CN109903818A - 基于恒定pH分子动力学模拟的蛋白质质子化状态确定方法 - Google Patents
基于恒定pH分子动力学模拟的蛋白质质子化状态确定方法 Download PDFInfo
- Publication number
- CN109903818A CN109903818A CN201910129727.2A CN201910129727A CN109903818A CN 109903818 A CN109903818 A CN 109903818A CN 201910129727 A CN201910129727 A CN 201910129727A CN 109903818 A CN109903818 A CN 109903818A
- Authority
- CN
- China
- Prior art keywords
- state
- protonation
- protonation state
- molecular dynamics
- simulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005588 protonation Effects 0.000 title claims abstract description 62
- 238000000329 molecular dynamics simulation Methods 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 24
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 22
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 22
- 238000004448 titration Methods 0.000 claims abstract description 14
- 125000000539 amino acid group Chemical group 0.000 claims abstract description 11
- 238000004088 simulation Methods 0.000 claims description 21
- 150000001413 amino acids Chemical class 0.000 claims description 19
- 150000001875 compounds Chemical class 0.000 claims description 16
- 230000005595 deprotonation Effects 0.000 claims description 9
- 238000010537 deprotonation reaction Methods 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 6
- 238000012937 correction Methods 0.000 claims description 6
- 230000008901 benefit Effects 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 230000010354 integration Effects 0.000 claims description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 2
- 238000007614 solvation Methods 0.000 claims description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims 2
- 229910021529 ammonia Inorganic materials 0.000 claims 1
- 238000009795 derivation Methods 0.000 claims 1
- 235000001014 amino acid Nutrition 0.000 description 15
- 235000018102 proteins Nutrition 0.000 description 14
- 230000008569 process Effects 0.000 description 4
- 239000000729 antidote Substances 0.000 description 3
- 231100000614 poison Toxicity 0.000 description 3
- 102100033639 Acetylcholinesterase Human genes 0.000 description 2
- 108010022752 Acetylcholinesterase Proteins 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000003440 toxic substance Substances 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- DYAHQFWOVKZOOW-UHFFFAOYSA-N Sarin Chemical compound CC(C)OP(C)(F)=O DYAHQFWOVKZOOW-UHFFFAOYSA-N 0.000 description 1
- 229940022698 acetylcholinesterase Drugs 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 238000005815 base catalysis Methods 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 235000014304 histidine Nutrition 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 235000018977 lysine Nutrition 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 230000007420 reactivation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 235000002374 tyrosine Nutrition 0.000 description 1
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C10/00—Computational theoretical chemistry, i.e. ICT specially adapted for theoretical aspects of quantum chemistry, molecular mechanics, molecular dynamics or the like
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B15/00—ICT specially adapted for analysing two-dimensional or three-dimensional molecular structures, e.g. structural or functional relations or structure alignment
- G16B15/20—Protein or domain folding
Landscapes
- Theoretical Computer Science (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Computing Systems (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Bioinformatics & Computational Biology (AREA)
- Chemical & Material Sciences (AREA)
- Biophysics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Biotechnology (AREA)
- Evolutionary Biology (AREA)
- Medical Informatics (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明属于分子动力学领域,具体涉及一种基于恒定pH分子动力学模拟的蛋白质质子化状态确定方法,计算参考化合物的ΔGelec,ref;根据模拟目标pH值设置合理的初始质子化状态;进行恒定pH的分子动力学模拟,限制蛋白质主链原子的位置;将质子化状态比例大于99%或者小于1%的氨基酸残基设置为不滴定,其它氨基酸残基滴定,进行常规恒定pH分子动力学模拟,将质子化状态比例大于90%或者小于10%的氨基酸残基设置为不滴定,其它氨基酸残基滴定,分别在pH‑0.5、pH‑0.2、pH、pH+0.2、pH+0.5的条件下进行恒定pH的分子动力学模拟;拟合Hill方程得出最终pKa;质子化状态可由pKa确定。本发明经过多个环节循序确定质子化状态,更快收敛,结果更准确。
Description
技术领域
本发明属于分子动力学领域,具体涉及一种基于恒定pH分子动力学模拟的蛋白质质子化状态确定方法。
背景技术
分子动力学(MD)模拟是生物分子领域用来研究蛋白质的结构和功能的重要工具之一。对于生物体中的蛋白质,其结构和功能强烈依赖于其所处的pH环境。这种依赖主要是由可滴定氨基酸的主要质子化状态随着pH变化发生改变(主要是酸性和碱性氨基酸的侧链)引起的。这些残基的质子化状态对于蛋白体系的稳定性,蛋白体系与周围环境的相互作用,以及依赖于特定质子化状态的酸碱催化或者亲核反应的催化机制都有着深远影响。
目前确定质子化状态主要有基于经验的方法比如H++或者PROPKA,和基于动力学模拟的方法,比如恒定pH的分子动力学模拟。前者快速但是相对准确性较低,后者准确性相对较高但是较耗时。
恒定pH的分子动力学模拟在常规分子动力学模拟的基础上加入蒙特卡洛采样(MC),实现了从一套固定质子化状态的MD对构象和动量采样,结合贯穿整个MD过程中对固定构象使用MC对质子化状态进行采样。在MC采样这一步,随机选择一个滴定残基和它的新的质子化状态,这一质子化或者去质子化过程的转变自由能根据如下公式计算得到:
其中kB是玻尔兹曼常数,T 是温度,pH 是指定的溶液 pH,pKa,ref是合适的参考化合物的pKa,ΔGelec是蛋白中滴定基团计算的自由能的静电项,ΔGelec,ref是参考化合物质子化状态转变自由能的静电项。这里引入一个已知pKa的参考化合物来计算。
由于在实际应用过程中,蛋白质中某些残基的瞬时pKa与其构象有着高度的相关性,二者相互影响。常规恒定pH方法模拟中蛋白质构象波动范围比常规MD大,因此模拟中会出现蛋白质局限在错误的质子化状态和相对高能的构象中的现象。
发明内容
为了更好地控制模拟的发展方向和提高结果的准确性,本发明提出了一套基于AMBER中的离散的恒定pH的分子动力学模拟方法来准确确定蛋白中质子化状态的流程方法。
具体技术方案为:
基于恒定pH分子动力学模拟的蛋白质质子化状态确定方法,包括以下步骤:
(1)计算参考化合物的ΔGelec,ref
AMBER定义了蛋白质中几种常见氨基酸残基参考化合物,如果模拟体系中有未定义的,需自行定义。
使用热力学积分方法计算参考化合物在GB溶剂化模型中可能质子化状态相互转变的自由能ΔG,则初步的ΔGelec,ref由ΔG-pKaRTln10给出;
为了给出一个较准确的ΔGelec,ref,需要对其进行校正:根据Henderson–Hasselbalch(HH)方程,在pH等于pKa时,质子化比例与去质子化比例相等。进行一个简单的常规CpHMD模拟,模拟参数设置应该与后面模拟尽量一致。设置模拟pH为参考化合物pKa,根据推导校正公式为ΔGelec,ref(校正后)=ΔGelec,ref(校正前)-lnK, 其中K为模拟中去质子化状态与质子化状态的比例:使用校正后的ΔGelec,ref对参考化合物在pH为pKa条件下模拟,其质子化状态与去质子化状态比例应该为1:1,否则需继续校正。
若参考化合物有多种质子化状态则需定义每种可能的质子化状态转变及其对应的ΔGelec,ref。
(2)根据模拟目标pH值设置合理的初始质子化状态。在目标pH值下限制蛋白中所有重原子的位置,进行一定时间的恒定pH的分子动力学模拟,统计模拟中所有可滴定氨基酸的质子化状态比例,将优势的质子化状态作为下一步初始的质子化状态。
(3)进行一定时间常规的恒定pH的分子动力学模拟,限制蛋白质主链原子的位置。统计模拟中所有滴定氨基酸的质子化状态比例,将质子化状态比例大于99%或者小于1%的氨基酸残基设置为不滴定,其质子化状态设置为占比多的质子化转改,其它氨基酸残基滴定,作为下一步的初始质子化状态。
(4)进行一定时间的常规恒定pH分子动力学模拟。统计模拟中所有滴定氨基酸的质子化状态比例,将质子化状态比例大于90%或者小于10%的氨基酸残基设置为不滴定,其它氨基酸残基滴定,作为下一步的初始质子化状态。
(5)分别在pH-0.5、 pH-0.2、 pH、 pH+0.2、pH+0.5的条件下进行恒定pH的分子动力学模拟。统计模拟中所有滴定氨基酸的随pH变化的质子化状态比例,拟合Hill方程得出最终pKa。质子化状态可由pKa确定。
本发明提供的基于恒定pH分子动力学模拟的蛋白质质子化状态确定方法,具有以下技术优势:
(1)给出了计算参考化合物ΔGelec,ref的校正方法。
(2)对于蛋白质中含有可滴定氨基酸较多的情况,常规恒定pH的分子动力学模拟方法非常耗时,收敛较慢。该方法经过多个环节循序确定质子化状态,后面滴定的氨基酸越来越少,计算耗时越来越短,相对更快收敛。
(3)确定质子化状态的氨基酸越来越多,滴定的氨基酸越来越少,结果更准确。
具体实施方式
结合实施例说明本发明的具体技术方案。
由于蛋白质中氨基酸的质子化状态很难通过实验测定,下面通过对比文献中其它研究的结果来说明其益处。
神经毒剂沙林与乙酰胆碱酯酶共价结合的复合物与小分子解毒剂HI6结合结构,其PDB编号为2WHP。已有大量文献对该结构进行研究,目的为了阐明HI6解毒的机理以及设计更高效的解毒剂。该蛋白质结构共含有548个氨基酸,模拟中滴定的氨基酸有天冬氨酸、谷氨酸、组氨酸、赖氨酸、酪氨酸。最近的一篇文献(Driant, T.; Nachon, F.; Ollivier,C.; Renard, P. Y.; Derat, E., On the Influence of the Protonation States ofActive Site Residues on AChE Reactivation: A QM/MM Approach. Chembiochem 2017,18 (7), 666-675.)指出解毒反应依赖于质子化的谷氨酸202,以及组氨酸447,而肟类解毒剂应为去质子化。在目标pH值为7的条件下,本实施例使用常规恒定pH的分子动力学模拟无法模拟出文中的质子化状态,而使用改进的恒定pH的分子动力学模拟流程得到了与文献一致的结果。
表1
上表1中method 1是常规恒定pH分子动力学模拟的结果,method 2是本发明的流程。其它未在上表中显示的可滴定氨基酸均为常规质子化状态,即酸性氨基酸为去质子化,碱性氨基酸为质子化。可以看到method 2的pKa计算更接近于文献中报道的质子化状态。
Claims (2)
1.基于恒定pH分子动力学模拟的蛋白质质子化状态确定方法,其特征在于,包括以下步骤:
(1)计算参考化合物的ΔGelec,ref;使用热力学积分方法计算参考化合物在GB溶剂化模型中可能质子化状态相互转变的自由能ΔG,则初步的ΔGelec,ref由ΔG-pKaRTln10给出;
若参考化合物有多种质子化状态则需定义每种可能的质子化状态转变及其对应的ΔGelec,ref;
(2)根据模拟目标pH值设置合理的初始质子化状态;在目标pH值下限制蛋白中所有重原子的位置,进行一定时间的恒定pH的分子动力学模拟,统计模拟中所有可滴定氨基酸的质子化状态比例,将优势的质子化状态作为下一步初始的质子化状态;
(3)进行一定时间常规的恒定pH的分子动力学模拟,限制蛋白质主链原子的位置;统计模拟中所有滴定氨基酸的质子化状态比例,将质子化状态比例大于99%或者小于1%的氨基酸残基设置为不滴定,其质子化状态设置为占比多的质子化转改,其它氨基酸残基滴定,作为下一步的初始质子化状态;
(4)进行一定时间的常规恒定pH分子动力学模拟;统计模拟中所有滴定氨基酸的质子化状态比例,将质子化状态比例大于90%或者小于10%的氨基酸残基设置为不滴定,其它氨基酸残基滴定,作为下一步的初始质子化状态;
(5)分别在pH-0.5、pH-0.2、pH、 pH+0.2、pH+0.5的条件下进行恒定pH的分子动力学模拟;统计模拟中所有滴定氨基酸的随pH变化的质子化状态比例,拟合Hill方程得出最终pKa;质子化状态可由pKa确定。
2.根据权利要求1所述的基于恒定pH分子动力学模拟的蛋白质质子化状态确定方法,其特征在于,所述的步骤(1)中的ΔGelec,ref进行校正:根据Henderson–Hasselbalch方程,在pH等于pKa时,质子化比例与去质子化比例相等;进行常规CpHMD模拟,模拟参数设置与后面模拟尽量一致;设置模拟pH为参考化合物pKa,根据推导校正公式为:
ΔGelec,ref(校正后)=ΔGelec,ref(校正前)-lnK;
其中K为模拟中去质子化状态与质子化状态的比例;
使用校正后的ΔGelec,ref对参考化合物在pH为pKa条件下模拟,其质子化状态与去质子化状态比例为1:1,否则需继续校正。
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910129727.2A CN109903818B (zh) | 2019-02-21 | 2019-02-21 | 基于恒定pH分子动力学模拟的蛋白质质子化状态确定方法 |
| US16/740,504 US20200273544A1 (en) | 2019-02-21 | 2020-01-13 | Method for determining protonation states of protein on basis of constant-ph molecular dynamics simulation |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910129727.2A CN109903818B (zh) | 2019-02-21 | 2019-02-21 | 基于恒定pH分子动力学模拟的蛋白质质子化状态确定方法 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN109903818A true CN109903818A (zh) | 2019-06-18 |
| CN109903818B CN109903818B (zh) | 2022-03-18 |
Family
ID=66945177
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910129727.2A Active CN109903818B (zh) | 2019-02-21 | 2019-02-21 | 基于恒定pH分子动力学模拟的蛋白质质子化状态确定方法 |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US20200273544A1 (zh) |
| CN (1) | CN109903818B (zh) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114360663A (zh) * | 2021-12-30 | 2022-04-15 | 深圳晶泰科技有限公司 | 相对结合自由能贡献的确定方法、装置及存储介质 |
| WO2023102688A1 (zh) * | 2021-12-06 | 2023-06-15 | 深圳晶泰科技有限公司 | 酸度系数确定方法、装置、设备及计算机可读存储介质 |
| WO2023123288A1 (zh) * | 2021-12-30 | 2023-07-06 | 深圳晶泰科技有限公司 | 相对结合自由能贡献的确定方法、装置及存储介质 |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030088392A1 (en) * | 2001-08-30 | 2003-05-08 | Board Of Regents, The University Of Texas System | Ensemble-based analysis of the pH-dependence of stability of proteins |
| US20040148105A1 (en) * | 2002-10-03 | 2004-07-29 | Northeastern University | Computational method for predicting protein interaction sites |
| US20050027458A1 (en) * | 2003-05-13 | 2005-02-03 | Merz Kenneth M. | Quantum mechanics based method for scoring protein-ligand interactions |
| CN102099809A (zh) * | 2008-06-20 | 2011-06-15 | 诺华公司 | 识别蛋白质中大分子结合区域和易聚集区域的方法及其用途 |
| CN105787292A (zh) * | 2014-12-18 | 2016-07-20 | 中国科学院大连化学物理研究所 | 蛋白质折叠的并行预测方法 |
| CN106537151A (zh) * | 2014-07-18 | 2017-03-22 | 萨默费尼根有限公司 | 使用质子转移反应的蛋白质或多肽的混合物的质谱法的方法 |
| CN108623652A (zh) * | 2018-03-13 | 2018-10-09 | 广西科学院 | 一种蛋白质热稳定性改造的方法及其在普鲁兰酶中的应用 |
| CN108804869A (zh) * | 2018-05-04 | 2018-11-13 | 深圳晶泰科技有限公司 | 基于神经网络的分子结构和化学反应能量函数构建方法 |
-
2019
- 2019-02-21 CN CN201910129727.2A patent/CN109903818B/zh active Active
-
2020
- 2020-01-13 US US16/740,504 patent/US20200273544A1/en not_active Abandoned
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030088392A1 (en) * | 2001-08-30 | 2003-05-08 | Board Of Regents, The University Of Texas System | Ensemble-based analysis of the pH-dependence of stability of proteins |
| US20040148105A1 (en) * | 2002-10-03 | 2004-07-29 | Northeastern University | Computational method for predicting protein interaction sites |
| US20050027458A1 (en) * | 2003-05-13 | 2005-02-03 | Merz Kenneth M. | Quantum mechanics based method for scoring protein-ligand interactions |
| CN102099809A (zh) * | 2008-06-20 | 2011-06-15 | 诺华公司 | 识别蛋白质中大分子结合区域和易聚集区域的方法及其用途 |
| CN106537151A (zh) * | 2014-07-18 | 2017-03-22 | 萨默费尼根有限公司 | 使用质子转移反应的蛋白质或多肽的混合物的质谱法的方法 |
| CN105787292A (zh) * | 2014-12-18 | 2016-07-20 | 中国科学院大连化学物理研究所 | 蛋白质折叠的并行预测方法 |
| CN108623652A (zh) * | 2018-03-13 | 2018-10-09 | 广西科学院 | 一种蛋白质热稳定性改造的方法及其在普鲁兰酶中的应用 |
| CN108804869A (zh) * | 2018-05-04 | 2018-11-13 | 深圳晶泰科技有限公司 | 基于神经网络的分子结构和化学反应能量函数构建方法 |
Non-Patent Citations (1)
| Title |
|---|
| 梁芳,马健等: "染色质免疫沉淀-测序:全基因组范围研究 蛋白质-DNA相互作用的新技术", 《生物化学与生物物理进展》 * |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2023102688A1 (zh) * | 2021-12-06 | 2023-06-15 | 深圳晶泰科技有限公司 | 酸度系数确定方法、装置、设备及计算机可读存储介质 |
| CN114360663A (zh) * | 2021-12-30 | 2022-04-15 | 深圳晶泰科技有限公司 | 相对结合自由能贡献的确定方法、装置及存储介质 |
| WO2023123288A1 (zh) * | 2021-12-30 | 2023-07-06 | 深圳晶泰科技有限公司 | 相对结合自由能贡献的确定方法、装置及存储介质 |
| CN114360663B (zh) * | 2021-12-30 | 2024-07-02 | 深圳晶泰科技有限公司 | 相对结合自由能贡献的确定方法、装置及存储介质 |
Also Published As
| Publication number | Publication date |
|---|---|
| US20200273544A1 (en) | 2020-08-27 |
| CN109903818B (zh) | 2022-03-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN109903818A (zh) | 基于恒定pH分子动力学模拟的蛋白质质子化状态确定方法 | |
| Buyel et al. | The use of quantitative structure–activity relationship models to develop optimized processes for the removal of tobacco host cell proteins during biopharmaceutical production | |
| Smith et al. | Spectroscopic and catalytic characterization of a functional FeIIIFeII biomimetic for the active site of uteroferrin and protein cleavage | |
| Mateus et al. | Di-and trinuclear copper (II) complexes of polyaza macrocycles and cryptands as anion receptors | |
| CN107602533B (zh) | 一种r-甲氧咪草烟的制备方法及用途 | |
| Fedotova et al. | Features of local ordering of biocompatible ionic liquids: The case of choline-based amino acid ionic liquids | |
| Georgiou et al. | Pushing the limits of detection of weak binding using fragment-based drug discovery: Identification of new cyclophilin binders | |
| Cardiano et al. | Sequestration of Hg2+ by some biologically important thiols | |
| Harris et al. | Borate binding to siderophores: Structure and stability | |
| Li et al. | Fe porphyrin-based SOD mimic and redox-active compound,(OH) FeTnHex-2-PyP4+, in a rodent ischemic stroke (MCAO) model: efficacy and pharmacokinetics as compared to its Mn analogue,(H2O) MnTnHex-2-PyP5+ | |
| Stevenson et al. | IRMPD spectroscopic and theoretical structural investigations of zinc and cadmium dications bound to histidine dimers | |
| Shumaev et al. | Role of nitric oxide-derived metabolites in reactions of methylglyoxal with lysine and lysine-rich protein leghemoglobin | |
| Bello et al. | Theoretical studies for dendrimer-based drug delivery | |
| Turba et al. | Syntheses, Structures, and Properties of Copper (II) Complexes of Bis (2-pyridylmethyl) Derivatives of o-, m-, and p-Phenylenediamine and Aniline | |
| Oshima et al. | Dominant factors affecting extraction behavior of amino compounds by a calix [6] arene carboxylic acid derivative | |
| Montagna et al. | Interactions of long-chain polyamines with silica studied by molecular dynamics simulations and solid-state NMR spectroscopy | |
| de Souza et al. | The effect of chain size on the modeling of second sphere effects in biomimetic complexes | |
| Rocco et al. | Enhancing Zinc Bioavailability in Rice Using the Novel Synthetic Siderophore Ligand Proline-2′-Deoxymugineic Acid (PDMA): Critical Insights from Metal Binding Studies and Geochemical Speciation Modeling | |
| Suedee et al. | Recognition properties and competitive assays of a dual dopamine/serotonin selective molecularly imprinted polymer | |
| Harwood et al. | Molecular structure and dynamic properties of a sulfonamide derivative of glutathione that is produced under conditions of oxidative stress by hypochlorous acid | |
| Shetty et al. | Iodine and nickel ions adsorption by conjugated copolymers bearing repeating units of dicyclopentapyrenyl and various thiophene derivatives | |
| US10501581B2 (en) | Sequence-defined polymers and methods of making same and using same | |
| Tian et al. | Profiling of amino metabolites in biological samples without protein precipitation using a solid-phase-supported phenyl isothiocyanate-based chemoselective probe | |
| Cheng et al. | Preparation of Temperature-Sensitive Molecularly Imprinted Cryogel for Specific Recognition of Proteins | |
| Bennett et al. | Selective plate-based assay for trace EDTA analysis via boron trifluoride-methanol derivatization UHPLC-QqQ-MS/MS enabling biologic and vaccine processes |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| CB02 | Change of applicant information | ||
| CB02 | Change of applicant information |
Address after: 3 / F, Shunfeng industrial building, No.2 Hongliu Road, Fubao community, Fubao street, Futian District, Shenzhen City, Guangdong Province Applicant after: Shenzhen Jingtai Technology Co.,Ltd. Address before: 518000 4th floor, No.9 Hualian Industrial Zone, Xinshi community, Dalang street, Longhua District, Shenzhen City, Guangdong Province Applicant before: Shenzhen Jingtai Technology Co.,Ltd. |
|
| GR01 | Patent grant | ||
| GR01 | Patent grant |