CN109787846A - A kind of 5G network service quality exception monitoring and prediction technique and system - Google Patents
A kind of 5G network service quality exception monitoring and prediction technique and system Download PDFInfo
- Publication number
- CN109787846A CN109787846A CN201910235520.3A CN201910235520A CN109787846A CN 109787846 A CN109787846 A CN 109787846A CN 201910235520 A CN201910235520 A CN 201910235520A CN 109787846 A CN109787846 A CN 109787846A
- Authority
- CN
- China
- Prior art keywords
- data
- qos
- network
- service quality
- network service
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims abstract description 34
- 230000002159 abnormal effect Effects 0.000 claims abstract description 61
- 238000010801 machine learning Methods 0.000 claims abstract description 28
- 238000012549 training Methods 0.000 claims abstract description 25
- 238000012545 processing Methods 0.000 claims abstract description 9
- 238000003066 decision tree Methods 0.000 claims description 26
- 238000004422 calculation algorithm Methods 0.000 claims description 15
- 230000011664 signaling Effects 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 8
- 238000013500 data storage Methods 0.000 claims description 7
- 238000009826 distribution Methods 0.000 claims description 6
- 238000007781 pre-processing Methods 0.000 claims description 6
- 238000001228 spectrum Methods 0.000 claims description 6
- 238000004140 cleaning Methods 0.000 claims description 2
- 230000005856 abnormality Effects 0.000 abstract description 16
- 238000004891 communication Methods 0.000 abstract description 2
- 238000012806 monitoring device Methods 0.000 abstract 2
- 238000013480 data collection Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 230000002547 anomalous effect Effects 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000000275 quality assurance Methods 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000007635 classification algorithm Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Landscapes
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Description
技术领域technical field
本发明属于通信网络技术领域,具体涉及一种基于决策树的5G网络服务质量异常监测和预测方法及系统。The invention belongs to the technical field of communication networks, and in particular relates to a method and system for abnormal monitoring and prediction of 5G network service quality based on a decision tree.
背景技术Background technique
网络服务质量(QoS,Quality of Service)是保证网络性能的必要支撑,传统的网络服务质量保证采用区分服务Diffserv模型或者集成服务Interserv模型。Diffserv无法保证全局优化,Interserv模型涉及到复杂的信令控制,因此导致现有网络只能提供尽力而为的服务质量而无法提供服务质量的保证。Network Quality of Service (QoS, Quality of Service) is a necessary support to ensure network performance. Traditional network service quality assurance adopts the differentiated service Diffserv model or the integrated service Interserv model. Diffserv cannot guarantee global optimization, and the Interserv model involves complex signaling control, so the existing network can only provide best-effort QoS without guaranteeing QoS.
在海量设备连接,超高流量密度、超高连接数密度和超高移动性场景下,5G网络如何满足用户服务存在巨大挑战,传统的网络服务质量架构无法适应复杂、动态的5G网络应用场景。Under the scenarios of massive device connections, ultra-high traffic density, ultra-high connection density and ultra-high mobility, there are huge challenges in how 5G networks can meet user services. Traditional network QoS architectures cannot adapt to complex and dynamic 5G network application scenarios.
发明内容SUMMARY OF THE INVENTION
鉴于此,本发明提出一种5G网络服务质量异常监测和预测方法及系统,用于监测网络服务异常,提高网络服务质量。In view of this, the present invention proposes a 5G network service quality abnormality monitoring and prediction method and system, which are used to monitor network service abnormality and improve network service quality.
本发明第一方面,提出一种5G网络服务质量异常监测和预测方法,所述方法包括:In a first aspect of the present invention, a method for monitoring and predicting abnormal service quality of a 5G network is proposed, and the method includes:
S1、采集5G网络服务质量数据和网络KPI性能监测数据,所述网络服务质量数据包括用户终端数据、接入网数据、核心网数据;S1. Collect 5G network service quality data and network KPI performance monitoring data, where the network service quality data includes user terminal data, access network data, and core network data;
S2、对所述网络服务质量数据进行预处理并进行标记;S2, preprocessing and marking the network service quality data;
S3、将所述标记后的网络服务质量数据存储至QoS数据库;S3, storing the marked network service quality data in a QoS database;
S4、将所述QoS数据库中所述标记后的网络服务质量数据作为数据集,构建有监督机器学习模型,利用所述数据集对所述有监督机器学习模型进行训练,得到QoS异常监测器和QoS异常预测器;S4. Use the marked network service quality data in the QoS database as a data set, construct a supervised machine learning model, and use the data set to train the supervised machine learning model to obtain a QoS abnormality monitor and QoS anomaly predictor;
S5、采用所述QoS异常监测器实时监测当前5G网络服务质量数据,将监测到的异常数据发送至QoS策略决策模块;S5, using the QoS abnormal monitor to monitor the current 5G network service quality data in real time, and send the monitored abnormal data to the QoS policy decision module;
S6、采用所述QoS异常预测器预测未来5G网络服务质量数据异常,将预测到的异常数据发送至QoS策略决策模块;S6. Use the QoS anomaly predictor to predict future 5G network service quality data anomalies, and send the predicted anomalous data to the QoS policy decision module;
S7、所述QoS策略决策模块标记和存储所述异常数据,更新QoS数据库,报告异常结果并根据所述异常数据作出决策决定,驱动所述决策决定执行。S7. The QoS policy decision module marks and stores the abnormal data, updates the QoS database, reports the abnormal result, and makes a decision based on the abnormal data to drive the execution of the decision.
可选的,步骤S1中:所述用户终端数据包括:用户终端的硬件数据、软件型号版本,安装的应用,终端位置、移动方向、速度,消耗的CPU、内存资源、告警日志;所述接入网数据包括:基站分布、天线信道模式、频谱使用、物理资源虚拟资源使用情况、空口信令、告警日志;所述核心网数据包括:用户服务质量约定,网络切片资源使用,核心网信令、告警日志;所述网络KPI性能监测数据包括:网络带宽、时延、抖动。Optionally, in step S1: the user terminal data includes: hardware data of the user terminal, software model version, installed applications, terminal position, moving direction, speed, consumed CPU, memory resources, and alarm logs; The network access data includes: base station distribution, antenna channel mode, spectrum usage, physical resource and virtual resource usage, air interface signaling, and alarm logs; the core network data includes: user service quality agreement, network slice resource usage, core network signaling , an alarm log; the network KPI performance monitoring data includes: network bandwidth, delay, and jitter.
可选的,述步骤S2的具体过程为:对采集到所述网络服务质量数据的进行清洗、统一格式,结合所述网络KPI性能监测数据对所述网络服务质量数据进行标记,所述标记包括正常和异常。Optionally, the specific process of step S2 is: cleaning and unifying the format of the collected network service quality data, and marking the network service quality data in combination with the network KPI performance monitoring data, where the marking includes: normal and abnormal.
可选的,所述步骤S4中,所述有监督机器学习模型采用决策树算法。Optionally, in the step S4, the supervised machine learning model adopts a decision tree algorithm.
可选的,述步骤S6中,所述QoS异常预测器根据当前5G网络服务质量数据和历史5G网络服务质量数据来预测未来5G网络服务质量数据异常,所述历史5G网络服务质量数据为所述QoS数据库中保存的历史网络服务质量数据记录。Optionally, in step S6, the QoS anomaly predictor predicts future 5G network service quality data anomalies according to current 5G network service quality data and historical 5G network service quality data, and the historical 5G network service quality data is the Historical network quality of service data records saved in the QoS database.
可选的,述步骤S7中,所述QoS策略决策模块标记和存储所述异常数据具体为:自动将所述QoS异常监测器和所述QoS异常预测器的结果进行标记,并将新的标记数据存入所述QoS数据库,更新所述QoS数据库中网络服务质量数据。Optionally, in the step S7, the QoS policy decision module marking and storing the abnormal data is specifically: automatically marking the results of the QoS abnormality monitor and the QoS abnormality predictor, and marking the new The data is stored in the QoS database, and the network service quality data in the QoS database is updated.
本发明第二方面,提供一种5G网络服务质量异常监测和预测系统,所述系统包括:A second aspect of the present invention provides a 5G network service quality abnormal monitoring and prediction system, the system comprising:
数据采集模块:用于采集5G网络服务质量数据和网络KPI性能监测数据,所述网络服务质量数据包括用户终端QoS数据、接入网QoS数据、核心网QoS数据;Data collection module: used to collect 5G network service quality data and network KPI performance monitoring data, the network service quality data includes user terminal QoS data, access network QoS data, and core network QoS data;
数据处理模块:用于对所述网络服务质量数据进行预处理并进行标记;Data processing module: used to preprocess and mark the network service quality data;
Qos数据存储模块:用于存储所述标记后的网络服务质量数据;QoS data storage module: used to store the marked network service quality data;
模型训练模块:用于将所述QoS数据库中所述标记后的网络服务质量数据作为有监督机器学习模型的数据集,构建有监督机器学习模型,对所述有监督机器学习模型进行训练,得到QoS异常监测器和QoS异常预测器Model training module: used to use the marked network service quality data in the QoS database as a data set of a supervised machine learning model, build a supervised machine learning model, train the supervised machine learning model, and obtain QoS Anomaly Monitor and QoS Anomaly Predictor
QoS异常监测器:用于实时监测当前5G网络服务质量数据,将监测到的异常数据发送至QoS策略决策模块;QoS abnormal monitor: used to monitor the current 5G network service quality data in real time, and send the monitored abnormal data to the QoS policy decision module;
QoS异常预测器:用于根据当前5G网络服务质量数据和所述Qos数据存储模块中的历史5G网络服务质量数据预测未来5G网络服务质量数据异常,将预测到的异常数据发送至QoS策略决策模块;QoS anomaly predictor: used to predict future 5G network service quality data anomalies according to the current 5G network service quality data and the historical 5G network service quality data in the QoS data storage module, and send the predicted abnormal data to the QoS policy decision module ;
QoS策略决策模块:用于标记和存储所述异常数据,报告异常结果并根据所述异常数据作出决策决定,驱动所述决策决定执行。QoS policy decision module: used to mark and store the abnormal data, report abnormal results, make a decision based on the abnormal data, and drive the execution of the decision.
可选的,所述数据采集模块具体包括:Optionally, the data collection module specifically includes:
用户终端数据采集单元:用于获取用户终端的硬件数据、软件型号版本,安装的应用,终端位置、移动方向、速度,消耗的CPU、内存资源、告警日志;User terminal data acquisition unit: used to obtain the hardware data, software model version, installed applications, terminal location, moving direction, speed, CPU consumption, memory resources, and alarm logs of the user terminal;
接入网数据采集单元:用于获取基站分布数据、天线信道模式、频谱使用、物理资源虚拟资源使用情况、空口信令、告警日志数据;Access network data acquisition unit: used to acquire base station distribution data, antenna channel mode, spectrum usage, physical resource and virtual resource usage, air interface signaling, and alarm log data;
核心网数据采集单元:用于获取用户服务质量约定,网络切片资源使用,核心网信令、告警日志数据;Core network data collection unit: used to obtain user service quality agreements, network slice resource usage, core network signaling, and alarm log data;
网络KPI性能监测数据采集单元:用于获取网络带宽、时延、抖动数据。Network KPI performance monitoring data collection unit: used to obtain network bandwidth, delay, and jitter data.
可选的,所述模型训练模块采用决策树算法构建所述有监督机器学习模型,训练的结果是一个由节点和分支组成的树状结构,每个非叶子节点都表示所述数据集中的一个属性,其分支即所述属性的某个值或值区间,每个叶子节点即所述数据集中的一个类别,表示网络服务质量异常或正常。Optionally, the model training module uses a decision tree algorithm to construct the supervised machine learning model, and the result of the training is a tree-like structure consisting of nodes and branches, and each non-leaf node represents one of the data sets. Attribute, its branch is a certain value or value range of the attribute, and each leaf node is a category in the data set, indicating that the network service quality is abnormal or normal.
可选的,所述QoS策略决策模块将所述QoS异常监测器和所述QoS异常预测器的异常结果进行标记,并将新的标记数据存入所述QoS数据库,更新所述QoS数据库中网络服务质量数据。Optionally, the QoS policy decision module marks the abnormal results of the QoS abnormality monitor and the QoS abnormality predictor, stores new marked data in the QoS database, and updates the network in the QoS database. Quality of service data.
本发明提出的本发明提出一种5G网络服务质量异常监测和预测方法,通过收集、存储、标记、分析海量的网络终端、无线接入网、核心网的QoS服务质量数据:The invention proposed by the present invention proposes a 5G network service quality abnormal monitoring and prediction method, by collecting, storing, marking, and analyzing massive QoS service quality data of network terminals, wireless access networks, and core networks:
1)可重构历史网络事件和网络服务质量的关联关系;1) The relationship between historical network events and network service quality can be reconstructed;
2)可对当前网络服务质量异常的实时监测,进一步形成网络QoS管理策略,通过软件化、虚拟化、切片化网络编程接口,实现网络资源的自动调度,从而为5G网络用户的服务质量保证,提高服务质量;2) Real-time monitoring of abnormal current network service quality, further forming network QoS management strategies, and automatic scheduling of network resources through software, virtualization, and slicing network programming interfaces, so as to ensure the quality of service for 5G network users, improve service quality;
3)可对未来的可能的网络服务质量异常进行预测,为网络规划和服务质量优化提供依据。3) It can predict possible abnormal network service quality in the future, and provide a basis for network planning and service quality optimization.
附图说明Description of drawings
为了更清楚地说明本发明的技术方案,下面将对本发明技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions of the present invention more clearly, the following briefly introduces the accompanying drawings used in the technical description of the present invention. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention, which are of great significance to the art For those of ordinary skill, other drawings can also be obtained from these drawings without creative labor.
图1为本发明提供的网络服务质量异常监测和预测方法流程示意图;1 is a schematic flowchart of a method for monitoring and predicting abnormal network service quality provided by the present invention;
图2为本发明提供的用户终端数据、接入网数据、核心网数据的标记格式;Fig. 2 is the marking format of user terminal data, access network data, core network data provided by the present invention;
图3为本发明提供的网络服务质量异常监测和预测决策树示意图;3 is a schematic diagram of a decision tree for abnormal monitoring and prediction of network service quality provided by the present invention;
图4为本发明提供的网络服务质量异常监测和预测系统结构示意图。FIG. 4 is a schematic structural diagram of a network service quality abnormality monitoring and prediction system provided by the present invention.
具体实施方式Detailed ways
本发明提出一种基于决策树的5G网络服务质量异常监测和预测方法及系统,通过收集、标记、存储、分析海量的网络终端、无线接入网、核心网的QoS服务质量数据,采用有监督机器学习模型实现网络服务质量异常的实时监测和预测。The present invention proposes a method and system for abnormal monitoring and prediction of 5G network service quality based on decision tree. The machine learning model realizes real-time monitoring and prediction of abnormal network service quality.
从机器学习模型来看,机器学习分为有监督学习、无监督学习和半监督学习。From the perspective of machine learning models, machine learning is divided into supervised learning, unsupervised learning and semi-supervised learning.
在有监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,有监督式学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型餐宿,直到模型的预测结果达到一个预期的准确率,有监督学习算法包括线性回归、决策树、支持向量机等。Under supervised learning, the input data is called "training data", and each set of training data has a clear identification or result, such as "spam" and "non-spam" in the anti-spam system, supervised learning Establish a learning process, compare the predicted results with the actual results of the "training data", and continuously adjust the prediction model until the predicted results of the model reach an expected accuracy rate. Supervised learning algorithms include linear regression, decision trees, Support Vector Machines, etc.
在无监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。常见的应用场景包括关联规则的学习以及聚类等,无监督学习算法包括K-means,层次化聚类等。In unsupervised learning, the data is not specifically identified, and the model is learned to infer some intrinsic structure of the data. Common application scenarios include association rule learning and clustering, and unsupervised learning algorithms include K-means, hierarchical clustering, etc.
在半监督学习方式下,输入数据部分被标识,部分没有被标识,这种学习模型可以用来进行预测,但是模型首先需要学习数据的内在结构以便合理的组织数据来进行预测。In the semi-supervised learning method, the input data is partially identified and partially unmarked. This learning model can be used to make predictions, but the model first needs to learn the internal structure of the data in order to organize the data reasonably to make predictions.
机器学习主要取决于算法、计算能力和数据,获取数据后可以采用在线方式或者离线的方式进行训练和计算,离线方式实时性不高,考虑到网络服务质量保障的实时性要求,本发明采用在线学习和训练方式。Machine learning mainly depends on algorithms, computing power and data. After data is obtained, it can be trained and calculated in an online or offline mode. The offline mode is not very real-time. Considering the real-time requirements of network service quality assurance, the present invention adopts an online method. way of learning and training.
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。In order to make the purpose, features and advantages of the present invention more obvious and understandable, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the following The described embodiments are only some, but not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
请参见图1,本发明提出一种5G网络服务质量异常监测和预测方法,所述方法包括:Referring to FIG. 1, the present invention proposes a method for monitoring and predicting abnormal 5G network service quality, the method includes:
S1、采集5G网络服务质量数据和网络KPI性能监测数据,所述网络服务质量数据包括用户终端数据、接入网数据、核心网数据;S1. Collect 5G network service quality data and network KPI performance monitoring data, where the network service quality data includes user terminal data, access network data, and core network data;
所述用户终端数据包括:用户终端的硬件数据、软件型号版本,安装的应用,终端位置、移动方向、速度,消耗的CPU、内存资源、告警日志;The user terminal data includes: hardware data of the user terminal, software model version, installed applications, terminal location, moving direction, speed, consumed CPU, memory resources, and alarm logs;
所述接入网数据包括:基站分布、天线信道模式、频谱使用、物理资源虚拟资源使用情况、空口信令、告警日志;The access network data includes: base station distribution, antenna channel mode, spectrum usage, usage of physical resources and virtual resources, air interface signaling, and alarm logs;
所述核心网数据包括:用户服务质量约定,网络切片资源使用,核心网信令、告警日志;The core network data includes: user service quality agreement, network slice resource usage, core network signaling, and alarm logs;
所述网络KPI(Key Performance Indication)性能监测数据包括:网络带宽、时延、抖动。The network KPI (Key Performance Indication) performance monitoring data includes: network bandwidth, delay, and jitter.
S2、对所述网络服务质量数据进行预处理并进行标记;S2, preprocessing and marking the network service quality data;
对采集到所述网络服务质量数据的进行清洗、统一格式,结合所述网络KPI性能监测数据对所述网络服务质量数据进行标记,所述标记包括正常和异常。The collected network service quality data is cleaned and formatted, and the network service quality data is marked in combination with the network KPI performance monitoring data, and the mark includes normal and abnormal.
具体的,预处理是为了清除噪声及无关数据纠正错误,处理无效值和缺失值,并将采集到的数据统一规范化,将数据转化为格式化的、易于后续处理的格式。通过网络带宽、时延、抖动等网络KPI性能监测数据,分别将预处理后的用户终端数据、接入网数据、核心网数据标记成正常或异常。网络某些KPI性能数据是可以监测的,比如速率,时延等,可以直接根据监测的这些KPI数据标记对应的采集的用户数据,接入网数据和核心网数据。Specifically, preprocessing is to remove noise and irrelevant data, correct errors, deal with invalid and missing values, uniformly normalize the collected data, and convert the data into a format that is easy for subsequent processing. Through network KPI performance monitoring data such as network bandwidth, delay, and jitter, the preprocessed user terminal data, access network data, and core network data are respectively marked as normal or abnormal. Some KPI performance data of the network can be monitored, such as rate, delay, etc., and the corresponding collected user data, access network data and core network data can be marked directly according to the monitored KPI data.
请参见图2,图2中列出了用户终端数据、接入网数据、核心网数据的标记格式。图2中,Feature1、Feature2等为数据集的属性或特征,对应的列为各项的属性值或值区间,标记的类别标签有两类,为Normal(正常)和Anomaly(异常)。标记后即可通过标记后网络服务质量数据学习标记规则、训练预测模型,最后自动监测当前网络服务质量并按照学习到的规则分类从而预测结果。Please refer to FIG. 2. FIG. 2 lists the markup formats of user terminal data, access network data, and core network data. In Figure 2, Feature1, Feature2, etc. are attributes or features of the dataset, and the corresponding columns are the attribute values or value intervals of each item. There are two types of labeled category labels, Normal (normal) and Anomaly (abnormal). After marking, the marking rules can be learned and the prediction model can be trained through the marked network service quality data. Finally, the current network service quality can be automatically monitored and classified according to the learned rules to predict the results.
S3、将所述标记后的网络服务质量数据存储至QoS数据库;S3, storing the marked network service quality data in a QoS database;
具体的,可采用关系型数据库或者NoSQL数据库或者文件系统进行存储、Specifically, a relational database or NoSQL database or file system can be used for storage,
S4、将所述QoS数据库中所述标记后的网络服务质量数据作为数据集,构建有监督机器学习模型,利用所述数据集对所述有监督机器学习模型进行训练,得到QoS异常监测器和QoS异常预测器;S4. Use the marked network service quality data in the QoS database as a data set, construct a supervised machine learning model, and use the data set to train the supervised machine learning model to obtain a QoS abnormality monitor and QoS anomaly predictor;
所述步骤S4中,所述有监督机器学习模型采用决策树算法。可采用的算法还包括神经网络或支持向量机算法等。In the step S4, the supervised machine learning model adopts a decision tree algorithm. Algorithms that can be used also include neural network or support vector machine algorithms.
决策树算法是一种用于分类的监督学习方法,决策树算法可由训练集数据的特征推断出决策规则,通过创建树状结构来预测输入数据的结果。将所述QoS数据库中所述标记后的网络服务质量数据作为数据集,一般将数据集分为训练数据集和测试数据集,通过训练数据集来生成决策树,从输入数据学习如何预测输出,再使用测试样本集来对生成的决策树进行检验、校正和修下,通过测试数据集中的数据校验决策树生成过程中产生的初步规则,将那些影响准确性的分枝剪除,生成更准确的树状结构,最终以叶子结点的分类结果(正常或异常)作为新输入网络服务质量数据的监测结果。The decision tree algorithm is a supervised learning method for classification. The decision tree algorithm can infer decision rules from the characteristics of the training set data, and predict the result of the input data by creating a tree structure. Taking the marked network service quality data in the QoS database as a data set, the data set is generally divided into a training data set and a test data set, a decision tree is generated by the training data set, and how to predict the output is learned from the input data, Then use the test sample set to test, correct and repair the generated decision tree, verify the preliminary rules generated in the decision tree generation process through the data in the test data set, and prune those branches that affect the accuracy to generate more accurate Finally, the classification result (normal or abnormal) of the leaf node is used as the monitoring result of the newly input network service quality data.
以C4.5决策树算法为例,说明步骤S4的具体过程:Take the C4.5 decision tree algorithm as an example to illustrate the specific process of step S4:
1)计算训练数据集中各个属性的信息增益率,并构建决策树模型。1) Calculate the information gain rate of each attribute in the training data set, and build a decision tree model.
具体的,分类算法基于信息熵,信息熵越大,代表信息所带的新信息越多,则两个数据存在大幅度差异,因而属于不同类;信息熵越小,代表信息所带的新信息越少,则两个数据很可能属于一类。若属性的取值是连续的,则先将连续属性离散化,离散化后,假设属性A的属性值有m个离散后的取值区间,则训练数据集S通过属性A的属性值划分为C1,C2,…,Cm共m个子数据集,|Cp|表示第p个子数据集中样本数量,|S|表示划分之前数据集中样本总数量,Specifically, the classification algorithm is based on information entropy. The larger the information entropy, the more new information the information carries, and the two data are significantly different, so they belong to different categories; the smaller the information entropy, the more new information that the information carries. The less, the two data are likely to belong to one class. If the value of the attribute is continuous, the continuous attribute is firstly discretized. After discretization, assuming that the attribute value of attribute A has m discrete value intervals, the training data set S is divided by the attribute value of attribute A into C 1 , C 2 , ..., C m have m sub-data sets in total, |C p | represents the number of samples in the p-th sub-data set, |S| represents the total number of samples in the data set before division,
记P(Cp)为分类子集Cp在样本集S中出现的频率,P(Cp)=|Cp|/|S|,p=1,2,…,m,分裂之前样本集的熵:Denote P(C p ) as the frequency of the classification subset C p in the sample set S, P(C p )=|C p |/|S|, p=1,2,...,m, the sample set before splitting The entropy of:
对于其中任意属性Ai,假设有t个不同取值aq,q=1,2,…,t,根据Ai的不同取值,可以将S划分为S1,S2,…,St共t个子集,同时可以将C1,C2,…,Cm划分成m*t个子集,每个子集Cpq表示在Ai=aq的条件下属于第p类的样本集合,过属性Ai分裂之后样本集的熵:For any attribute A i , suppose there are t different values a q , q=1, 2,..., t, according to the different values of A i , S can be divided into S 1 , S 2 ,..., S t There are t subsets in total . At the same time, C 1 , C 2 , ..., C m can be divided into m*t subsets. The entropy of the sample set after the attribute A i is split:
其中,熵越小,子集划分的纯度越高。通过属性Ai分裂之后样本集的信息增益为:in, The smaller the entropy, the higher the purity of the subset division. The information gain of the sample set after splitting by attribute A i is:
InfoGain(S,Ai)=H(S)-H(S,Ai)InfoGain(S,A i )=H(S)-H(S,A i )
信息增益InfoGain(S,Ai)表示划分后不确定性下降程度。The information gain InfoGain(S,A i ) represents the degree of uncertainty reduction after division.
属性Ai的分裂信息量:Split information amount of attribute A i :
继续分裂创造新的节点,通过属性Ai分裂之后样本集S的信息增益率为:Continue to split to create new nodes, and the information gain rate of the sample set S after splitting by attribute A i is:
C4.5决策树算法选择最大信息增益率的属性自上而下建立初始决策树,利用测试数据集对初始决策树进行剪枝,出去异常分支,提高分类准确性,得到最终决策树模型。The C4.5 decision tree algorithm selects the attribute with the maximum information gain rate to build the initial decision tree from top to bottom, uses the test data set to prune the initial decision tree, removes abnormal branches, improves the classification accuracy, and obtains the final decision tree model.
请参见图3,异常监测和预测决策树示意图,决策树是一个由节点和分支组成的类流程图的树状结构,其中节点又分为叶子结点和非叶子节点。树的顶层为第一个非叶子节点——根节点,是决策树的起始位置。每个非叶子节点都表示数据集中的某个属性,其分支即所述属性的某个值或值区间。每个叶子节点即数据集中的一个类别,即表示网络服务质量异常或正常。Please refer to Fig. 3, a schematic diagram of anomaly monitoring and prediction decision tree, a decision tree is a tree structure like a flowchart composed of nodes and branches, wherein nodes are further divided into leaf nodes and non-leaf nodes. The top level of the tree is the first non-leaf node, the root node, which is the starting position of the decision tree. Each non-leaf node represents a certain attribute in the dataset, and its branch is a certain value or value range of the attribute. Each leaf node is a category in the dataset, which means that the network service quality is abnormal or normal.
2)构建好的决策树模块即可作为QoS异常监测器,将当前5G网络服务质量输入决策树模型即可监测QoS异常;根据当前5G网络服务质量数据和Qos数据存储模块中的历史5G网络服务质量数据可进一步训练得到QoS异常预测器,预测未来5G网络服务质量数据异常。2) The constructed decision tree module can be used as a QoS anomaly monitor, and the current 5G network service quality can be input into the decision tree model to monitor QoS anomalies; according to the current 5G network service quality data and historical 5G network services in the QoS data storage module The quality data can be further trained to obtain a QoS anomaly predictor to predict future 5G network service quality data anomalies.
S5、采用所述QoS异常监测器实时监测当前5G网络服务质量数据,将监测到的异常数据发送至QoS策略决策模块;S5, using the QoS abnormal monitor to monitor the current 5G network service quality data in real time, and send the monitored abnormal data to the QoS policy decision module;
S6、采用所述QoS异常预测器预测未来5G网络服务质量数据异常,将预测到的异常数据发送至QoS策略决策模块;S6. Use the QoS anomaly predictor to predict future 5G network service quality data anomalies, and send the predicted anomalous data to the QoS policy decision module;
所述步骤S6中,所述QoS异常预测器根据当前5G网络服务质量数据和历史5G网络服务质量数据来预测未来5G网络服务质量数据异常,所述历史5G网络服务质量数据为所述QoS数据库中保存的历史网络服务质量数据记录。In the step S6, the QoS anomaly predictor predicts future 5G network service quality data anomalies according to the current 5G network service quality data and historical 5G network service quality data, and the historical 5G network service quality data is in the QoS database. Saved records of historical network quality of service data.
S7、所述QoS策略决策模块标记和存储所述异常数据,更新QoS数据库,报告异常结果并根据所述异常数据作出决策决定,驱动所述决策决定执行。S7. The QoS policy decision module marks and stores the abnormal data, updates the QoS database, reports the abnormal result, and makes a decision based on the abnormal data to drive the execution of the decision.
所述步骤S7中,所述QoS策略决策模块标记和存储所述异常数据具体为:In the step S7, the QoS policy decision module marking and storing the abnormal data is specifically:
自动将所述QoS异常监测器和所述QoS异常预测器的结果进行标记,并将新的标记数据存入所述QoS数据库,作为历史5G网络服务质量数据保存,更新所述QoS数据库中网络服务质量数据。以此建立历史网络事件和网络服务质量的关联关系,并为下一步训练和预测提供训练依据。QoS数据库更新后当有新的网络服务质量数据输入时,则将更新后的QoS数据库作为新的数据集,训练并预测输入数据中的异常。Automatically mark the results of the QoS anomaly monitor and the QoS anomaly predictor, store the new marked data in the QoS database, save it as historical 5G network service quality data, and update the network services in the QoS database quality data. In this way, the relationship between historical network events and network service quality is established, and the training basis is provided for the next training and prediction. After the QoS database is updated, when new network service quality data is input, the updated QoS database is used as a new data set to train and predict anomalies in the input data.
QoS策略决策模块还根据监测或预测到的异常结果做出决策,比如带宽不够则增加带宽,时延太长,加速队列排队处理等,并驱动决策执行。The QoS policy decision-making module also makes decisions based on the abnormal results monitored or predicted, such as increasing the bandwidth if the bandwidth is not enough, delaying too long, accelerating the queuing process, etc., and driving the decision-making execution.
请参见图4,本发明还提供一种5G网络服务质量异常监测和预测系统,所述系统包括:Referring to FIG. 4, the present invention also provides a 5G network service quality abnormal monitoring and prediction system, the system includes:
数据采集模块410:用于采集5G网络服务质量数据和网络KPI性能监测数据,所述网络服务质量数据包括用户终端QoS数据、接入网QoS数据、核心网QoS数据;Data collection module 410: used to collect 5G network service quality data and network KPI performance monitoring data, where the network service quality data includes user terminal QoS data, access network QoS data, and core network QoS data;
数据处理模块420:用于对所述网络服务质量数据进行预处理并进行标记;Data processing module 420: for preprocessing and marking the network service quality data;
Qos数据存储模块430:用于存储所述标记后的网络服务质量数据;QoS data storage module 430: used to store the marked network service quality data;
模型训练模块440:用于将所述QoS数据库中所述标记后的网络服务质量数据作为有监督机器学习模型的数据集,构建有监督机器学习模型,对所述有监督机器学习模型进行训练,得到QoS异常监测器和QoS异常预测器Model training module 440: used to use the marked network service quality data in the QoS database as a data set of a supervised machine learning model, construct a supervised machine learning model, and train the supervised machine learning model, Get QoS Anomaly Monitor and QoS Anomaly Predictor
QoS异常监测器450:用于实时监测当前5G网络服务质量数据,将监测到的异常数据发送至QoS策略决策模块;QoS abnormality monitor 450: used to monitor the current 5G network service quality data in real time, and send the monitored abnormal data to the QoS policy decision module;
QoS异常预测器460:用于根据当前5G网络服务质量数据和所述Qos数据存储模块中的历史5G网络服务质量数据预测未来5G网络服务质量数据异常,将预测到的异常数据发送至QoS策略决策模块;QoS abnormality predictor 460: used to predict the abnormality of future 5G network service quality data according to the current 5G network service quality data and the historical 5G network service quality data in the QoS data storage module, and send the predicted abnormal data to the QoS policy decision module;
QoS策略决策模块470:用于标记和存储所述异常数据,报告异常结果并根据所述异常数据作出决策决定,驱动所述决策决定执行。QoS policy decision module 470: used to mark and store the abnormal data, report abnormal results, make a decision based on the abnormal data, and drive the execution of the decision.
所述数据采集模块410具体包括:The data collection module 410 specifically includes:
用户终端数据采集单元:用于获取用户终端的硬件数据、软件型号版本,安装的应用,终端位置、移动方向、速度,消耗的CPU、内存资源、告警日志;User terminal data acquisition unit: used to obtain the hardware data, software model version, installed applications, terminal location, moving direction, speed, CPU consumption, memory resources, and alarm logs of the user terminal;
接入网数据采集单元:用于获取基站分布数据、天线信道模式、频谱使用、物理资源虚拟资源使用情况、空口信令、告警日志数据;Access network data acquisition unit: used to acquire base station distribution data, antenna channel mode, spectrum usage, physical resource and virtual resource usage, air interface signaling, and alarm log data;
核心网数据采集单元:用于获取用户服务质量约定,网络切片资源使用,核心网信令、告警日志数据;Core network data collection unit: used to obtain user service quality agreements, network slice resource usage, core network signaling, and alarm log data;
网络KPI性能监测数据采集单元:用于获取网络带宽、时延、抖动数据;Network KPI performance monitoring data collection unit: used to obtain network bandwidth, delay, and jitter data;
所述模型训练模块440采用决策树算法构建所述有监督机器学习模型,训练的结果是一个由节点和分支组成的树状结构,每个非叶子节点都表示所述数据集中的一个属性,其分支即所述属性的某个值或值区间,每个叶子节点即所述数据集中的一个类别,表示网络服务质量异常或正常。The model training module 440 adopts the decision tree algorithm to construct the supervised machine learning model, and the result of the training is a tree structure composed of nodes and branches, each non-leaf node represents an attribute in the data set, which A branch is a certain value or value range of the attribute, and each leaf node is a category in the data set, indicating that the quality of network service is abnormal or normal.
所述QoS策略决策模块470将所述QoS异常监测器和所述QoS异常预测器的异常结果进行标记,并将新的标记数据存入所述QoS数据库,更新所述QoS数据库中网络服务质量数据。The QoS policy decision module 470 marks the abnormal results of the QoS abnormality monitor and the QoS abnormality predictor, stores the new marked data in the QoS database, and updates the network service quality data in the QoS database. .
数据采集模块410、数据处理模块420、模型训练模块440、QoS异常监测器450、QoS异常预测器460、QoS策略决策模块470共同构成5G网络QoS机器学习引擎,根据采集到的用户终端QoS数据、接入网QoS数据、核心网QoS数据以及网络KPI性能监测数据,利用该5G网络QoS机器学习引擎自动检测并预测网络QoS异常,可进一步形成网络QoS管理策略,为5G网络用户的服务质量保证,也为网络规划和网络服务质量优化提供依据。The data collection module 410, the data processing module 420, the model training module 440, the QoS anomaly monitor 450, the QoS anomaly predictor 460, and the QoS policy decision module 470 together constitute a 5G network QoS machine learning engine. Access network QoS data, core network QoS data and network KPI performance monitoring data, using the 5G network QoS machine learning engine to automatically detect and predict network QoS anomalies, can further form network QoS management strategies to ensure service quality for 5G network users, It also provides a basis for network planning and network service quality optimization.
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that, for the convenience and brevity of description, the specific working process of the system, device and unit described above may refer to the corresponding process in the foregoing method embodiments, which will not be repeated here.
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。In the foregoing embodiments, the description of each embodiment has its own emphasis. For parts that are not described or described in detail in a certain embodiment, reference may be made to the relevant descriptions of other embodiments.
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各实施例的模块、单元和/或方法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。Those of ordinary skill in the art can realize that the modules, units and/or method steps of various embodiments described in conjunction with the embodiments disclosed herein can be implemented in electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of the present invention.
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。As mentioned above, the above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them. Although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand: The technical solutions described in the embodiments are modified, or some technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions depart from the spirit and scope of the technical solutions of the embodiments of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910235520.3A CN109787846A (en) | 2019-03-27 | 2019-03-27 | A kind of 5G network service quality exception monitoring and prediction technique and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910235520.3A CN109787846A (en) | 2019-03-27 | 2019-03-27 | A kind of 5G network service quality exception monitoring and prediction technique and system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109787846A true CN109787846A (en) | 2019-05-21 |
Family
ID=66491317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910235520.3A Pending CN109787846A (en) | 2019-03-27 | 2019-03-27 | A kind of 5G network service quality exception monitoring and prediction technique and system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109787846A (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111581045A (en) * | 2020-03-18 | 2020-08-25 | 平安科技(深圳)有限公司 | Database anomaly monitoring method and device, computer device and storage medium |
CN111901816A (en) * | 2020-01-17 | 2020-11-06 | 中兴通讯股份有限公司 | System maintenance method, device, equipment and storage medium |
CN112312427A (en) * | 2019-07-31 | 2021-02-02 | 中国移动通信集团广东有限公司 | A method and electronic device for optimizing network quality |
CN113472590A (en) * | 2021-07-14 | 2021-10-01 | 南京邮电大学 | QoS configuration method based on machine learning in DDS |
CN113541984A (en) * | 2020-04-14 | 2021-10-22 | 中国移动通信集团浙江有限公司 | Method, device and equipment for predicting experience of network slicing service |
WO2021213247A1 (en) * | 2020-04-24 | 2021-10-28 | 华为技术有限公司 | Anomaly detection method and device |
CN113747480A (en) * | 2020-05-28 | 2021-12-03 | 中国移动通信集团浙江有限公司 | Processing method and device for 5G slice fault and computing equipment |
CN113825161A (en) * | 2020-06-18 | 2021-12-21 | 中国移动通信集团浙江有限公司 | 5G slice abnormity detection method and device based on deep self-coding neural network |
CN114091564A (en) * | 2020-08-25 | 2022-02-25 | 中国移动通信集团河北有限公司 | User service exception handling method and device |
CN114143163A (en) * | 2020-08-14 | 2022-03-04 | 中国移动通信集团浙江有限公司 | Slice false alarm identification method and device based on graph attention network |
CN114424601A (en) * | 2019-10-28 | 2022-04-29 | 谷歌有限责任公司 | End-to-end machine learning for wireless networks |
CN114615051A (en) * | 2022-03-09 | 2022-06-10 | 黄河水利职业技术学院 | Network security detection method and system |
CN114676642A (en) * | 2022-04-18 | 2022-06-28 | 大连大学 | 5G network fault prediction method for smart fishery |
CN114757249A (en) * | 2020-12-28 | 2022-07-15 | 北京神州泰岳软件股份有限公司 | Quality evaluation method and device, training method and device and electronic equipment |
CN115460643A (en) * | 2022-08-10 | 2022-12-09 | 广东省科学院智能制造研究所 | Method and system for dynamic analysis and processing of communication network quality of networked unmanned ships |
CN115766513A (en) * | 2022-10-25 | 2023-03-07 | 中邮科通信技术股份有限公司 | Anomaly detection method and device |
CN115996168A (en) * | 2021-10-20 | 2023-04-21 | 慧与发展有限责任合伙企业 | Supervised quality of service change derivation |
CN116233871A (en) * | 2023-01-17 | 2023-06-06 | 广州爱浦路网络技术有限公司 | XR service enhancement method, computer device and storage medium |
CN116302009A (en) * | 2023-05-19 | 2023-06-23 | 微网优联科技(成都)有限公司 | Software updating method and device based on wireless router |
CN116528274A (en) * | 2023-07-05 | 2023-08-01 | 腾讯科技(深圳)有限公司 | Network quality regulation and control method and related equipment |
CN118509527A (en) * | 2024-07-18 | 2024-08-16 | 中国科学院信息工程研究所 | Abnormality detection method and system for multi-dimensional KPI (key performance indicator) time sequence of 5G core network |
CN118524413A (en) * | 2024-07-23 | 2024-08-20 | 北京华迅通信技术有限公司 | Big data-based 5G communication network operation and maintenance platform |
CN119276738A (en) * | 2024-08-13 | 2025-01-07 | 中立道科技有限公司 | A network management method based on 5G embedded network management software |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8615575B2 (en) * | 2008-10-16 | 2013-12-24 | At&T Intellectual Property I, L.P. | Devices, methods, and computer-readable media for providing quality of service optimization via policy-based rearrangements |
CN105119734A (en) * | 2015-07-15 | 2015-12-02 | 中国人民解放军防空兵学院 | Full network anomaly detection positioning method based on robust multivariate probability calibration model |
CN106027288A (en) * | 2016-05-10 | 2016-10-12 | 华北电力大学 | Communication traffic prediction method for distribution line information monitoring service |
CN106779069A (en) * | 2016-12-08 | 2017-05-31 | 国家电网公司 | A kind of abnormal electricity consumption detection method based on neutral net |
CN109343995A (en) * | 2018-10-25 | 2019-02-15 | 金税信息技术服务股份有限公司 | Intelligent O&M analysis system based on multi-source heterogeneous data fusion, machine learning and customer service robot |
-
2019
- 2019-03-27 CN CN201910235520.3A patent/CN109787846A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8615575B2 (en) * | 2008-10-16 | 2013-12-24 | At&T Intellectual Property I, L.P. | Devices, methods, and computer-readable media for providing quality of service optimization via policy-based rearrangements |
CN105119734A (en) * | 2015-07-15 | 2015-12-02 | 中国人民解放军防空兵学院 | Full network anomaly detection positioning method based on robust multivariate probability calibration model |
CN106027288A (en) * | 2016-05-10 | 2016-10-12 | 华北电力大学 | Communication traffic prediction method for distribution line information monitoring service |
CN106779069A (en) * | 2016-12-08 | 2017-05-31 | 国家电网公司 | A kind of abnormal electricity consumption detection method based on neutral net |
CN109343995A (en) * | 2018-10-25 | 2019-02-15 | 金税信息技术服务股份有限公司 | Intelligent O&M analysis system based on multi-source heterogeneous data fusion, machine learning and customer service robot |
Non-Patent Citations (2)
Title |
---|
GUOSHENG ZHU,JUN ZANZ, YANG YANG,AND XIAOYUN QI: "A Supervised Learning Based QoS Assurance Architecture for 5G Networks", 《IEEE ACCESS》 * |
陈胜等: "基于C5.0决策树的NAT设备检测方法", 《计算机科学》 * |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112312427A (en) * | 2019-07-31 | 2021-02-02 | 中国移动通信集团广东有限公司 | A method and electronic device for optimizing network quality |
CN112312427B (en) * | 2019-07-31 | 2023-09-05 | 中国移动通信集团广东有限公司 | A method and electronic device for optimizing network quality |
CN114424601A (en) * | 2019-10-28 | 2022-04-29 | 谷歌有限责任公司 | End-to-end machine learning for wireless networks |
CN114424601B (en) * | 2019-10-28 | 2025-01-28 | 谷歌有限责任公司 | End-to-end machine learning for wireless networks |
CN111901816A (en) * | 2020-01-17 | 2020-11-06 | 中兴通讯股份有限公司 | System maintenance method, device, equipment and storage medium |
CN111581045B (en) * | 2020-03-18 | 2024-05-28 | 平安科技(深圳)有限公司 | Database anomaly monitoring method, device, computer device and storage medium |
CN111581045A (en) * | 2020-03-18 | 2020-08-25 | 平安科技(深圳)有限公司 | Database anomaly monitoring method and device, computer device and storage medium |
CN113541984A (en) * | 2020-04-14 | 2021-10-22 | 中国移动通信集团浙江有限公司 | Method, device and equipment for predicting experience of network slicing service |
WO2021213247A1 (en) * | 2020-04-24 | 2021-10-28 | 华为技术有限公司 | Anomaly detection method and device |
CN113747480A (en) * | 2020-05-28 | 2021-12-03 | 中国移动通信集团浙江有限公司 | Processing method and device for 5G slice fault and computing equipment |
CN113747480B (en) * | 2020-05-28 | 2024-05-07 | 中国移动通信集团浙江有限公司 | Processing method and device for 5G slice faults and computing equipment |
CN113825161A (en) * | 2020-06-18 | 2021-12-21 | 中国移动通信集团浙江有限公司 | 5G slice abnormity detection method and device based on deep self-coding neural network |
CN113825161B (en) * | 2020-06-18 | 2023-08-04 | 中国移动通信集团浙江有限公司 | 5G slice anomaly detection method and device based on deep autoencoder neural network |
CN114143163A (en) * | 2020-08-14 | 2022-03-04 | 中国移动通信集团浙江有限公司 | Slice false alarm identification method and device based on graph attention network |
CN114143163B (en) * | 2020-08-14 | 2023-11-14 | 中国移动通信集团浙江有限公司 | Slice false alarm identification method and device based on graph attention network |
CN114091564A (en) * | 2020-08-25 | 2022-02-25 | 中国移动通信集团河北有限公司 | User service exception handling method and device |
CN114757249A (en) * | 2020-12-28 | 2022-07-15 | 北京神州泰岳软件股份有限公司 | Quality evaluation method and device, training method and device and electronic equipment |
CN113472590A (en) * | 2021-07-14 | 2021-10-01 | 南京邮电大学 | QoS configuration method based on machine learning in DDS |
CN115996168A (en) * | 2021-10-20 | 2023-04-21 | 慧与发展有限责任合伙企业 | Supervised quality of service change derivation |
CN115996168B (en) * | 2021-10-20 | 2024-04-05 | 慧与发展有限责任合伙企业 | Supervised quality of service change derivation |
CN114615051A (en) * | 2022-03-09 | 2022-06-10 | 黄河水利职业技术学院 | Network security detection method and system |
CN114676642A (en) * | 2022-04-18 | 2022-06-28 | 大连大学 | 5G network fault prediction method for smart fishery |
CN115460643A (en) * | 2022-08-10 | 2022-12-09 | 广东省科学院智能制造研究所 | Method and system for dynamic analysis and processing of communication network quality of networked unmanned ships |
CN115766513A (en) * | 2022-10-25 | 2023-03-07 | 中邮科通信技术股份有限公司 | Anomaly detection method and device |
CN116233871B (en) * | 2023-01-17 | 2023-12-15 | 广州爱浦路网络技术有限公司 | XR service enhancement method, computer device and storage medium |
CN116233871A (en) * | 2023-01-17 | 2023-06-06 | 广州爱浦路网络技术有限公司 | XR service enhancement method, computer device and storage medium |
CN116302009B (en) * | 2023-05-19 | 2023-08-08 | 微网优联科技(成都)有限公司 | Software updating method and device based on wireless router |
CN116302009A (en) * | 2023-05-19 | 2023-06-23 | 微网优联科技(成都)有限公司 | Software updating method and device based on wireless router |
CN116528274A (en) * | 2023-07-05 | 2023-08-01 | 腾讯科技(深圳)有限公司 | Network quality regulation and control method and related equipment |
CN116528274B (en) * | 2023-07-05 | 2023-09-22 | 腾讯科技(深圳)有限公司 | Network quality regulation and control method and related equipment |
CN118509527A (en) * | 2024-07-18 | 2024-08-16 | 中国科学院信息工程研究所 | Abnormality detection method and system for multi-dimensional KPI (key performance indicator) time sequence of 5G core network |
CN118509527B (en) * | 2024-07-18 | 2024-09-24 | 中国科学院信息工程研究所 | Anomaly detection method and system for multi-dimensional KPI time series of 5G core network |
CN118524413A (en) * | 2024-07-23 | 2024-08-20 | 北京华迅通信技术有限公司 | Big data-based 5G communication network operation and maintenance platform |
CN119276738A (en) * | 2024-08-13 | 2025-01-07 | 中立道科技有限公司 | A network management method based on 5G embedded network management software |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109787846A (en) | A kind of 5G network service quality exception monitoring and prediction technique and system | |
CN111694879B (en) | A multivariate time series abnormal pattern prediction method and data collection and monitoring device | |
US10708795B2 (en) | Artificial intelligence-based network advisor | |
WO2021052394A1 (en) | Model training method, apparatus, and system | |
EP3968243A1 (en) | Method and apparatus for realizing model training, and computer storage medium | |
WO2020077672A1 (en) | Method and device for training service quality evaluation model | |
JP7401677B2 (en) | Model update system, model update method and related equipment | |
CN118647092A (en) | A method and system for comprehensive management of power distribution communication network | |
CN118741572B (en) | A satellite-ground integrated Internet of Things communication processing method and system based on multi-network integration | |
WO2024124975A1 (en) | Network quality evaluation method, apparatus and device, and storage medium and program product | |
US20210287115A1 (en) | Decomposed machine learning model evaluation system | |
CN113660687B (en) | Network difference cell processing method, device, equipment and storage medium | |
CN117354251A (en) | Automatic extraction method for electric power Internet of things terminal characteristics | |
CN115550139B (en) | Fault root cause positioning method, device, system, electronic equipment and storage medium | |
CN114818467B (en) | A Method for Accurate Situation Analysis of Satellite Communication System | |
CN119811619A (en) | A personalized health monitoring method based on multi-instrument data fusion | |
CN110874663A (en) | Fault optimization method and device for uninterruptible power supply of wind generating set | |
CN118915963A (en) | Automatic storage method and system based on AI algorithm | |
CN118627958A (en) | Smart community management system based on multi-source data fusion | |
CN118093529A (en) | A method and device for marking power grid data types | |
CN114757448B (en) | An optimal value chain construction method between manufacturing links based on data space model | |
CN111597097B (en) | Big data processing method and system | |
CN116522213A (en) | Service state level classification and classification model training method and electronic equipment | |
Ming et al. | Ensemble learning based sleeping cell detection in cloud radio access networks | |
CN115374978A (en) | Rate prediction method and device based on ping service data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190521 |
|
RJ01 | Rejection of invention patent application after publication |