[go: up one dir, main page]

CN108613674A - A kind of attitude error suppressing method based on adaptive differential Evolutionary BP neural network - Google Patents

A kind of attitude error suppressing method based on adaptive differential Evolutionary BP neural network Download PDF

Info

Publication number
CN108613674A
CN108613674A CN201810248952.3A CN201810248952A CN108613674A CN 108613674 A CN108613674 A CN 108613674A CN 201810248952 A CN201810248952 A CN 201810248952A CN 108613674 A CN108613674 A CN 108613674A
Authority
CN
China
Prior art keywords
carrier
time
matrix
attitude
inertial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810248952.3A
Other languages
Chinese (zh)
Inventor
王秋滢
张明惠
刘凯悦
匡春旭
钟万青
尹娟
程铭
郭铮
崔旭飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201810248952.3A priority Critical patent/CN108613674A/en
Publication of CN108613674A publication Critical patent/CN108613674A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/02Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by astronomical means
    • G01C21/025Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by astronomical means with the use of startrackers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Navigation (AREA)

Abstract

The invention discloses a kind of attitude error suppressing methods based on adaptive differential Evolutionary BP neural network, belong to field of inertia technology.Including initializing inertia/star sensor integrated navigation system;Acquire the data of star sensor and the output of inertia component;Navigation calculation is carried out to inertia component output data;Posture of the naval vessel relative to inertial system is resolved using star sensor output data;Combining current time using ADE BPNN, interior integrated navigation posture predicts relative inertness system of carrier system attitude angle for the previous period;Star sensor measurement error is compensated using prediction posture and resolves naval vessel position using the star sensor output information after compensation;The navigation information of acquisition is combined navigation calculation;It stores and exports integrated navigation information.The present invention predicts star sensor posture by adaptive differential Evolutionary BP neural network, solves the problems, such as star sensor star chart " hangover " caused by ship sway, the applicability of inertia/star sensor integrated navigation system when enhancing ship sway.

Description

一种基于自适应差分进化BP神经网络的姿态误差抑制方法A Pose Error Suppression Method Based on Adaptive Differential Evolutionary BP Neural Network

技术领域technical field

本发明属于惯性技术领域中减小导航信息误差的方法,具体涉及一种基于自适应差分进化BP神经网络的姿态误差抑制方法。The invention belongs to a method for reducing navigation information errors in the inertial technical field, and in particular relates to an attitude error suppression method based on an adaptive differential evolution BP neural network.

背景技术Background technique

惯性/星敏感器组合导航是一种以惯性导航系统(Inertial Navigation System,INS)为主的导航系统,可为载体提供实时速度、姿态和位置信息。INS主要利用陀螺仪和加速度计测量载体角速度和线运动信息。经导航解算后得到导航信息;星敏感器通过拍摄星图并与自身星图库作对比,得到安装载体相对于惯性空间的姿态信息。惯性/星敏感器组合导航系统以星敏感器解算的导航信息为基准,对INS的发散式定位误差进行周期性重校,其不需要任何外界信息,是一种全自主导航系统。惯性/星敏感器组合导航系统具有实时性强、导航精度高、全自主等优点,被广泛应用于船舶导航中。然而,由于舰船水平摇摆使星敏感器拍摄的星图具有“拖尾”现象,影响星敏感器的解算精度,进而影响惯性/星敏感器组合导航精度。Inertial/star sensor integrated navigation is a navigation system based on the inertial navigation system (Inertial Navigation System, INS), which can provide real-time velocity, attitude and position information for the carrier. INS mainly uses gyroscopes and accelerometers to measure carrier angular velocity and linear motion information. The navigation information is obtained after navigation calculation; the star sensor obtains the attitude information of the installation carrier relative to the inertial space by taking a star map and comparing it with its own star library. The inertial/star sensor integrated navigation system uses the navigation information calculated by the star sensor as a benchmark to periodically recalibrate the divergent positioning error of the INS. It does not require any external information and is a fully autonomous navigation system. The inertial/star sensor integrated navigation system has the advantages of strong real-time performance, high navigation accuracy, and full autonomy, and is widely used in ship navigation. However, due to the horizontal swing of the ship, the star image taken by the star sensor has a "smearing" phenomenon, which affects the calculation accuracy of the star sensor, and then affects the inertial/star sensor integrated navigation accuracy.

《中国惯性技术学报》2010年18卷第4期中由杨波等人撰写的《弹载惯性/卫星/星光高精度组合导航》一文中,提出了对陀螺误差和星敏感器安装偏差角的在线自标定方法,抑制了器件偏差对导航精度的影响;《中国空间科学技术》2013年6月第3期中由张承等人撰写的《直接敏感地平的空天飞行器惯性/天文组合方法》一文中,提出了采用星敏感器和陀螺仪构造惯性基准,并在此基础上进行基于红外地平仪的天文定位解算,最后进行惯性/天文组合定位的方法,抑制了陀螺的漂移误差;公开号为CN105737858A的专利在2016年7月6日公开的《一种机载惯导系统姿态参数校准方法与装置》,该方法使用精度高的高动态星敏感器输出的姿态数据为基准完成机载INS姿态参数的动态在线校准;《IEEE SENSORSJOURNAL》2017年17卷第21期中由杨延强等人撰写的《In-flight Calibration of Gyrosand Star Sensor with Observability Analysis for SINS/CNS Integration》一文中,通过分析基于奇异值的误差状态的可观测度,提出了一种四位解耦校准方法,抑制了器件偏差对导航精度的影响,以上文献都提出了能够抑制器件偏差的方法,并且多以弹载、机载为应用背景,并没有针对船用环境下,由于舰船摇摆这一特殊应用环境造成的星图“拖尾”引起的星敏感器解算信息不精确问题进行深入研究。In the article "Missile Inertial/Satellite/Starlight High Precision Integrated Navigation" written by Yang Bo et al. in "Journal of Inertial Technology of China" in Volume 18, Issue 4, 2010, an online self-automatic method for gyro error and star sensor installation deviation angle is proposed. The calibration method suppresses the influence of device deviation on navigation accuracy; in the article "Inertial/Astronomical Combination Method for Aerospace Vehicles Directly Sensitive to Horizon" written by Zhang Cheng et al. in the third issue of "China Space Science and Technology" in June 2013, Proposes the use of star sensors and gyroscopes to construct inertial references, and on this basis, performs astronomical positioning calculations based on infrared horizons, and finally performs inertial/astronomical combined positioning, which suppresses the drift error of gyroscopes; the publication number is CN105737858A The patent of "A Method and Device for Calibrating Attitude Parameters of Airborne Inertial Navigation System" published on July 6, 2016, this method uses the attitude data output by the high-precision high-dynamic star sensor as a reference to complete the attitude parameters of the airborne INS In the article "In-flight Calibration of Gyrosand Star Sensor with Observability Analysis for SINS/CNS Integration" written by Yang Yanqiang et al. in "IEEE SENSORSJOURNAL", Volume 17, Issue 21, 2017, by analyzing the error based on singular value State observability, a four-bit decoupling calibration method is proposed, which suppresses the influence of device deviation on navigation accuracy. The above documents have proposed methods that can suppress device deviation, and most of them use missile-borne and airborne applications as backgrounds. , and did not conduct an in-depth study on the inaccurate information calculated by the star sensor caused by the "tailing" of the star map caused by the special application environment of ship swaying in the marine environment.

发明内容Contents of the invention

本发明的目的在于提供提高导航精度,增强导航信息适用性的一种基于自适应差分进化BP神经网络的姿态误差抑制方法。The purpose of the present invention is to provide a method for suppressing attitude errors based on adaptive differential evolution BP neural network that improves navigation accuracy and enhances the applicability of navigation information.

本发明的目的通过如下技术方案来实现:The purpose of the present invention is achieved through the following technical solutions:

基于ADE-BPNN,将惯性/星敏感器组合导航系统的一段时间内组合导航信息作为输入,预测出当前t时刻载体姿态,利用卡尔曼滤波对t时刻预测载体姿态和t时刻星敏感器解算载体姿态进行数据融合,对星敏感器的导航误差进行估计、补偿,得到星敏感器高精度导航信息,与INS导航信息进行组合导航解。Based on ADE-BPNN, the integrated navigation information of the inertial/star sensor integrated navigation system for a period of time is used as input to predict the current carrier attitude at time t, and the Kalman filter is used to predict the carrier attitude at time t and solve the star sensor at time t Data fusion is performed on the attitude of the carrier, and the navigation error of the star sensor is estimated and compensated, and the high-precision navigation information of the star sensor is obtained, which is combined with the INS navigation information for navigation solution.

一种基于自适应差分进化BP神经网络的姿态误差抑制方法,包括以下步骤:A posture error suppression method based on adaptive differential evolution BP neural network, comprising the following steps:

步骤1:上电,初始化惯性/星敏感器组合导航系统。Step 1: Power on and initialize the inertial/star sensor integrated navigation system.

步骤2:采集星敏感器和惯性组件输出数据。Step 2: Collect the output data of the star sensor and inertial components.

步骤3:对步骤2中惯性组件输出数据进行导航解算,得到载体位置载体三向速度载体三轴姿态角其中,分别表示纬度、经度; 分别表示东向、北向、天向速度;姿态角包括纵摇角、横摇角和航向角,分别由 表示。Step 3: Carry out navigation calculation on the output data of the inertial component in step 2 to obtain the position of the carrier Carrier three-way speed Carrier three-axis attitude angle in, represent latitude and longitude, respectively; Respectively represent eastward, northward, skyward speed; attitude angle includes pitch angle, roll angle and heading angle, respectively by express.

步骤4:由步骤2中星敏感器输出相对于惯性空间的姿态矩阵得到载体相对惯性系姿态角Step 4: The attitude matrix relative to the inertial space is output by the star sensor in step 2 Get the attitude angle of the carrier relative to the inertial system which is

其中,b表示载体坐标系,i表示惯性系,表示载体系到惯性系转换矩阵;cbimn(m,n=1,2,3)表示中第m行、第n列矩阵元素;arcsin为三角函数中的反正弦函数,arctan为三角函数中的反正切函数;分别表示载体相对惯性系的纵摇角、横摇角和航向角。Among them, b represents the carrier coordinate system, i represents the inertial system, represents the transformation matrix from the carrier system to the inertial system; c bimn (m,n=1,2,3) represents In the mth row, the nth column matrix element; arcsin is the arcsine function in the trigonometric function, and arctan is the arctangent function in the trigonometric function; Respectively represent the pitch angle, roll angle and heading angle of the carrier relative to the inertial system.

步骤5:利用ADE-BPNN预测t时刻载体相对惯性系姿态角其中,t表示当前时刻,分别表示载体相对惯性系纵摇角、横摇角和航向角的预测值。Step 5: Use ADE-BPNN to predict the attitude angle of the carrier relative to the inertial system at time t Among them, t represents the current moment, Respectively represent the predicted values of the carrier's pitch angle, roll angle and heading angle relative to the inertial system.

步骤6:构造卡尔曼滤波器1,以星敏感器测量误差δφCi(i=x,y,z)为状态量,步骤4中星敏感器解算载体姿态和步骤5中预测载体姿态之差为观测量,解算δφCi(i=x,y,z),利用解算结果对步骤4解算结果进行补偿,得到φCi(i=x,y,z)。其中,δφCx、δφCy、δφCz分别表示星敏感器纵摇角、横摇角和航向角误差;φCx、φCy、φCz分别表示载体相对惯性系的纵摇角、横摇角和航向角。Step 6: Construct the Kalman filter 1, take the star sensor measurement error δφ Ci (i=x, y, z) as the state quantity, the difference between the carrier attitude calculated by the star sensor in step 4 and the predicted carrier attitude in step 5 As an observation quantity, calculate δφ Ci (i=x, y, z), and use the calculation result to compensate the calculation result of step 4 to obtain φ Ci (i=x, y, z). Among them, δφ Cx , δφ Cy , δφ Cz denote the pitch angle, roll angle and heading angle error of the star sensor respectively; φ Cx , φ Cy , φ Cz denote the pitch angle, roll angle and Heading.

步骤7:根据转换矩阵间的数学关系,得到地球坐标系相对准地理坐标系的转换矩阵转换过程为进一步解算得到载体的位置,即Step 7: Obtain the transformation matrix of the earth coordinate system relative to the quasi-geographical coordinate system according to the mathematical relationship between the transformation matrices The conversion process is Further calculation to obtain the position of the carrier, namely

其中,分别表示纬度和经度;e表示地球系,N表示准地理坐标系,表示地球系到准地理坐标系的转换矩阵;ceNmn(m,n=1,2,3)表示中第m行、第n列矩阵元素;表示载体系到准地理坐标系的转换矩阵;表示载体系到惯性系转换矩阵;角标T表示矩阵转置;表示地球系到惯性系转换矩阵。in, Respectively represent latitude and longitude; e represents the earth system, N represents the quasi-geographical coordinate system, Indicates the conversion matrix from the earth system to the quasi-geographical coordinate system; c eNmn (m,n=1,2,3) indicates In the mth row, nth column matrix element; Represents the transformation matrix from the carrier system to the quasi-geographical coordinate system; Indicates the transformation matrix from the carrier system to the inertial system; the subscript T indicates the matrix transposition; Represents the transformation matrix from the earth system to the inertial system.

步骤8:构造卡尔曼滤波器2,以步骤7解算位置与步骤3中INS解算位置之差λCS为观测量,INS位置误差δλS,速度误差δvSi(i=x,y,z),失准角Φi(i=x,y,z),三轴陀螺常值误差εi(i=x,y,z),三轴加速度计零位偏置误差ΔAi(i=x,y,z)为状态量,解算δλS、δvSi(i=x,y,z)、Φi(i=x,y,z)、εi(i=x,y,z)、ΔAi(i=x,y,z),对步骤3解算结果进行补偿,得到载体位置λ,速度vi(i=x,y,z),姿态角φi(i=x,y,z)。其中,δλS分别表示纬度、经度误差;δvSx、δvSy、δvSz分别表示东向、北向和天向速度误差;Φx、Φy、Φz分别表示纵摇失准角、横摇失准角、航向失准角。Step 8: Construct a Kalman filter 2, and use the difference between the position calculated in step 7 and the position calculated by INS in step 3 λ CS is the observation quantity, INS position error δλ S , velocity error δv Si (i=x,y,z), misalignment angle Φ i (i=x,y,z), three-axis gyroscope constant error ε i (i=x,y,z), The zero offset error ΔA i (i=x, y, z) of the three-axis accelerometer is the state quantity, and the solution δλ S , δv Si (i=x,y,z), Φ i (i=x,y,z), ε i (i=x,y,z), ΔA i (i=x,y,z) , compensate the solution result of step 3, and obtain the carrier position λ, velocity v i (i=x, y, z), attitude angle φ i (i=x, y, z). in, δλ S represent the latitude and longitude errors respectively; δv Sx , δv Sy , δv Sz represent the eastward, northward and celestial velocity errors respectively; Φ x , Φ y , Φ z represent the pitch misalignment angle and roll misalignment angle respectively , heading misalignment angle.

步骤9:将步骤8中得到的导航信息载体位置、速度和姿态角存储并输出。Step 9: Store and output the position, velocity and attitude angle of the navigation information carrier obtained in step 8.

本发明的有益效果在于:The beneficial effects of the present invention are:

在得到舰船正常工作的组合导航信息后,结合ADE-BPNN算法,预测出星敏感器输出惯性姿态,消除星图“拖尾”对星敏感器输出姿态角的影响,与INS进行组合导航解算,输出导航信息。(1)增强了在舰船出现水平摇摆时惯性/星敏感器组合导航系统的适用性,减小了因舰船摇摆导致的误差补偿不充分问题;(2)不需要任何外界辅助信息即可提高定位精度;(3)计算量小,简单易实现。After obtaining the integrated navigation information of the normal operation of the ship, combined with the ADE-BPNN algorithm, the output inertial attitude of the star sensor is predicted, and the influence of the "tailing" of the star map on the output attitude angle of the star sensor is eliminated, and the integrated navigation solution with INS is carried out. Calculate and output the navigation information. (1) The applicability of the inertial/star sensor integrated navigation system is enhanced when the ship is swaying horizontally, and the problem of insufficient error compensation caused by the ship swaying is reduced; (2) No external auxiliary information is required Improve positioning accuracy; (3) Small amount of calculation, simple and easy to implement.

附图说明Description of drawings

图1为本发明的组合导航算法流程图;Fig. 1 is the combined navigation algorithm flowchart of the present invention;

图2为利用本发明进行的仿真试验结果;Fig. 2 is the simulation test result utilizing the present invention to carry out;

图3为利用本发明进行的实测实验结果;Fig. 3 is the actual measurement experiment result that utilizes the present invention to carry out;

图4为实测实验舰船航行轨迹。Figure 4 is the actual measurement of the experimental ship's trajectories.

具体实施方式Detailed ways

下面结合附图对本发明的具体实施方式作进一步说明:The specific embodiment of the present invention will be further described below in conjunction with accompanying drawing:

如图1所示,本发明提供一种针对惯性/星敏感器的组合导航算法,具体包括如下步骤:As shown in Figure 1, the present invention provides a kind of integrated navigation algorithm for inertial/star sensor, specifically comprises the following steps:

步骤1:上电,初始化惯性/星敏感器组合导航系统。导航初始化,需初始化系统:Step 1: Power on and initialize the inertial/star sensor integrated navigation system. To initialize the navigation, the system needs to be initialized:

(1)初始化INS初值:船体的载体位置λ0(单位均为度),载体三向速度vi0(i=x,y,z)(单位均为m/s),载体三轴姿态角φi0(i=x,y,z)(单位均为度);初始化转换矩阵初始化四元数q0(1) Initialize the initial value of INS: the carrier position of the hull λ 0 (units are degrees), carrier three-way velocity v i0 (i=x, y, z) (units are m/s), carrier three-axis attitude angle φ i0 (i=x, y, z) ( are in degrees); initialize the transformation matrix Initialize the quaternion q 0 ;

(2)卡尔曼滤波器1参数初值:状态变量初值δφCi0(i=x,y,z),均方误差阵Pp0,系统噪声方阵Qp,量测噪声方阵Rp,量测阵Hp其余初值根据实际情况设定。(2) Initial value of Kalman filter 1 parameter: initial value of state variable δφ Ci0 (i=x, y, z), mean square error matrix P p0 , system noise square matrix Q p , measurement noise square matrix R p , Measuring array H p ; The remaining initial values are set according to the actual situation.

(3)卡尔曼滤波器2参数初值:状态变量初值δvS0i(i=x,y,z)、δλS0、Φi0(i=x,y,z)、εi0(i=x,y,z)、ΔAi0(i=x,y,z),均方误差阵P0,系统噪声方阵Q,量测噪声方阵R,量测阵H;(3) Initial value of Kalman filter 2 parameters: initial value of state variable δv S0i (i=x,y,z), δλ S0 , Φ i0 (i=x,y,z), ε i0 (i=x,y,z), ΔA i0 (i=x,y,z), mean square error matrix P 0 , system noise square matrix Q, measurement noise square matrix R, measurement matrix H;

其余初值根据实际情况设定。 The remaining initial values are set according to the actual situation.

初始化转换矩阵计算如下:The initialization transformation matrix is calculated as follows:

其中,n表示导航系,表示初始载体系到导航系的转移矩阵;Among them, n represents the navigation system, Represents the transition matrix from the initial carrier system to the navigation system;

初始化四元数q0计算如下:The initialization quaternion q 0 is calculated as follows:

q00=a,其中q0=[q00q01q02q03]T,cbnij(i,j=1,2,3)表示中第i行、第j列矩阵元素;q 00 =a, in q 0 =[q 00 q 01 q 02 q 03 ] T , c bnij (i,j=1,2,3) means In row i, column j matrix element;

导航过程中,利用该初始信息进行更新,得到任意时刻载体的位置、速度和姿态角。During the navigation process, the initial information is used for updating to obtain the position, velocity and attitude angle of the carrier at any time.

步骤2:系统实时采集星敏感器输出矩阵惯性组件加速度计输出的三轴加速度和陀螺仪输出的三轴角速度其中,分别表示加速度计测量的比力在载体系oxb轴、oyb轴、ozb轴上的分量(单位均为m/s); 分别表示陀螺仪测量的角速度在载体系oxb轴、oyb轴、ozb轴上的分量(单位均为rad/s)。Step 2: The system collects the star sensor output matrix in real time The three-axis acceleration output by the inertial component accelerometer and the three-axis angular velocity output by the gyroscope in, Respectively represent the components of the specific force measured by the accelerometer on the ox b -axis, oy b -axis, and oz b -axis of the carrier system (the unit is m/s); Respectively represent the components of the angular velocity measured by the gyroscope on the ox b -axis, oy b -axis, and oz b -axis of the carrier system (the unit is rad/s).

步骤3:对步骤2中惯性组件采集数据进行导航解算:Step 3: Carry out navigation calculation on the data collected by the inertial component in step 2:

四元数姿态矩阵更新:Quaternion pose matrix update:

设任意时刻载体系相对导航系的转动四元数为q=[q0q1q2q3]T,四元数的及时修正如下:Suppose the rotation quaternion of the carrier system relative to the navigation system at any time is q=[q 0 q 1 q 2 q 3 ] T , the timely correction of the quaternion is as follows:

其中,分别表示qi(i=0,1,2,3)的变化率;in, respectively represent the rate of change of q i (i=0,1,2,3);

将t时刻载体系相对导航系的转动四元数qi(t)(i=0,1,2,3)代替式(4)中qi(i=0,1,2,3),得到t时刻转动四元数的变化率在t+1时刻载体的转动四元数为Replace q i (i=0,1,2,3) in formula (4) with the rotation quaternion q i (t)(i=0,1,2,3) of the carrier system relative to the navigation system at time t, and get The rate of change of the rotation quaternion at time t The rotation quaternion of the carrier at time t+1 is

其中式中ωi(i=x,y,z)省略了上角标b;T为采样时间;当t=1时,q(1)为步骤1中的载体初始四元数q0in In the formula, ω i (i=x, y, z) omits the superscript b; T is the sampling time; When t=1, q(1) is the initial quaternion q 0 of the carrier in step 1.

根据q(t+1)中元素qi(t+1)(i=0,1,2,3),更新捷联矩阵 Update the strapdown matrix according to the element q i (t+1) (i=0,1,2,3) in q(t+1)

其中,上式中的qi(i=0,1,2,3)为式(5)中qi(t+1)(i=0,1,2,3),更新姿态信息:Among them, q i (i=0,1,2,3) in the above formula is q i (t+1) (i=0,1,2,3) in formula (5), update attitude information:

利用转换关系式将加速度计沿载体系测量的比力信息投影转换到导航系,利用下列微分方程求解载体运动速度:Use conversion relations The projection of the specific force information measured by the accelerometer along the carrier system is converted to the navigation system, and the following differential equation is used to solve the carrier velocity:

其中, 表示的变化率; 分别表示加速度计测量的比力在导航系oxn轴、oyn轴、ozn轴上的分量(单位均为m/s);in, express rate of change; Respectively represent the components of the specific force measured by the accelerometer on the ox n- axis, oy n- axis, and oz n -axis of the navigation system (the unit is m/s);

将t时刻比力在导航系的投影fi n(t)(i=x,y,z),代替式(8)中的fi n(i=x,y,z),得到载体速度变化率得到t+1时刻载体速度和位置:Substitute f i n (i=x, y, z) in formula (8) by comparing the projection f i n (t) (i=x, y, z) in the navigation system at time t to obtain the carrier velocity change Rate Get the speed and position of the carrier at time t+1:

其中,R表示地球半径;当t=1时,为步骤1中载体速度初始值vi0(i=x,y,z)。Among them, R represents the radius of the earth; When t=1, is the initial value v i0 (i=x, y, z) of the carrier velocity in step 1.

至此,根据式(7)、(9)得到INS解算的载体速度、位置和姿态角。So far, the carrier velocity, position and attitude angle calculated by INS are obtained according to formulas (7) and (9).

步骤4:由步骤2中星敏感器输出相对于惯性空间的姿态矩阵得到载体相对惯性系姿态角Step 4: The attitude matrix relative to the inertial space is output by the star sensor in step 2 Get the attitude angle of the carrier relative to the inertial system which is

步骤5:利用ADE-BPNN预测t时刻载体相对惯性系姿态角具体过程如下:Step 5: Use ADE-BPNN to predict the attitude angle of the carrier relative to the inertial system at time t The specific process is as follows:

(1)初始化操作:初始化参数,包括种群规模N、基因维数D、变异因子F、交叉速率CR,以及每个基因的取值范围[Umin,Umax],利用式xij=Umin+rand×(Umax-Umin)随机初始化种群;其中i=1,2,...,N,j=1,2,...,D,rand表示服从均匀分布的随机数。(1) Initialization operation: initialization parameters, including population size N, gene dimension D, variation factor F, crossover rate CR, and the value range of each gene [U min , U max ], using the formula x ij = U min +rand×(U max -U min ) randomly initializes the population; where i=1,2,...,N, j=1,2,...,D, and rand represents a random number subject to uniform distribution.

(2)判断当前最小适应度值是否达到μ或迭代次数达到最大,若是则ADE迭代停止,转至步骤(6);否则进行下一步。(2) Judging whether the current minimum fitness value reaches μ or the number of iterations reaches the maximum, if so, the ADE iteration stops and goes to step (6); otherwise, proceed to the next step.

(3)生成后代子群:对每个目标向量进行变异操作,产生变异向量对变异向量进行交叉操作产生实验个体将目标个体与其对应实验个体竞争,比较两者适应度值,仅当的适应度值较更优时才被选为子代,否则直接将作为子代。重复此步骤产生后代子群。其中,G表示迭代次数。(3) Generate offspring subgroups: for each target vector Perform a mutation operation to generate a mutation vector pair mutation vector Perform crossover operation to generate experimental individuals target individuals Corresponding experiment individual Compete, compare the fitness values of the two, only if The fitness value of It is selected as the offspring when it is better, otherwise it will be directly as offspring. Repeat this step to generate offspring subpopulations. Among them, G represents the number of iterations.

(4)评估后代子群的适应值,最小适应值是当前最优值,相应的子群即为当前最优个体值。(4) Evaluate the fitness value of the offspring subgroup, the minimum fitness value is the current optimal value, and the corresponding subgroup is the current optimal individual value.

(5)令G=G+1,转至步骤(2)。(5) Let G=G+1, go to step (2).

(6)将ADE的最佳个体分配为BPNN的初始连接权值和阈值。(6) Assign the best individual of ADE as the initial connection weight and threshold of BPNN.

(7)将t时刻组合导航水平姿态信息φi(i=x,y)与阈值θi(i=x,y)进行比较,当水平姿态信息小于阈值时判定舰船发生摇摆,使用t-n~t-1时刻组合导航姿态信息对BPNN进行训练,得到最优模型。(7) Comparing the integrated navigation horizontal attitude information φ i (i=x, y) at time t with the threshold θ i (i=x, y), when the horizontal attitude information is less than the threshold, it is determined that the ship is swaying, using tn~ Combining navigation attitude information at time t-1 to train BPNN to obtain the optimal model.

(8)利用(7)中模型,预测出t时刻载体相对导航系的姿态角φpi(i=x,y,z),利用预测姿态角得到载体系到导航系的转换矩阵根据转换矩阵之间的关系,得到载体系相对惯性系的转换矩阵转换过程为进一步解算得到载体相对惯性系的姿态角预测值,即:(8) Using the model in (7), predict the attitude angle φ pi (i=x, y, z) of the carrier relative to the navigation system at time t, and use the predicted attitude angle to obtain the transformation matrix from the carrier system to the navigation system According to the relationship between the transformation matrices, the transformation matrix of the carrier system relative to the inertial system is obtained The conversion process is Further calculation is performed to obtain the predicted value of the attitude angle of the carrier relative to the inertial system, namely:

其中,表示中第m行、第n列元素;表示地球系到惯性系转换矩阵,由地球转速和导航时间得到;表示地球系到导航系的转换矩阵,由t-1时刻组合导航位置λ得到。in, express The element in row m and column n; Indicates the transformation matrix from the earth system to the inertial system, which is obtained from the earth speed and navigation time; Represents the conversion matrix from the earth system to the navigation system, and the navigation position is combined at time t-1 λ is obtained.

步骤6:构造卡尔曼滤波器1,以星敏感器测量误差δφCi(i=x,y,z)为状态量,步骤4中星敏感器解算载体姿态和步骤5中预测载体姿态之差为观测量,具体滤波过程如下:Step 6: Construct the Kalman filter 1, take the star sensor measurement error δφ Ci (i=x, y, z) as the state quantity, the difference between the carrier attitude calculated by the star sensor in step 4 and the predicted carrier attitude in step 5 The specific filtering process is as follows:

利用星敏感器的惯性姿态误差模型,结合卡尔曼滤波,对惯性姿态进行误差修正如下:Using the inertial attitude error model of the star sensor, combined with the Kalman filter, the error correction for the inertial attitude is as follows:

其中,Pp(t)表示t时刻估计均方误差,Pp(t/t-1)表示t-1时刻到t时刻一步预测均方误差,Fp(t/t-1)表示t-1时刻到t时刻的状态转移矩阵,Gp(t-1)表示t-1时刻的噪声驱动阵,Qp(t-1)表示t-1时刻系统噪声方差阵,Hp表示量测矩阵,Rp表示量测噪声方差阵,Kp(t)表示t时刻滤波增益矩阵。Among them, P p (t) represents the estimated mean square error at time t, P p (t/t-1) represents the mean square error of one-step prediction from time t-1 to time t, and F p (t/t-1) represents the mean square error of t- The state transition matrix from time 1 to time t, G p (t-1) represents the noise driving matrix at time t-1, Q p (t-1) represents the system noise variance matrix at time t-1, and H p represents the measurement matrix , R p represents the measurement noise variance matrix, and K p (t) represents the filter gain matrix at time t.

t时刻状态估计和估计均方误差的更新矩阵为:The update matrix of state estimation and estimated mean square error at time t is:

其中,Xp(t)表示t时刻状态估计量,Xp(t)=[δφCx δφCy δφCz]T,当t=1时,状态量Xp(1)中元素为步骤1中卡尔曼滤波器1的状态量初值δφCi0(i=x,y,z)。根据解算结果,对步骤4解算结果进行补偿,得到惯性姿态角φCi(i=x,y,z)。Among them, X p (t) represents the state estimator at time t, X p (t) = [δφ Cx δφ Cy δφ Cz ] T , when t=1, the element in the state quantity X p (1) is Karl in step 1 The initial value of state quantity δφ Ci0 (i=x, y, z) of Mann filter 1. According to the calculation result, the calculation result of step 4 is compensated to obtain the inertial attitude angle φ Ci (i=x, y, z).

步骤7:根据转换矩阵间的数学关系,得到地球坐标系相对准地理坐标系的转换矩阵转换过程为进一步解算得到载体的位置,即Step 7: Obtain the transformation matrix of the earth coordinate system relative to the quasi-geographical coordinate system according to the mathematical relationship between the transformation matrices The conversion process is Further calculation to obtain the position of the carrier, namely

载体系到准地理系的转换矩阵由步骤3中解算的水平姿态得到,载体系到惯性系转换矩阵由步骤6中解算结果惯性姿态角得到。Transformation matrix from carrier system to quasi-geographical system From the horizontal attitude calculated in step 3 Get, the transformation matrix from the carrier system to the inertial system Obtained from the inertial attitude angle calculated in step 6.

步骤8:构造卡尔曼滤波器2,以步骤7解算位置与步骤3中INS解算位置之差λCS为观测量,INS位置误差δλS,速度误差δvSi(i=x,y,z),失准角Φi(i=x,y,z),三轴陀螺常值误差εi(i=x,y,z),三轴加速度计零位偏置误差ΔAi(i=x,y,z)为状态量,具体滤波过程如下:Step 8: Construct a Kalman filter 2, and use the difference between the position calculated in step 7 and the position calculated by INS in step 3 λ CS is the observation quantity, INS position error δλ S , velocity error δv Si (i=x,y,z), misalignment angle Φ i (i=x,y,z), three-axis gyroscope constant error ε i (i=x,y,z), The zero offset error ΔA i (i=x, y, z) of the three-axis accelerometer is a state quantity, and the specific filtering process is as follows:

利用载体的速度、位置和失准角误差模型,结合卡尔曼滤波,对载体状态量进行误差修正如下:Using the speed, position and misalignment angle error model of the carrier, combined with the Kalman filter, the error correction of the carrier state quantity is as follows:

其中,P(t)表示t时刻估计均方误差,P(t/t-1)表示t-1时刻到t时刻一步预测均方误差,F(t/t-1)表示t-1时刻到t时刻的状态转移矩阵,G(t-1)表示t-1时刻的噪声驱动阵,Q(t-1)表示t-1时刻系统噪声方差阵,H表示量测矩阵,R表示量测噪声方差阵,K(t)表示t时刻滤波增益矩阵。Among them, P(t) represents the estimated mean square error at time t, P(t/t-1) represents the mean square error of one-step prediction from time t-1 to time t, and F(t/t-1) represents the estimated mean square error from time t-1 to time t. The state transition matrix at time t, G(t-1) represents the noise driving array at time t-1, Q(t-1) represents the system noise variance matrix at time t-1, H represents the measurement matrix, and R represents the measurement noise Variance matrix, K(t) represents the filter gain matrix at time t.

t时刻状态估计和估计均方误差的更新矩阵为:The update matrix of state estimation and estimated mean square error at time t is:

其中,X(t)表示t时刻状态估计量,当t=1时,状态量X(1)中元素为步骤1中卡尔曼滤波器2的状态量初值δvS0i(i=x,y,z)、δλS0、Φi0(i=x,y,z)、εi0(i=x,y,z)、ΔAi0(i=x,y,z)。根据解算结果,对步骤3中INS解算结果进行补偿,得到导航信息载体位置λ,速度vi(i=x,y,z),姿态角φi(i=x,y,z)。Wherein, X (t) represents the state estimation quantity at time t, when t=1, the element in the state quantity X (1) is the state quantity initial value δv S0i (i=x, y, z), δλ S0 , Φ i0 (i=x,y,z), ε i0 (i=x,y,z), ΔA i0 (i=x,y,z). According to the calculation result, the INS calculation result in step 3 is compensated to obtain the position of the navigation information carrier λ, velocity v i (i=x, y, z), attitude angle φ i (i=x, y, z).

步骤9:将步骤8中得到的导航信息载体位置、速度和姿态角存储并输出。Step 9: Store and output the position, velocity and attitude angle of the navigation information carrier obtained in step 8.

实施例:Example:

对本发明有益效果通过方针和实测实验得以验证:Beneficial effect of the present invention is verified by guideline and measured experiment:

仿真实验:Simulation:

船舶航行路线:直线运动Vessel sailing route: linear motion

系统初始化参数如下:The system initialization parameters are as follows:

舰船运动参数:舰船速度:vx0=0m/s,vy0=0m/s,vz0=0m/sShip motion parameters: ship speed: v x0 = 0m/s, v y0 = 0m/s, v z0 = 0m/s

舰船姿态: Ship attitude:

摇摆对舰船速度的影响: Effect of sway on ship speed:

均匀分布在[0,2π]内 Uniformly distributed in [0,2π]

高频率振动对舰船速度的影响: Effect of high frequency vibration on ship speed:

均匀分布在[0,2π]内 Uniformly distributed in [0,2π]

当地经纬度:λ0=126.6705°Local latitude and longitude: λ 0 =126.6705°

陀螺参数:陀螺常值漂移:0.01°/hGyro parameters: Gyro constant drift: 0.01°/h

陀螺刻度因数误差:1×10-5 Gyro scale factor error: 1×10 -5

陀螺白噪声误差:0.001°/hGyro white noise error: 0.001°/h

加速度计参数:加速度计零偏:10-4gAccelerometer parameters: Accelerometer bias: 10 -4 g

加速度计刻度因数误差:1×10-5 Accelerometer scale factor error: 1×10 -5

加速度计白噪声误差:10-5gAccelerometer white noise error: 10 -5 g

ADE-BPNN参数:ADE-BPNN parameters:

最佳拟合网络有20个输入神经元,10个隐藏神经元和1个输出神经元The best fit network has 20 input neurons, 10 hidden neurons and 1 output neuron

最大迭代次数:100次Maximum number of iterations: 100

训练目标误差:0.00004Training target error: 0.00004

学习率:0.1Learning rate: 0.1

隐藏层函数:logsigHidden layer function: logsig

激活层函数:purelinActivation layer function: purelin

训练函数:trainlmTraining function: trainlm

连接权值和阈值范围:[-1,1]Connection weight and threshold range: [-1,1]

人口大小:N=50Population size: N=50

最大迭代次数:GenM=50Maximum number of iterations: GenM=50

精度要求:μ=0.15Accuracy requirement: μ=0.15

交叉率:CR=0.1Cross rate: CR=0.1

突变因子最小值:Fmin=0.2Minimum mutation factor: F min =0.2

突变因子最大值:Fmax=0.6Maximum mutation factor: F max =0.6

卡尔曼滤波器1数值设置:Kalman filter 1 value setting:

Pp0=diag([0.01 0.01 0.01]2)P p0 =diag([0.01 0.01 0.01] 2 )

Qp=diag([0.01 0.01 0.01]2)Q p =diag([0.01 0.01 0.01] 2 )

Rp=diag([0.001 0.001 0.001]2)R p =diag([0.001 0.001 0.001] 2 )

卡尔曼滤波器2数值设置:Kalman filter 2 value setting:

P0=diag([10 10 0.0005 0.0005 0.05 0.05 0.15 0.01 0.01 0.01 10-5g 10-5g10-5g]2)P 0 =diag([10 10 0.0005 0.0005 0.05 0.05 0.15 0.01 0.01 0.01 10 -5 g 10 -5 g10 -5 g] 2 )

Q=diag([0.5×10-5g 0.5×10-5g O1×2 0.5×0.01 0.5×0.01 0.5×0.01 O1×6]2)Q=diag([0.5×10 -5 g 0.5×10 -5 g O 1×2 0.5×0.01 0.5×0.01 0.5×0.01 O 1×6 ] 2 )

R=diag([100R 100R]2)R=diag([100R 100R] 2 )

采样频率:0.1sSampling frequency: 0.1s

采样时间:1hSampling time: 1h

实测实验:Measured experiment:

舰船航行路线:如图4所示。Ship navigation route: as shown in Figure 4.

陀螺参数:动态范围:±100°/sGyro parameters: Dynamic range: ±100°/s

零偏:≤0.01°/hZero deviation: ≤0.01°/h

比例因子的非线性度:≤20ppmNon-linearity of scale factor: ≤20ppm

星敏感器参数:视野角度:24°Star sensor parameters: Field of view: 24°

星际观察水平:不小于7级Interstellar observation level: not less than level 7

数据更新频率:20HzData update frequency: 20Hz

姿态精度:5″Attitude accuracy: 5″

利用发明所述方法,得到在有风浪情况下有、无ADE-BPNN算法的船体惯性/星敏感器组合导航信息误差曲线。图2表示仿真结果比较曲线,图3表示是实测实验结果比较曲线。结果表明本发明减小了船体水平摇摆时,星图“拖尾”对星敏感器解算导航信息的影响,进而较好抑制了惯性/星敏感器组合导航误差,可以满足实际需求。By using the method described in the invention, the error curve of the integrated navigation information of the hull inertial/star sensor with and without the ADE-BPNN algorithm is obtained under the condition of wind and waves. Figure 2 shows the comparison curve of the simulation results, and Figure 3 shows the comparison curve of the measured experimental results. The results show that the present invention reduces the influence of the "tailing" of the star map on the navigation information calculated by the star sensor when the ship is swaying horizontally, and further suppresses the combined navigation error of the inertial/star sensor better, which can meet the actual needs.

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.

Claims (8)

1.一种基于自适应差分进化BP神经网络的姿态误差抑制方法,其特征在于,包括以下步骤:1. a posture error suppression method based on adaptive differential evolution BP neural network, is characterized in that, comprises the following steps: (1)上电,初始化惯性/星敏感器组合导航系统;(1) Power on, initialize the inertial/star sensor integrated navigation system; (2)系统实时采集星敏感器输出矩阵惯性组件加速度计输出的三轴加速度和陀螺仪输出的三轴角速度其中,分别表示加速度计测量的比力在载体系oxb轴、oyb轴、ozb轴上的分量,单位均为m/s; 分别表示陀螺仪测量的角速度在载体系oxb轴、oyb轴、ozb轴上的分量,单位均为rad/s;(2) The system collects the star sensor output matrix in real time The three-axis acceleration output by the inertial component accelerometer and the three-axis angular velocity output by the gyroscope in, Respectively represent the components of the specific force measured by the accelerometer on the ox b -axis, oy b -axis, and oz b -axis of the carrier system, and the unit is m/s; Respectively represent the components of the angular velocity measured by the gyroscope on the ox b -axis, oy b -axis, and oz b -axis of the carrier system, and the unit is rad/s; (3)对步骤(2)中惯性组件采集数据进行导航解算;(3) Carry out navigation solution to the data collected by inertial components in step (2); (4)由步骤(2)中星敏感器输出相对于惯性空间的姿态矩阵得到载体相对惯性系姿态角 (4) The attitude matrix relative to the inertial space is output by the star sensor in step (2) Get the attitude angle of the carrier relative to the inertial system (5)利用ADE-BPNN预测t时刻载体相对惯性系姿态角其中,t表示当前时刻,分别表示载体相对惯性系纵摇角、横摇角和航向角的预测值;(5) Use ADE-BPNN to predict the attitude angle of the carrier relative to the inertial system at time t Among them, t represents the current moment, respectively represent the predicted values of the carrier’s pitch angle, roll angle and heading angle relative to the inertial system; (6)构造卡尔曼滤波器1,以星敏感器测量误差δφCi(i=x,y,z)为状态量,步骤(4)中星敏感器解算载体姿态和步骤(5)中预测载体姿态之差为观测量;根据解算结果,对步骤(4)解算结果进行补偿,得到惯性姿态角φCi(i=x,y,z);(6) Construct the Kalman filter 1, take the star sensor measurement error δφ Ci (i=x, y, z) as the state quantity, the star sensor in step (4) calculates the attitude of the carrier and the prediction in step (5) carrier attitude difference is the observation quantity; according to the solution result, the step (4) solution result is compensated to obtain the inertia attitude angle φ Ci (i=x, y, z); (7)根据转换矩阵间的数学关系,得到地球坐标系相对准地理坐标系的转换矩阵转换过程为进一步解算得到载体的位置,载体系到准地理系的转换矩阵由步骤(3)中解算的水平姿态得到,载体系到惯性系转换矩阵由步骤(6)中解算结果惯性姿态角得到;(7) According to the mathematical relationship between the transformation matrices, the transformation matrix of the earth coordinate system relative to the geographic coordinate system is obtained The conversion process is Further calculation to obtain the position of the carrier and the transformation matrix from the carrier system to the quasi-geographical system From the horizontal attitude calculated in step (3) Get, the transformation matrix from the carrier system to the inertial system Obtained by the solution result inertial attitude angle in the step (6); (8)构造卡尔曼滤波器2,以步骤(7)解算位置与步骤(3)中INS解算位置之差λCS为观测量,INS位置误差速度误差δvSi(i=x,y,z),失准角Φi(i=x,y,z),三轴陀螺常值误差εi(i=x,y,z),三轴加速度计零位偏置误差ΔAi(i=x,y,z)为状态量,根据解算结果,对步骤(3)中INS解算结果进行补偿,得到导航信息载体位置λ,速度vi(i=x,y,z),姿态角φi(i=x,y,z);(8) Construct a Kalman filter 2, and use the difference between the position calculated in step (7) and the position calculated by INS in step (3) λ CS is the observation quantity, INS position error Velocity error δv Si (i=x,y,z), misalignment angle Φ i (i=x,y,z), three-axis gyro constant error ε i (i=x,y,z), three-axis acceleration Calculate the zero position offset error ΔA i (i=x, y, z) as the state quantity, according to the calculation result, compensate the INS calculation result in step (3), and obtain the position of the navigation information carrier λ, velocity v i (i=x,y,z), attitude angle φ i (i=x,y,z); (9)将步骤(8)中得到的导航信息载体位置、速度和姿态角存储并输出。(9) Store and output the position, velocity and attitude angle of the navigation information carrier obtained in step (8). 2.根据权利要求1所述的一种基于自适应差分进化BP神经网络的姿态误差抑制方法,其特征在于,所述的步骤(1)具体包括:2. a kind of attitude error suppression method based on adaptive differential evolution BP neural network according to claim 1, is characterized in that, described step (1) specifically comprises: (1.1)初始化INS初值:船体的载体位置λ0(单位均为度),载体三向速度vi0(i=x,y,z)(单位均为m/s),载体三轴姿态角φi0(i=x,y,z)(单位均为度);初始化转换矩阵初始化四元数q0(1.1) Initialize the initial value of INS: the carrier position of the hull λ 0 (units are degrees), carrier three-way velocity v i0 (i=x, y, z) (units are m/s), carrier three-axis attitude angle φ i0 (i=x, y, z) ( are in degrees); initialize the transformation matrix Initialize the quaternion q 0 ; (1.2)卡尔曼滤波器1参数初值:状态变量初值δφCi0(i=x,y,z),均方误差阵Pp0,系统噪声方阵Qp,量测噪声方阵Rp,量测阵Hp其余初值根据实际情况设定。(1.2) Initial value of Kalman filter 1 parameter: initial value of state variable δφ Ci0 (i=x, y, z), mean square error matrix P p0 , system noise square matrix Q p , measurement noise square matrix R p , Measuring array H p ; The remaining initial values are set according to the actual situation. (1.3)卡尔曼滤波器2参数初值:状态变量初值δvS0i(i=x,y,z)、δλS0、Φi0(i=x,y,z)、εi0(i=x,y,z)、ΔAi0(i=x,y,z),均方误差阵P0,系统噪声方阵Q,量测噪声方阵R,量测阵H;(1.3) Initial value of Kalman filter 2 parameters: initial value of state variable δv S0i (i=x,y,z), δλ S0 , Φ i0 (i=x,y,z), ε i0 (i=x,y,z), ΔA i0 (i=x,y,z), mean square error matrix P 0 , system noise square matrix Q, measurement noise square matrix R, measurement matrix H; 其余初值根据实际情况设定。 The remaining initial values are set according to the actual situation. 初始化转换矩阵计算如下:The initialization transformation matrix is calculated as follows: 其中,n表示导航系,表示初始载体系到导航系的转移矩阵;Among them, n represents the navigation system, Represents the transition matrix from the initial carrier system to the navigation system; 初始化四元数q0计算如下:The initialization quaternion q 0 is calculated as follows: q00=a,其中q0=[q00 q01 q02 q03]T,cbnij(i,j=1,2,3)表示中第i行、第j列矩阵元素;q 00 =a, in q 0 =[q 00 q 01 q 02 q 03 ] T , c bnij (i,j=1,2,3) means In row i, column j matrix element; 导航过程中,利用该初始信息进行更新,得到任意时刻载体的位置、速度和姿态角。During the navigation process, the initial information is used for updating to obtain the position, velocity and attitude angle of the carrier at any time. 3.根据权利要求1所述的一种基于自适应差分进化BP神经网络的姿态误差抑制方法,其特征在于,所述的步骤(3)具体包括:3. a kind of attitude error suppression method based on adaptive differential evolution BP neural network according to claim 1, is characterized in that, described step (3) specifically comprises: (3.1)四元数姿态矩阵更新:(3.1) Quaternion attitude matrix update: 设任意时刻载体系相对导航系的转动四元数为q=[q0 q1 q2 q3]T,四元数的及时修正如下:Suppose the rotation quaternion of the carrier system relative to the navigation system at any time is q=[q 0 q 1 q 2 q 3 ] T , the timely correction of the quaternion is as follows: 其中,分别表示qi(i=0,1,2,3)的变化率;in, respectively represent the rate of change of q i (i=0,1,2,3); (3.2)将t时刻载体系相对导航系的转动四元数qi(t)(i=0,1,2,3)代替式(4)中qi(i=0,1,2,3),得到t时刻转动四元数的变化率在t+1时刻载体的转动四元数为(3.2) Replace q i (i=0,1,2,3) in formula (4) with the rotation quaternion q i (t)(i=0,1,2,3) of the carrier system relative to the navigation system at time t ), to get the rate of change of the rotation quaternion at time t The rotation quaternion of the carrier at time t+1 is 其中式中ωi(i=x,y,z)省略了上角标b;T为采样时间;当t=1时,q(1)为步骤1中的载体初始四元数q0in In the formula, ω i (i=x, y, z) omits the superscript b; T is the sampling time; When t=1, q(1) is the initial quaternion q 0 of the carrier in step 1. (3.3)根据q(t+1)中元素qi(t+1)(i=0,1,2,3),更新捷联矩阵 (3.3) Update the strapdown matrix according to the element q i (t+1) (i=0,1,2,3) in q(t+1) 其中,上式中的qi(i=0,1,2,3)为式(5)中qi(t+1)(i=0,1,2,3),更新姿态信息:Among them, q i (i=0,1,2,3) in the above formula is q i (t+1) (i=0,1,2,3) in formula (5), update attitude information: (3.4)利用转换关系式将加速度计沿载体系测量的比力信息投影转换到导航系,利用下列微分方程求解载体运动速度:(3.4) Using conversion relation The projection of the specific force information measured by the accelerometer along the carrier system is converted to the navigation system, and the following differential equation is used to solve the carrier velocity: 其中,表示的变化率; 分别表示加速度计测量的比力在导航系oxn轴、oyn轴、ozn轴上的分量(单位均为m/s);in, express rate of change; Respectively represent the components of the specific force measured by the accelerometer on the ox n- axis, oy n- axis, and oz n -axis of the navigation system (the unit is m/s); (3.5)将t时刻比力在导航系的投影fi n(t)(i=x,y,z),代替式(8)中的fi n(i=x,y,z),得到载体速度变化率得到t+1时刻载体速度和位置:(3.5) Replace the f i n (i=x, y, z) in formula (8) with the projection f i n (t) (i=x, y, z) of the comparison force in the navigation system at time t, and get Carrier velocity change rate Get the speed and position of the carrier at time t+1: 其中,R表示地球半径;当t=1时,为步骤1中载体速度初始值vi0(i=x,y,z);Among them, R represents the radius of the earth; When t=1, is the initial value v i0 of the carrier velocity in step 1 (i=x, y, z); 至此,根据式(5)、(7)得到INS解算的载体速度、位置和姿态角。So far, the carrier velocity, position and attitude angle calculated by INS are obtained according to equations (5) and (7). 4.根据权利要求1所述的一种基于自适应差分进化BP神经网络的姿态误差抑制方法,其特征在于,所述的步骤(4)具体包括:4. a kind of attitude error suppression method based on adaptive differential evolution BP neural network according to claim 1, is characterized in that, described step (4) specifically comprises: 载体相对惯性系姿态角为:The attitude angle of the carrier relative to the inertial system for: 5.根据权利要求1所述的一种基于自适应差分进化BP神经网络的姿态误差抑制方法,其特征在于,所述的步骤(6)具体包括:5. a kind of attitude error suppression method based on adaptive differential evolution BP neural network according to claim 1, is characterized in that, described step (6) specifically comprises: (6.1)利用星敏感器的惯性姿态误差模型,结合卡尔曼滤波,对惯性姿态进行误差修正如下:(6.1) Using the inertial attitude error model of the star sensor, combined with the Kalman filter, the error correction of the inertial attitude is as follows: 其中,Pp(t)表示t时刻估计均方误差,Pp(t/t-1)表示t-1时刻到t时刻一步预测均方误差,Fp(t/t-1)表示t-1时刻到t时刻的状态转移矩阵,Gp(t-1)表示t-1时刻的噪声驱动阵,Qp(t-1)表示t-1时刻系统噪声方差阵,Hp表示量测矩阵,Rp表示量测噪声方差阵,Kp(t)表示t时刻滤波增益矩阵;Among them, P p (t) represents the estimated mean square error at time t, P p (t/t-1) represents the mean square error of one-step prediction from time t-1 to time t, and F p (t/t-1) represents the mean square error of t- The state transition matrix from time 1 to time t, G p (t-1) represents the noise driving matrix at time t-1, Q p (t-1) represents the system noise variance matrix at time t-1, and H p represents the measurement matrix , R p represents the measurement noise variance matrix, K p (t) represents the filter gain matrix at time t; (6.2)t时刻状态估计和估计均方误差的更新矩阵为:(6.2) The update matrix of state estimation and estimated mean square error at time t is: 其中,Xp(t)表示t时刻状态估计量,Xp(t)=[δφCx δφCy δφCz]T,当t=1时,状态量Xp(1)中元素为步骤1中卡尔曼滤波器1的状态量初值δφCi0(i=x,y,z),根据解算结果,对步骤(4)解算结果进行补偿,得到惯性姿态角φCi(i=x,y,z)。Among them, X p (t) represents the state estimator at time t, X p (t) = [δφ Cx δφ Cy δφ Cz ] T , when t=1, the element in the state quantity X p (1) is Karl in step 1 The initial value of the state quantity δφ Ci0 (i=x, y, z) of Mann filter 1, according to the calculation result, the calculation result of step (4) is compensated, and the inertial attitude angle φ Ci (i=x, y, z). 6.根据权利要求1所述的一种基于自适应差分进化BP神经网络的姿态误差抑制方法,其特征在于,所述的步骤(7)具体包括:6. a kind of attitude error suppression method based on adaptive differential evolution BP neural network according to claim 1, is characterized in that, described step (7) specifically comprises: 根据转换矩阵间的数学关系,得到地球坐标系相对准地理坐标系的转换矩阵转换过程为进一步解算得到载体的位置,即According to the mathematical relationship between the transformation matrices, the transformation matrix of the earth coordinate system relative to the quasi-geographical coordinate system is obtained The conversion process is Further calculation to obtain the position of the carrier, namely 载体系到准地理系的转换矩阵由步骤(3)中解算的水平姿态得到,载体系到惯性系转换矩阵由步骤(6)中解算结果惯性姿态角得到。Transformation matrix from carrier system to quasi-geographical system From the horizontal attitude calculated in step (3) Get, the transformation matrix from the carrier system to the inertial system Obtained from the inertial attitude angle of the solution result in step (6). 7.根据权利要求1所述的一种基于自适应差分进化BP神经网络的姿态误差抑制方法,其特征在于,所述的步骤(8)具体包括:7. a kind of attitude error suppression method based on adaptive differential evolution BP neural network according to claim 1, is characterized in that, described step (8) specifically comprises: 利用载体的速度、位置和失准角误差模型,结合卡尔曼滤波,对载体状态量进行误差修正如下:Using the speed, position and misalignment angle error model of the carrier, combined with the Kalman filter, the error correction of the carrier state quantity is as follows: 其中,P(t)表示t时刻估计均方误差,P(t/t-1)表示t-1时刻到t时刻一步预测均方误差,F(t/t-1)表示t-1时刻到t时刻的状态转移矩阵,G(t-1)表示t-1时刻的噪声驱动阵,Q(t-1)表示t-1时刻系统噪声方差阵,H表示量测矩阵,R表示量测噪声方差阵,K(t)表示t时刻滤波增益矩阵;Among them, P(t) represents the estimated mean square error at time t, P(t/t-1) represents the mean square error of one-step prediction from time t-1 to time t, and F(t/t-1) represents the estimated mean square error from time t-1 to time t. The state transition matrix at time t, G(t-1) represents the noise driving array at time t-1, Q(t-1) represents the system noise variance matrix at time t-1, H represents the measurement matrix, and R represents the measurement noise Variance matrix, K(t) represents the filter gain matrix at time t; t时刻状态估计和估计均方误差的更新矩阵为:The update matrix of state estimation and estimated mean square error at time t is: 其中,X(t)表示t时刻状态估计量,当t=1时,状态量X(1)中元素为步骤1中卡尔曼滤波器2的状态量初值δvS0i(i=x,y,z)、δλS0、Φi0(i=x,y,z)、εi0(i=x,y,z)、ΔAi0(i=x,y,z)。根据解算结果,对步骤3中INS解算结果进行补偿,得到导航信息载体位置λ,速度vi(i=x,y,z),姿态角φi(i=x,y,z)。Wherein, X (t) represents the state estimation quantity at time t, when t=1, the element in the state quantity X (1) is the state quantity initial value δv S0i (i=x, y, z), δλ S0 , Φ i0 (i=x,y,z), ε i0 (i=x,y,z), ΔA i0 (i=x,y,z). According to the calculation result, the INS calculation result in step 3 is compensated to obtain the position of the navigation information carrier λ, velocity v i (i=x, y, z), attitude angle φ i (i=x, y, z). 8.根据权利要求1所述的一种基于自适应差分进化BP神经网络的姿态误差抑制方法,其特征在于,所述的步骤(5)具体包括:8. a kind of attitude error suppression method based on adaptive differential evolution BP neural network according to claim 1, is characterized in that, described step (5) specifically comprises: (5.1)初始化操作:初始化参数,包括种群规模N、基因维数D、变异因子F、交叉速率CR,以及每个基因的取值范围[Umin,Umax],利用式xij=Umin+rand×(Umax-Umin)随机初始化种群;其中i=1,2,...,N,j=1,2,...,D,rand表示服从均匀分布的随机数;(5.1) Initialization operation: initialization parameters, including population size N, gene dimension D, variation factor F, crossover rate CR, and the value range of each gene [U min , U max ], using the formula x ij = U min +rand×(U max -U min ) randomly initialize the population; where i=1,2,...,N, j=1,2,...,D, rand represents a random number that obeys the uniform distribution; (5.2)判断当前最小适应度值是否达到μ或迭代次数达到最大,若是则ADE迭代停止,转至步骤(5.6);否则进行下一步;(5.2) Judging whether the current minimum fitness value reaches μ or the number of iterations reaches the maximum, if so, the ADE iteration stops and goes to step (5.6); otherwise, proceed to the next step; (5.3)生成后代子群:对每个目标向量进行变异操作,产生变异向量对变异向量进行交叉操作产生实验个体将目标个体与其对应实验个体竞争,比较两者适应度值,仅当的适应度值较更优时才被选为子代,否则直接将作为子代。重复此步骤产生后代子群,其中,G表示迭代次数;(5.3) Generate offspring subgroups: for each target vector Perform a mutation operation to generate a mutation vector pair mutation vector Perform crossover operation to generate experimental individuals target individuals Corresponding experiment individual Compete, compare the fitness values of the two, only if The fitness value of It is selected as the offspring when it is better, otherwise it will be directly as offspring. Repeat this step to generate offspring subgroups, where G represents the number of iterations; (5.4)评估后代子群的适应值,最小适应值是当前最优值,相应的子群即为当前最优个体值;(5.4) Evaluate the fitness value of the offspring subgroup, the minimum fitness value is the current optimal value, and the corresponding subgroup is the current optimal individual value; (5.5)令G=G+1,转至步骤(5.2);(5.5) Make G=G+1, go to step (5.2); (5.6)将ADE的最佳个体分配为BPNN的初始连接权值和阈值;(5.6) assign the best individual of ADE as the initial connection weight and threshold of BPNN; (5.7)将t时刻组合导航水平姿态信息φi(i=x,y)与阈值θi(i=x,y)进行比较,当水平姿态信息小于阈值时判定舰船发生摇摆,使用t-n~t-1时刻组合导航姿态信息对BPNN进行训练,得到最优模型;(5.7) Comparing the combined navigation horizontal attitude information φ i (i=x, y) at time t with the threshold θ i (i=x, y), when the horizontal attitude information is less than the threshold, it is determined that the ship is swaying, using tn~ Combining navigation attitude information at time t-1 to train BPNN to obtain the optimal model; (5.8)利用步骤(5.7)中得到的模型,预测出t时刻载体相对导航系的姿态角φpi(i=x,y,z),利用预测姿态角得到载体系到导航系的转换矩阵根据转换矩阵之间的关系,得到载体系相对惯性系的转换矩阵转换过程为进一步解算得到载体相对惯性系的姿态角预测值,即:(5.8) Use the model obtained in step (5.7) to predict the attitude angle φ pi (i=x, y, z) of the carrier relative to the navigation system at time t, and use the predicted attitude angle to obtain the transformation matrix from the carrier system to the navigation system According to the relationship between the transformation matrices, the transformation matrix of the carrier system relative to the inertial system is obtained The conversion process is Further calculation is performed to obtain the predicted value of the attitude angle of the carrier relative to the inertial system, namely: 其中,表示中第m行、第n列元素;表示地球系到惯性系转换矩阵,由地球转速和导航时间得到;表示地球系到导航系的转换矩阵,由t-1时刻组合导航位置λ得到。in, express The element in row m and column n; Indicates the transformation matrix from the earth system to the inertial system, which is obtained from the earth speed and navigation time; Represents the conversion matrix from the earth system to the navigation system, and the navigation position is combined at time t-1 λ is obtained.
CN201810248952.3A 2018-03-25 2018-03-25 A kind of attitude error suppressing method based on adaptive differential Evolutionary BP neural network Pending CN108613674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810248952.3A CN108613674A (en) 2018-03-25 2018-03-25 A kind of attitude error suppressing method based on adaptive differential Evolutionary BP neural network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810248952.3A CN108613674A (en) 2018-03-25 2018-03-25 A kind of attitude error suppressing method based on adaptive differential Evolutionary BP neural network

Publications (1)

Publication Number Publication Date
CN108613674A true CN108613674A (en) 2018-10-02

Family

ID=63658740

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810248952.3A Pending CN108613674A (en) 2018-03-25 2018-03-25 A kind of attitude error suppressing method based on adaptive differential Evolutionary BP neural network

Country Status (1)

Country Link
CN (1) CN108613674A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109579853A (en) * 2019-01-24 2019-04-05 燕山大学 Inertial navigation indoor orientation method based on BP neural network
CN109737955A (en) * 2018-12-14 2019-05-10 南京理工大学 An Attitude Prediction Method for Wave Compensation System
CN110118979A (en) * 2018-11-26 2019-08-13 太原理工大学 The method of improved differential evolution algorithm estimation multipath parameter based on broad sense cross-entropy
CN110898409A (en) * 2019-11-05 2020-03-24 五邑大学 Intelligent badminton racket action recognition system
CN110986936A (en) * 2019-12-17 2020-04-10 武汉理工大学 An edge computing-based positioning and navigation method for passenger ship personnel
CN111027137A (en) * 2019-12-05 2020-04-17 中国人民解放军63620部队 High-precision dynamic construction method of spacecraft dynamics model based on telemetering data
CN111637882A (en) * 2020-05-23 2020-09-08 西北工业大学 A Differential Evolutionary Geomagnetic Navigation Method Based on Grid Features
CN112291676A (en) * 2020-05-18 2021-01-29 珠海市杰理科技股份有限公司 Method and system, chip, and electronic device for suppressing audio signal smearing
US11168984B2 (en) * 2019-02-08 2021-11-09 The Boeing Company Celestial navigation system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020004691A1 (en) * 2000-03-10 2002-01-10 Yasuhiro Kinashi Attitude determination and alignment using electro-optical sensors and global navigation satellites
CN102445200A (en) * 2011-09-30 2012-05-09 南京理工大学 Microminiature personal combined navigation system and navigation positioning method thereof
CN102519470A (en) * 2011-12-09 2012-06-27 南京航空航天大学 Multi-level embedded integrated navigation system and navigation method
CN103913180A (en) * 2014-03-26 2014-07-09 中国科学院长春光学精密机械与物理研究所 A mounting angle calibration method for a ship-borne large-field-of-view high-precision star sensor
CN104034329A (en) * 2014-06-04 2014-09-10 南京航空航天大学 Multi-integrated navigation processing device under launch inertial system and navigation method of multi-integrated navigation processing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020004691A1 (en) * 2000-03-10 2002-01-10 Yasuhiro Kinashi Attitude determination and alignment using electro-optical sensors and global navigation satellites
CN102445200A (en) * 2011-09-30 2012-05-09 南京理工大学 Microminiature personal combined navigation system and navigation positioning method thereof
CN102519470A (en) * 2011-12-09 2012-06-27 南京航空航天大学 Multi-level embedded integrated navigation system and navigation method
CN103913180A (en) * 2014-03-26 2014-07-09 中国科学院长春光学精密机械与物理研究所 A mounting angle calibration method for a ship-borne large-field-of-view high-precision star sensor
CN104034329A (en) * 2014-06-04 2014-09-10 南京航空航天大学 Multi-integrated navigation processing device under launch inertial system and navigation method of multi-integrated navigation processing device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
齐昭: "舰用捷联惯导/天文/计程仪组合导航关键技术研究", 《中国优秀博士学位论文全文数据库•工程科技Ⅱ辑》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110118979A (en) * 2018-11-26 2019-08-13 太原理工大学 The method of improved differential evolution algorithm estimation multipath parameter based on broad sense cross-entropy
CN110118979B (en) * 2018-11-26 2023-02-28 太原理工大学 Method for estimating multipath parameters by using improved differential evolution algorithm based on generalized mutual entropy
CN109737955A (en) * 2018-12-14 2019-05-10 南京理工大学 An Attitude Prediction Method for Wave Compensation System
CN109579853A (en) * 2019-01-24 2019-04-05 燕山大学 Inertial navigation indoor orientation method based on BP neural network
US11168984B2 (en) * 2019-02-08 2021-11-09 The Boeing Company Celestial navigation system and method
CN110898409A (en) * 2019-11-05 2020-03-24 五邑大学 Intelligent badminton racket action recognition system
CN111027137A (en) * 2019-12-05 2020-04-17 中国人民解放军63620部队 High-precision dynamic construction method of spacecraft dynamics model based on telemetering data
CN111027137B (en) * 2019-12-05 2023-07-14 中国人民解放军63620部队 High-precision dynamic construction method for spacecraft dynamics model based on telemetry data
CN110986936A (en) * 2019-12-17 2020-04-10 武汉理工大学 An edge computing-based positioning and navigation method for passenger ship personnel
CN112291676A (en) * 2020-05-18 2021-01-29 珠海市杰理科技股份有限公司 Method and system, chip, and electronic device for suppressing audio signal smearing
CN112291676B (en) * 2020-05-18 2021-10-15 珠海市杰理科技股份有限公司 Method and system, chip, and electronic device for suppressing audio signal smearing
CN111637882A (en) * 2020-05-23 2020-09-08 西北工业大学 A Differential Evolutionary Geomagnetic Navigation Method Based on Grid Features
CN111637882B (en) * 2020-05-23 2022-11-11 西北工业大学 Differential evolution geomagnetic navigation method based on grid features

Similar Documents

Publication Publication Date Title
CN108613674A (en) A kind of attitude error suppressing method based on adaptive differential Evolutionary BP neural network
CN108827310B (en) On-line calibration method of marine star sensor-assisted gyroscope
Fang et al. Predictive iterated Kalman filter for INS/GPS integration and its application to SAR motion compensation
Fontanella et al. MEMS gyros temperature calibration through artificial neural networks
CN110031882B (en) A Compensation Method for External Measurement Information Based on SINS/DVL Integrated Navigation System
CN103245360B (en) Carrier-borne aircraft rotation type strapdown inertial navigation system Alignment Method under swaying base
Hong Fuzzy logic based closed-loop strapdown attitude system for unmanned aerial vehicle (UAV)
CN110780326A (en) Vehicle-mounted integrated navigation system and positioning method
CN105737823B (en) A kind of GPS/SINS/CNS Combinated navigation methods based on five rank CKF
CN107728182B (en) Flexible multi-baseline measurement method and device based on camera assistance
CN110207697A (en) Inertial navigation solution method based on angular accelerometer/gyroscope/accelerometer
Pan et al. Underwater Doppler navigation with self-calibration
CN109708663B (en) Star sensor online calibration method based on aerospace plane SINS assistance
CN102252677A (en) Time series analysis-based variable proportion self-adaptive federal filtering method
CN106289246A (en) A kind of rods arm measure method based on position and orientation measurement system
Gong et al. A modified nonlinear two-filter smoothing for high-precision airborne integrated GPS and inertial navigation
CN104236586B (en) Moving base transfer alignment method based on measurement of misalignment angle
CN103076026B (en) A Method for Determining Velocity Error of Doppler Log in Strapdown Inertial Navigation System
CN110926468A (en) Communication-in-motion antenna multi-platform navigation attitude determination method based on transfer alignment
CN113340298B (en) A method for extrinsic calibration of inertial navigation and dual-antenna GNSS
Gou et al. INS/CNS integrated navigation based on corrected infrared earth measurement
Li et al. Integrated calibration method for dithered RLG POS using a hybrid analytic/Kalman filter approach
CN113551669A (en) Short baseline-based combined navigation positioning method and device
CN108303120A (en) A kind of method and device of the real-time delivery alignment of airborne distribution POS
CN107036595A (en) Deformation of hull angular estimation method based on interacting multiple model filters

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181002