 2012-02-15 | 2012-07-18 | 南京理工大学常熟研究院有限公司 | Network covert channel detecting method |
| CN102930495B (en) * | 2012-10-16 | 2015-01-21 | 中国科学院信息工程研究所 | Steganography evaluation based steganalysis method |
| CN116366232B (en) * | 2023-03-24 | 2024-10-11 | 国开启科量子技术(北京)有限公司 | Digital asset processing method, device, equipment and medium based on quantum-resistant key |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6332030B1 (en) * | 1998-01-15 | 2001-12-18 | The Regents Of The University Of California | Method for embedding and extracting digital data in images and video |
| US20030021442A1 (en) * | 2001-07-18 | 2003-01-30 | Masahiko Suzaki | Watermark Information embedment device and watermark information detection device |
| US6556689B1 (en) * | 1998-05-29 | 2003-04-29 | University Of Delaware | Watermarking methods for digital images and videos |
| CN1737819A (en) * | 2005-08-29 | 2006-02-22 | 上海师范大学 | A Universal Detection Method for Invisible Information in Digital Image |
-
2006
- 2006-03-07 CN CNB2006100184941A patent/CN100367295C/en not_active Expired - Fee Related
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6332030B1 (en) * | 1998-01-15 | 2001-12-18 | The Regents Of The University Of California | Method for embedding and extracting digital data in images and video |
| US6556689B1 (en) * | 1998-05-29 | 2003-04-29 | University Of Delaware | Watermarking methods for digital images and videos |
| US20030021442A1 (en) * | 2001-07-18 | 2003-01-30 | Masahiko Suzaki | Watermark Information embedment device and watermark information detection device |
| CN1737819A (en) * | 2005-08-29 | 2006-02-22 | 上海师范大学 | A Universal Detection Method for Invisible Information in Digital Image |
Also Published As
| Publication number | Publication date |
|---|---|
| CN1818925A (en) | 2006-08-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN112491796A (en) | Intrusion detection and semantic decision tree quantitative interpretation method based on convolutional neural network | |
| CN107992764B (en) | A kind of sensitive webpage identification and detection method and device | |
| CN110830489B (en) | Method and system for detecting counterattack type fraud website based on content abstract representation | |
| CN112861671B (en) | An identification method for deepfake face images and videos | |
| CN103310235B (en) | A kind of steganalysis method based on parameter identification and estimation | |
| CN114842524B (en) | Face false distinguishing method based on irregular significant pixel cluster | |
| CN110677437A (en) | User camouflage attack detection method and system based on latent space adversarial clustering | |
| CN113592693A (en) | Digital watermarking method, device and system based on Y-Net | |
| CN116153331A (en) | Cross-domain self-adaption-based deep fake voice detection method | |
| CN104636764A (en) | Image steganography analysis method and device | |
| CN117424963A (en) | Image steganalysis method based on CNN and Transformer | |
| CN100367295C (en) | Intelligent image steganalysis system based on three-layer architecture | |
| CN110049034A (en) | A kind of real-time Sybil attack detection method of complex network based on deep learning | |
| CN104077524B (en) | Training method and viruses indentification method and device for viruses indentification | |
| CN120277678B (en) | Sensitive information detection method and system based on multi-mode and steganography detection | |
| CN116258917A (en) | Method and device for classifying malicious software based on TF-IDF transfer entropy | |
| CN116977692A (en) | A data processing method, equipment and computer-readable storage medium | |
| CN114065150B (en) | Picture copyright protection method | |
| CN115622730A (en) | Training method of face attack detection model, face attack detection method and device | |
| CN101527001B (en) | Secret information detecting system based on expert system method | |
| CN116740794B (en) | Face forgery image identification method, system, equipment and storage medium | |
| Liu et al. | FreeA: Human-object interaction detection using free annotation labels | |
| Yin et al. | A feature selection method for improved clonal algorithm towards intrusion detection | |
| CN119341819A (en) | Counterfeit website detection method and device based on large language model | |
| CN119276550A (en) | Malicious encrypted traffic detection method and system based on CNN and Swin-Transformer |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| C17 | Cessation of patent right | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080206 Termination date: 20130307 |