[go: up one dir, main page]

CN108520615B - An image-based fire identification system and method - Google Patents

An image-based fire identification system and method Download PDF

Info

Publication number
CN108520615B
CN108520615B CN201810364398.5A CN201810364398A CN108520615B CN 108520615 B CN108520615 B CN 108520615B CN 201810364398 A CN201810364398 A CN 201810364398A CN 108520615 B CN108520615 B CN 108520615B
Authority
CN
China
Prior art keywords
ccd camera
image
unit
highlighted object
grayscale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810364398.5A
Other languages
Chinese (zh)
Other versions
CN108520615A (en
Inventor
章林
周勇
赵凤君
张大明
王晓娜
石磊
刘慧娟
章森
孙景花
周辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Provincial Academy of Forestry Sciences
Original Assignee
Jilin Provincial Academy of Forestry Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Provincial Academy of Forestry Sciences filed Critical Jilin Provincial Academy of Forestry Sciences
Priority to CN201810364398.5A priority Critical patent/CN108520615B/en
Publication of CN108520615A publication Critical patent/CN108520615A/en
Application granted granted Critical
Publication of CN108520615B publication Critical patent/CN108520615B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/12Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions
    • G08B17/125Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions by using a video camera to detect fire or smoke

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Alarm Systems (AREA)

Abstract

本发明提供一种基于图像的火灾识别系统和方法,采用CCD摄像头对四周图像进行实时采集,亮度识别单元对图像进行亮度识别,判断是否具有高亮物体,当检测到高亮物体时,采用测速单元计算高亮物体移动速度,并综合利用天气数据、CCD摄像头所在地理坐标、CCD摄像头旋转角度以及CCD摄像头所在地的当地时间等信息判断高亮物体是否为火焰。

Figure 201810364398

The invention provides an image-based fire identification system and method. A CCD camera is used to collect surrounding images in real time. A brightness identification unit performs brightness identification of the images to determine whether there is a highlight object. When a highlight object is detected, a speed measurement is used. The unit calculates the moving speed of the highlighted object, and comprehensively uses the weather data, the geographic coordinates of the location of the CCD camera, the rotation angle of the CCD camera, and the local time of the location of the CCD camera to determine whether the highlighted object is a flame.

Figure 201810364398

Description

一种基于图像的火灾识别系统和方法An image-based fire identification system and method

技术领域technical field

本发明属于图像处理技术领域,尤其涉及一种基于图像的火灾识别系统和方法。The invention belongs to the technical field of image processing, and in particular relates to an image-based fire identification system and method.

背景技术Background technique

林区由于人烟稀少,在火灾发生初期很难被人们发现,我国历史上的几次重大森林火灾都是在火灾蔓延到一定规模后才被发现。由于林区往往山路崎岖、植被茂盛、交通不便利,救火设备很难运输至火灾现场,这给森林火灾扑灭带来了极高的难度。Because the forest area is sparsely populated, it is difficult to be discovered in the early stage of the fire. Several major forest fires in the history of our country were only discovered after the fire spread to a certain scale. Due to the rugged mountain roads, lush vegetation, and inconvenient transportation in forest areas, it is difficult to transport fire-fighting equipment to the fire scene, which brings extreme difficulty to forest fire fighting.

目前,基于视频技术对森林火灾进行监控的主要工作原理是获取视频图像后,分析图像的颜色和亮度,从而判断是否有火灾发生。然而,由于火焰的颜色和形状具有很大的不确定性,监控装置无法将太阳、月亮、闪电、汽车灯光等光源和火灾发生初期的火焰区分开来,容易误报险情。At present, the main working principle of forest fire monitoring based on video technology is to analyze the color and brightness of the image after acquiring the video image, so as to determine whether there is a fire. However, due to the great uncertainty of the color and shape of the flame, the monitoring device cannot distinguish light sources such as the sun, the moon, lightning, and car lights from the flame in the early stage of the fire, and it is easy to falsely report the danger.

发明内容SUMMARY OF THE INVENTION

本发明提供一种基于图像的火灾识别系统和方法,旨在解决上述技术问题。The present invention provides an image-based fire identification system and method, aiming at solving the above-mentioned technical problems.

一种基于图像的火灾识别系统,其特征在于,包括:An image-based fire identification system, comprising:

CCD摄像头,CCD摄像头围绕安装立杆360度旋转,对森林图像进行实时采集。CCD camera, CCD camera rotates 360 degrees around the installation pole to collect forest images in real time.

CCD摄像头旋转控制单元,用于控制CCD摄像头的旋转速度。The CCD camera rotation control unit is used to control the rotation speed of the CCD camera.

图像获取单元,获取CCD摄像头的视频监控区域的当前图像。The image acquisition unit acquires the current image of the video surveillance area of the CCD camera.

亮度识别单元,识别当前图像中是否具有高亮物体。识别到高亮物体时,CCD摄像头旋转控制单元控制CCD摄像头停止旋转,CCD摄像头对准高亮物体所在方位连续拍摄图像。The brightness identification unit identifies whether there is a bright object in the current image. When the highlighted object is identified, the CCD camera rotation control unit controls the CCD camera to stop rotating, and the CCD camera is aimed at the position of the highlighted object and continuously captures images.

测速单元,用于对识别到的高亮物体进行追踪,计算高亮物体移动速度,如果速度大于阈值,则判定该高亮物体不是火焰,CCD摄像头恢复旋转。The speed measurement unit is used to track the identified highlighted object and calculate the moving speed of the highlighted object. If the speed is greater than the threshold, it is determined that the highlighted object is not a flame, and the CCD camera resumes rotation.

天气数据读取单元,用于调取气象系统中CCD摄像头所在地的实时天气数据。The weather data reading unit is used to retrieve the real-time weather data of the location of the CCD camera in the weather system.

CCD摄像头旋转角度获取单元,用于获取拍摄到高亮物体时视频监控单元旋转角度。The rotation angle acquisition unit of the CCD camera is used to acquire the rotation angle of the video surveillance unit when a bright object is captured.

中央处理单元,如果天气数据读取单元读取到的天气数据为阴天或雨天,则排除该高亮物体是太阳或月亮的可能性,中央处理单元向报警单元发出报警指令;如果实时天气为晴天或者多云,CCD摄像头旋转角度获取单元获取拍摄到高亮物体时CCD摄像头旋转角度,中央处理单元根据CCD摄像头所在地理坐标、CCD摄像头旋转角度以及CCD摄像头所在地的当地时间,计算出太阳和月亮相对于CCD摄像头所在方位,并将太阳和月亮相对于CCD摄像头所在方位和高亮物体所在方位进行匹配,如果不重合,中央处理单元向报警单元发出指令,如果重合,中央处理单元将该高亮物标记为天体光源,CCD摄像头恢复旋转。The central processing unit, if the weather data read by the weather data reading unit is cloudy or rainy, exclude the possibility that the highlighted object is the sun or the moon, and the central processing unit sends an alarm command to the alarm unit; if the real-time weather is On sunny or cloudy days, the CCD camera rotation angle acquisition unit acquires the CCD camera rotation angle when a bright object is captured, and the central processing unit calculates the sun and moon phases based on the geographic coordinates of the CCD camera, the CCD camera rotation angle, and the local time where the CCD camera is located. For the position of the CCD camera, match the position of the sun and the moon to the position of the CCD camera and the position of the highlighted object. If they do not coincide, the central processing unit sends an instruction to the alarm unit. Marked as celestial light source, the CCD camera resumes rotation.

报警单元,用于获取中央处理单元发出的报警指令并发出火灾报警信号。The alarm unit is used to obtain the alarm instruction issued by the central processing unit and issue a fire alarm signal.

进一步的,基于图像的火灾识别系统还包括图像预处理单元,用于对图像获取单元获取的图像进行剔除光照的预处理。对图像获取单元获取的图像,首先把彩色图像转化为灰度图像,然后使用伽马变换的方法来剔除多余光照,其中伽马变换的阈值通过计算图像中像素灰度的最大值来动态确定;Further, the image-based fire identification system further includes an image preprocessing unit, which is used for preprocessing to exclude illumination from the image acquired by the image acquisition unit. For the image acquired by the image acquisition unit, first convert the color image into a grayscale image, and then use the gamma transformation method to remove excess light, wherein the threshold of the gamma transformation is dynamically determined by calculating the maximum value of the pixel grayscale in the image;

伽马变换的基本形式为:The basic form of gamma transform is:

s=crγ s=cr γ

把彩色图像转化成灰度图像,然后遍历整幅图像,找到所有像素中最高的灰度值g,即Convert the color image to a grayscale image, and then traverse the entire image to find the highest grayscale value g in all pixels, that is

g=max{g1,g2,...,gi}g=max{g 1 , g2, ..., g i }

然后使用伽马变换的变形公式:Then use the deformation formula of the gamma transform:

s=c(r-g)γ s=c(rg) γ

and

s=c(r+L-1-g)γ s=c(r+L-1-g) γ

其中r为输入图像灰度值,s为输出图像灰度值,c和γ为正常数,L为灰度级图像的灰度级数,gi表示图像中第i个像素点的灰度值。where r is the grayscale value of the input image, s is the grayscale value of the output image, c and γ are normal numbers, L is the grayscale level of the grayscale image, and gi represents the grayscale value of the ith pixel in the image .

一种基于图像的火灾识别方法,包括以下步骤;An image-based fire identification method, comprising the following steps;

S1、在CCD摄像头旋转控制单元控制的控制下,CCD摄像头围绕安装杆360度旋转,对森林图像进行实时采集。S1. Under the control of the CCD camera rotation control unit, the CCD camera rotates 360 degrees around the installation rod to collect forest images in real time.

S2、图像获取单元获取CCD摄像头的视频监控区域的当前图像。S2. The image acquisition unit acquires the current image of the video surveillance area of the CCD camera.

S3、亮度识别单元识别当前图像中是否具有高亮物体,当识别到高亮物体时,CCD摄像头旋转控制单元控制CCD摄像头停止旋转,CCD摄像头对准高亮物体所在方位连续拍摄图像。S3. The brightness identification unit identifies whether there is a highlight object in the current image. When a highlight object is identified, the CCD camera rotation control unit controls the CCD camera to stop rotating, and the CCD camera is aimed at the position of the highlight object and continuously captures images.

S4、测速单元对识别到的高亮物体进行追踪,计算高亮物体移动速度,如果速度大于阈值,则判定该高亮物体不是火焰,CCD摄像头恢复旋转。S4. The speed measuring unit tracks the identified highlighted object, and calculates the moving speed of the highlighted object. If the speed is greater than the threshold, it is determined that the highlighted object is not a flame, and the CCD camera resumes rotation.

S5、如果高亮物体移动速度小于阈值,则调取气象系统中CCD摄像头所在地的实时天气数据。S5. If the moving speed of the highlighted object is less than the threshold value, retrieve the real-time weather data of the location of the CCD camera in the weather system.

S6、如果天气数据读取单元读取到的天气数据为阴天或雨天,则排除该高亮物体是太阳或月亮的可能性,中央处理单元向报警单元发出报警指令,报警单元获取到中央处理单元发出的报警指令并发出火灾报警信号;如果实时天气为晴天或者多云,CCD摄像头旋转角度获取单元获取拍摄到高亮物体时CCD摄像头旋转角度,中央处理单元根据CCD摄像头所在地理坐标、CCD摄像头旋转角度以及CCD摄像头所在地的当地时间,计算出太阳和月亮相对于CCD摄像头所在方位,并将太阳和月亮相对于CCD摄像头所在方位和高亮物体所在方位进行匹配,如果不重合,中央处理单元向报警单元发出指令,报警单元获取中央处理单元发出的报警指令并发出火灾报警信号,如果重合,中央处理单元将该高亮物标记为天体光源,CCD摄像头恢复旋转。S6, if the weather data read by the weather data reading unit is cloudy or rainy, then exclude the possibility that the highlighted object is the sun or the moon, the central processing unit sends an alarm instruction to the alarm unit, and the alarm unit obtains the central processing unit The unit sends an alarm command and sends out a fire alarm signal; if the real-time weather is sunny or cloudy, the CCD camera rotation angle acquisition unit obtains the rotation angle of the CCD camera when the highlighted object is captured, and the central processing unit rotates the CCD camera according to the geographic coordinates of the CCD camera. The angle and the local time where the CCD camera is located, calculate the position of the sun and the moon relative to the position of the CCD camera, and match the position of the sun and the moon relative to the position of the CCD camera and the position of the highlighted object. If they do not coincide, the central processing unit will alert the police. The unit sends an instruction, and the alarm unit obtains the alarm instruction sent by the central processing unit and sends out a fire alarm signal. If it coincides, the central processing unit marks the highlight as a celestial light source, and the CCD camera resumes rotation.

进一步的,在步骤S2和S3之间还包括图像预处理步骤,用于对图像获取单元获取的图像进行剔除光照的预处理。对图像获取单元获取的图像,首先把彩色图像转化为灰度图像,然后使用伽马变换的方法来剔除多余光照,其中伽马变换的阈值通过计算图像中像素灰度的最大值来动态确定。Further, between steps S2 and S3, an image preprocessing step is also included, which is used to perform preprocessing of eliminating illumination on the image acquired by the image acquisition unit. For the image acquired by the image acquisition unit, first convert the color image into a grayscale image, and then use the gamma transformation method to eliminate excess light, wherein the threshold value of the gamma transformation is dynamically determined by calculating the maximum value of pixel grayscale in the image.

伽马变换的基本形式为:The basic form of gamma transform is:

s=crγ s=cr γ

把彩色图像转化成灰度图像,然后遍历整幅图像,找到所有像素中最高的灰度值g,即Convert the color image to a grayscale image, and then traverse the entire image to find the highest grayscale value g in all pixels, that is

g=max{g1,g2,...,gi}g=max{g 1 , g 2 , ..., gi}

然后使用伽马变换的变形公式:Then use the deformation formula of the gamma transform:

s=c(r-g)γ s=c(rg) γ

and

s=c(r+L-1-g)γ s=c(r+L-1-g) γ

其中r为输入图像灰度值,s为输出图像灰度值,c和γ为正常数,L为灰度级图像的灰度级数,gi表示图像中第i个像素点的灰度值。where r is the grayscale value of the input image, s is the grayscale value of the output image, c and γ are normal numbers, L is the grayscale level of the grayscale image, and gi represents the grayscale value of the ith pixel in the image .

附图说明Description of drawings

图1是一种基于图像的火灾识别系统工作流程图。Figure 1 is a working flow chart of an image-based fire identification system.

具体实施方式Detailed ways

下面结合附图,对实施例作详细说明。The embodiments are described in detail below with reference to the accompanying drawings.

图1示出了本发明的一种基于图像的火灾识别系统工作流程图,本发明的一种基于图像的火灾识别系统,包括:CCD摄像头,CCD摄像头围绕安装杆360度旋转,对森林图像进行实时采集。Fig. 1 shows the working flow chart of an image-based fire identification system of the present invention. An image-based fire identification system of the present invention includes: a CCD camera, which rotates 360 degrees around a mounting rod to perform a forest image Real-time collection.

CCD摄像头旋转控制单元,用于控制CCD摄像头的旋转速度。The CCD camera rotation control unit is used to control the rotation speed of the CCD camera.

图像获取单元,获取CCD摄像头的视频监控区域的当前图像。The image acquisition unit acquires the current image of the video surveillance area of the CCD camera.

亮度识别单元,识别当前图像中是否具有高亮物体。识别到高亮物体时,CCD摄像头旋转控制单元控制CCD摄像头停止旋转,CCD摄像头对准高亮物体所在方位连续拍摄图像。The brightness identification unit identifies whether there is a bright object in the current image. When the highlighted object is identified, the CCD camera rotation control unit controls the CCD camera to stop rotating, and the CCD camera is aimed at the position of the highlighted object and continuously captures images.

测速单元,用于对识别到的高亮物体进行追踪,计算高亮物体移动速度。如果速度大于阈值,则判定该高亮物体不是火焰;该高亮物体为闪电、汽车灯光等快速移动光源,CCD摄像头恢复旋转。The speed measurement unit is used to track the identified highlighted objects and calculate the moving speed of the highlighted objects. If the speed is greater than the threshold, it is determined that the highlighted object is not a flame; the highlighted object is a fast-moving light source such as lightning or car lights, and the CCD camera resumes rotation.

天气数据读取单元,用于通过网络调取气象系统中CCD摄像头所在地的实时天气数据。如果高亮物体移动速度小于阈值,则调取气象系统中CCD摄像头所在地的实时天气数据。The weather data reading unit is used to retrieve the real-time weather data of the location of the CCD camera in the weather system through the network. If the moving speed of the highlighted object is less than the threshold, the real-time weather data of the location of the CCD camera in the weather system is retrieved.

CCD摄像头旋转角度获取单元,用于获取拍摄到高亮物体时视频监控单元旋转角度。The rotation angle acquisition unit of the CCD camera is used to acquire the rotation angle of the video surveillance unit when a bright object is captured.

中央处理单元,如果天气数据读取单元读取到的天气数据为阴天或雨天,则排除该高亮物体是太阳或月亮的可能性,中央处理单元向报警单元发出报警指令;如果实时天气为晴天或者多云,CCD摄像头旋转角度获取单元获取拍摄到高亮物体时CCD摄像头旋转角度,中央处理单元根据CCD摄像头所在地理坐标、CCD摄像头旋转角度以及CCD摄像头所在地的当地时间,计算出太阳和月亮相对于CCD摄像头所在方位,并将太阳和月亮相对于CCD摄像头所在方位和高亮物体所在方位进行匹配,如果不重合,中央处理单元向报警单元发出指令,如果重合,中央处理单元将该高亮物标记为天体光源,CCD摄像头恢复旋转。The central processing unit, if the weather data read by the weather data reading unit is cloudy or rainy, exclude the possibility that the highlighted object is the sun or the moon, and the central processing unit sends an alarm command to the alarm unit; if the real-time weather is On sunny or cloudy days, the CCD camera rotation angle acquisition unit acquires the CCD camera rotation angle when a bright object is captured, and the central processing unit calculates the sun and moon phases based on the geographic coordinates of the CCD camera, the CCD camera rotation angle, and the local time where the CCD camera is located. For the position of the CCD camera, match the position of the sun and the moon to the position of the CCD camera and the position of the highlighted object. If they do not coincide, the central processing unit sends an instruction to the alarm unit. Marked as celestial light source, the CCD camera resumes rotation.

报警单元,用于获取中央处理单元发出的报警指令并发出火灾报警信号。The alarm unit is used to obtain the alarm instruction issued by the central processing unit and issue a fire alarm signal.

进一步的,还包括图像预处理单元,用于对图像获取单元获取的图像进行剔除光照的预处理。对图像获取单元获取的图像,首先把彩色图像转化为灰度图像,然后使用伽马变换的方法来剔除多余光照,其中伽马变换的阈值通过计算图像中像素灰度的最大值来动态确定。Further, an image preprocessing unit is also included, configured to perform preprocessing of excluding illumination on the image acquired by the image acquisition unit. For the image acquired by the image acquisition unit, first convert the color image into a grayscale image, and then use the gamma transformation method to eliminate excess light, wherein the threshold value of the gamma transformation is dynamically determined by calculating the maximum value of pixel grayscale in the image.

为了降低光照的影响。采用伽马变换(也称为幂次变换)的方法来对获取的当前图像进行处理。In order to reduce the influence of light. A method of gamma transformation (also called power transformation) is used to process the acquired current image.

伽马变换的基本形式为:The basic form of gamma transform is:

s=crγ s=cr γ

把彩色图像转化成灰度图像,然后遍历整幅图像,找到所有像素中最高的灰度值g,即Convert the color image to a grayscale image, and then traverse the entire image to find the highest grayscale value g in all pixels, that is

g=max{g1,g2,...,gi}g=max{g 1 , g 2 , ..., g i }

然后使用伽马变换的变形公式:Then use the deformation formula of the gamma transform:

s=c(r-g)γ s=c(rg) γ

and

s=c(r+L-1-g)γ s=c(r+L-1-g) γ

其中r为输入图像灰度值,s为输出图像灰度值,c和γ为正常数,L为灰度级图像的灰度级数,gi表示图像中第i个像素点的灰度值。where r is the grayscale value of the input image, s is the grayscale value of the output image, c and γ are normal numbers, L is the grayscale level of the grayscale image, and gi represents the grayscale value of the ith pixel in the image .

本发明还提供采用上述基于图像的火灾识别系统的一种基于图像的火灾识别方法,包括以下步骤。The present invention also provides an image-based fire identification method using the above-mentioned image-based fire identification system, which includes the following steps.

S1、在CCD摄像头旋转控制单元控制的控制下,CCD摄像头围绕安装杆360度旋转,对森林图像进行实时采集。S1. Under the control of the CCD camera rotation control unit, the CCD camera rotates 360 degrees around the installation rod to collect forest images in real time.

S2、图像获取单元获取CCD摄像头的视频监控区域的当前图像。S2. The image acquisition unit acquires the current image of the video surveillance area of the CCD camera.

S3、亮度识别单元识别当前图像中是否具有高亮物体。当识别到高亮物体时,CCD摄像头旋转控制单元控制CCD摄像头停止旋转,CCD摄像头对准高亮物体所在方位连续拍摄图像。S3. The brightness identification unit identifies whether there is a highlighted object in the current image. When a highlighted object is identified, the CCD camera rotation control unit controls the CCD camera to stop rotating, and the CCD camera is aimed at the position of the highlighted object and continuously captures images.

S4、测速单元对识别到的高亮物体进行追踪,计算高亮物体移动速度。如果速度大于阈值,则判定该高亮物体不是火焰;该高亮物体为闪电、汽车灯光等快速移动光源,CCD摄像头恢复旋转。S4, the speed measuring unit tracks the identified highlighted object, and calculates the moving speed of the highlighted object. If the speed is greater than the threshold, it is determined that the highlighted object is not a flame; the highlighted object is a fast-moving light source such as lightning or car lights, and the CCD camera resumes rotation.

S5、天气数据读取单元通过网络调取气象系统中CCD摄像头所在地的实时天气数据。如果高亮物体移动速度小于阈值,则调取气象系统中CCD摄像头所在地的实时天气数据。S5. The weather data reading unit retrieves the real-time weather data of the location of the CCD camera in the weather system through the network. If the moving speed of the highlighted object is less than the threshold, the real-time weather data of the location of the CCD camera in the weather system is retrieved.

S6、如果天气数据读取单元读取到的天气数据为阴天或雨天,则排除该高亮物体是太阳或月亮的可能性,中央处理单元向报警单元发出报警指令;如果实时天气为晴天或者多云,CCD摄像头旋转角度获取单元获取拍摄到高亮物体时CCD摄像头旋转角度,中央处理单元根据CCD摄像头所在地理坐标、CCD摄像头旋转角度以及CCD摄像头所在地的当地时间,计算出太阳和月亮相对于CCD摄像头所在方位,并将太阳和月亮相对于CCD摄像头所在方位和高亮物体所在方位进行匹配,如果不重合,中央处理单元向报警单元发出指令,如果重合,中央处理单元将该高亮物标记为天体光源,CCD摄像头恢复旋转。S6. If the weather data read by the weather data reading unit is cloudy or rainy, exclude the possibility that the highlighted object is the sun or the moon, and the central processing unit sends an alarm instruction to the alarm unit; if the real-time weather is sunny or Cloudy, the CCD camera rotation angle acquisition unit acquires the CCD camera rotation angle when a bright object is captured, and the central processing unit calculates the sun and moon phases for the CCD based on the geographic coordinates of the CCD camera, the CCD camera rotation angle, and the local time where the CCD camera is located. The orientation of the camera, and the sun and moon phases are matched with the orientation of the CCD camera and the orientation of the highlighted object. If they do not coincide, the central processing unit sends an instruction to the alarm unit. If they overlap, the central processing unit marks the highlighted object as The celestial light source, the CCD camera resumes rotation.

S7、报警单元获取中央处理单元发出的报警指令并发出火灾报警信号。S7, the alarm unit acquires the alarm instruction sent by the central processing unit and sends out a fire alarm signal.

进一步的,在步骤S2和S3之间还包括图像预处理步骤,用于对图像获取单元获取的图像进行剔除光照的预处理。对图像获取单元获取的图像,首先把彩色图像转化为灰度图像,然后使用伽马变换的方法来剔除多余光照,其中伽马变换的阈值通过计算图像中像素灰度的最大值来动态确定。Further, between steps S2 and S3, an image preprocessing step is also included, which is used to perform preprocessing of eliminating illumination on the image acquired by the image acquisition unit. For the image acquired by the image acquisition unit, first convert the color image into a grayscale image, and then use the gamma transformation method to eliminate excess light, wherein the threshold value of the gamma transformation is dynamically determined by calculating the maximum value of pixel grayscale in the image.

为了降低光照的影响,采用伽马变换(也称为幂次变换)的方法来对获取的当前图像进行处理,伽马变换的基本形式为:In order to reduce the influence of illumination, the method of gamma transformation (also called power transformation) is used to process the acquired current image. The basic form of gamma transformation is:

s=crγ s=cr γ

把彩色图像转化成灰度图像,然后遍历整幅图像,找到所有像素中最高的灰度值g,即Convert the color image to a grayscale image, and then traverse the entire image to find the highest grayscale value g in all pixels, that is

g=max{g1,g2,...,gi}g=max{g 1 , g 2 , ..., g i }

然后使用伽马变换的变形公式:Then use the deformation formula of the gamma transform:

s=c(r-g)γ s=c(rg) γ

and

s=c(r+L-1-g)γ s=c(r+L-1-g) γ

其中r为输入图像灰度值,s为输出图像灰度值,c和γ为正常数,L为灰度级图像的灰度级数,gi表示图像中第i个像素点的灰度值。where r is the grayscale value of the input image, s is the grayscale value of the output image, c and γ are normal numbers, L is the grayscale level of the grayscale image, and gi represents the grayscale value of the ith pixel in the image .

上述实施例仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。The above embodiments are only preferred specific embodiments of the present invention, but the protection scope of the present invention is not limited thereto. Any person skilled in the art can easily think of changes or substitutions within the technical scope disclosed by the present invention. , all should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be subject to the protection scope of the claims.

Claims (4)

1.一种基于图像的火灾识别系统,其特征在于,包括:1. an image-based fire identification system, is characterized in that, comprises: CCD摄像头,CCD摄像头围绕安装立杆360度旋转,对四周森林图像进行实时采集;CCD camera, the CCD camera rotates 360 degrees around the installation pole, and collects the surrounding forest images in real time; CCD摄像头旋转控制单元,用于控制CCD摄像头的旋转速度;The CCD camera rotation control unit is used to control the rotation speed of the CCD camera; 图像获取单元,获取CCD摄像头的视频监控区域的当前图像;The image acquisition unit acquires the current image of the video surveillance area of the CCD camera; 亮度识别单元,识别图像获取单元获取的当前图像中是否具有高亮物体,识别到高亮物体时,亮度识别单元发出信号至CCD摄像头旋转控制单元,CCD摄像头旋转控制单元控制CCD摄像头停止旋转,CCD摄像头对准高亮物体所在方位连续拍摄图像;The brightness recognition unit identifies whether there is a highlight object in the current image acquired by the image acquisition unit. When a highlight object is identified, the brightness recognition unit sends a signal to the CCD camera rotation control unit. The CCD camera rotation control unit controls the CCD camera to stop rotating, and the CCD camera stops rotating. The camera is aimed at the location of the highlighted object and continuously captures images; 测速单元,用于对识别到的高亮物体进行追踪,计算高亮物体移动速度,如果速度大于阈值,则判定该高亮物体不是火焰,测速单元发出信号至CCD摄像头旋转控制单元,CCD摄像头旋转控制单元控制CCD摄像头恢复旋转;The speed measuring unit is used to track the identified highlighted object and calculate the moving speed of the highlighted object. If the speed is greater than the threshold, it is determined that the highlighted object is not a flame, and the speed measuring unit sends a signal to the CCD camera rotation control unit, and the CCD camera rotates The control unit controls the CCD camera to resume rotation; 天气数据读取单元,用于通过网络调取气象系统中CCD摄像头所在地的实时天气数据;The weather data reading unit is used to retrieve the real-time weather data of the location of the CCD camera in the weather system through the network; CCD摄像头旋转角度获取单元,用于获取拍摄到高亮物体时视频监控单元旋转角度数据;The CCD camera rotation angle acquisition unit is used to acquire the rotation angle data of the video surveillance unit when the highlighted object is captured; 中央处理单元,如果天气数据读取单元读取到的天气数据为阴天或雨天,则排除该高亮物体是太阳或月亮的可能性,中央处理单元向报警单元发出报警指令;如果实时天气为晴天或者多云,CCD摄像头旋转角度获取单元获取拍摄到高亮物体时CCD摄像头旋转角度,中央处理单元根据CCD摄像头所在地理坐标、CCD摄像头旋转角度以及CCD摄像头所在地的当地时间,计算出太阳和月亮相对于CCD摄像头所在方位,并将太阳和月亮相对于CCD摄像头所在方位和高亮物体所在方位进行匹配,如果不重合,中央处理单元向报警单元发出指令,如果重合,中央处理单元将该高亮物体标记为天体光源,CCD摄像头恢复旋转;The central processing unit, if the weather data read by the weather data reading unit is cloudy or rainy, exclude the possibility that the highlighted object is the sun or the moon, and the central processing unit sends an alarm command to the alarm unit; if the real-time weather is On sunny or cloudy days, the CCD camera rotation angle acquisition unit acquires the CCD camera rotation angle when a bright object is captured, and the central processing unit calculates the sun and moon phases based on the geographic coordinates of the CCD camera, the CCD camera rotation angle, and the local time where the CCD camera is located. For the position of the CCD camera, match the position of the sun and the moon to the position of the CCD camera and the position of the highlighted object. If they do not coincide, the central processing unit sends an instruction to the alarm unit. If they coincide, the central processing unit will put the highlighted object. Marked as celestial light source, the CCD camera resumes rotation; 报警单元,用于获取中央处理单元发出的报警指令并发出火灾报警信号。The alarm unit is used to obtain the alarm instruction issued by the central processing unit and issue a fire alarm signal. 2.根据权利要求1所述的一种基于图像的火灾识别系统,其特征在于,还包括图像预处理单元,用于对图像获取单元获取的图像进行剔除光照的预处理,首先把图像获取单元获取的彩色图像转化为灰度图像,然后使用伽马变换的方法来剔除多余光照,其中伽马变换的阈值通过计算图像中像素灰度的最大值来动态确定;2 . The image-based fire identification system according to claim 1 , further comprising an image preprocessing unit, which is used to perform preprocessing of eliminating illumination on the image acquired by the image acquisition unit, firstly, the image acquisition unit The acquired color image is converted into a grayscale image, and then the gamma transformation method is used to remove excess light, wherein the threshold value of the gamma transformation is dynamically determined by calculating the maximum value of the pixel grayscale in the image; 伽马变换的基本形式为:The basic form of gamma transform is: s=crγ s=cr γ 把彩色图像转化成灰度图像,然后遍历整幅图像,找到所有像素中最高的灰度值g,即Convert the color image to a grayscale image, and then traverse the entire image to find the highest grayscale value g in all pixels, that is g=max{g1,g2,...,gi}g=max{g 1 , g 2 , ..., g i } 然后使用伽马变换的变形公式:Then use the deformation formula of the gamma transform: s=c(r-g)γ s=c(rg) γ and s=c(r+L-1-g)γ s=c(r+L-1-g) γ 其中r为输入图像灰度值,s为输出图像灰度值,c和γ为正常数,L为灰度级图像的灰度级数,gi表示图像中第i个像素点的灰度值。where r is the grayscale value of the input image, s is the grayscale value of the output image, c and γ are normal numbers, L is the grayscale level of the grayscale image, and gi represents the grayscale value of the ith pixel in the image . 3.一种基于图像的火灾识别方法,其特征在于,包括以下步骤;3. An image-based fire identification method, characterized in that, comprising the following steps; S1、在CCD摄像头旋转控制单元控制的控制下,CCD摄像头围绕安装杆360度旋转,对森林图像进行实时采集;S1. Under the control of the CCD camera rotation control unit, the CCD camera rotates 360 degrees around the installation rod to collect forest images in real time; S2、图像获取单元获取CCD摄像头的视频监控区域的当前图像;S2, the image acquisition unit acquires the current image of the video surveillance area of the CCD camera; S3、亮度识别单元识别当前图像中是否具有高亮物体,当识别到高亮物体时,CCD摄像头旋转控制单元控制CCD摄像头停止旋转,CCD摄像头对准高亮物体所在方位连续拍摄图像;S3, the brightness identification unit identifies whether there is a highlighted object in the current image, and when the highlighted object is identified, the CCD camera rotation control unit controls the CCD camera to stop rotating, and the CCD camera is aimed at the position of the highlighted object and continuously captures images; S4、测速单元对识别到的高亮物体进行追踪,计算高亮物体移动速度,如果速度大于阈值,则判定该高亮物体不是火焰,CCD摄像头恢复旋转;S4. The speed measuring unit tracks the identified highlighted object, and calculates the moving speed of the highlighted object. If the speed is greater than the threshold, it is determined that the highlighted object is not a flame, and the CCD camera resumes rotation; S5、如果高亮物体移动速度小于阈值,则调取气象系统中CCD摄像头所在地的实时天气数据;S5. If the moving speed of the highlighted object is less than the threshold, the real-time weather data of the location of the CCD camera in the meteorological system is retrieved; S6、如果天气数据读取单元读取到的天气数据为阴天或雨天,则排除该高亮物体是太阳或月亮的可能性,中央处理单元向报警单元发出报警指令,报警单元获取到中央处理单元发出的报警指令并发出火灾报警信号;如果实时天气为晴天或者多云,CCD摄像头旋转角度获取单元获取拍摄到高亮物体时CCD摄像头旋转角度,中央处理单元根据CCD摄像头所在地理坐标、CCD摄像头旋转角度以及CCD摄像头所在地的当地时间,计算出太阳和月亮相对于CCD摄像头所在方位,并将太阳和月亮相对于CCD摄像头所在方位和高亮物体所在方位进行匹配,如果不重合,中央处理单元向报警单元发出指令,报警单元获取中央处理单元发出的报警指令并发出火灾报警信号,如果重合,中央处理单元将该高亮物体标记为天体光源,CCD摄像头恢复旋转。S6, if the weather data read by the weather data reading unit is cloudy or rainy, then exclude the possibility that the highlighted object is the sun or the moon, the central processing unit sends an alarm instruction to the alarm unit, and the alarm unit acquires the central processing unit The unit sends an alarm command and sends out a fire alarm signal; if the real-time weather is sunny or cloudy, the CCD camera rotation angle acquisition unit obtains the rotation angle of the CCD camera when the highlighted object is captured, and the central processing unit rotates the CCD camera according to the geographic coordinates of the CCD camera. The angle and the local time where the CCD camera is located, calculate the position of the sun and the moon relative to the position of the CCD camera, and match the position of the sun and the moon relative to the position of the CCD camera and the position of the highlighted object. If they do not coincide, the central processing unit will alert the police. The unit sends an instruction, and the alarm unit acquires the alarm instruction sent by the central processing unit and sends out a fire alarm signal. If it coincides, the central processing unit marks the highlighted object as a celestial light source, and the CCD camera resumes rotation. 4.根据权利要求3中所述的一种基于图像的火灾识别方法,其特征在于,在步骤S2和S3之间还包括图像预处理步骤,用于对图像获取单元获取的图像进行剔除光照的预处理,首先把图像获取单元获取的图像转化为灰度图像,然后使用伽马变换的方法来剔除多余光照,其中伽马变换的阈值通过计算图像中像素灰度的最大值来动态确定;4. An image-based fire identification method according to claim 3, characterized in that, between steps S2 and S3, an image preprocessing step is further included for removing the illumination from the image acquired by the image acquisition unit. Preprocessing, first convert the image acquired by the image acquisition unit into a grayscale image, and then use the gamma transformation method to eliminate excess light, wherein the threshold of the gamma transformation is dynamically determined by calculating the maximum value of the pixel grayscale in the image; 伽马变换的基本形式为:The basic form of gamma transform is: s=crγ s=cr γ 把彩色图像转化成灰度图像,然后遍历整幅图像,找到所有像素中最高的灰度值g,即Convert the color image to a grayscale image, and then traverse the entire image to find the highest grayscale value g in all pixels, that is g=max{g1,g2,...,gi}g=max{g 1 , g 2 , ..., g i } 然后使用伽马变换的变形公式:Then use the deformation formula of the gamma transform: s=c(r-g)γ s=c(rg) γ and s=c(r+L-1-g)γ s=c(r+L-1-g) γ 其中r为输入图像灰度值,s为输出图像灰度值,c和γ为正常数,L为灰度级图像的灰度级数,gi表示图像中第i个像素点的灰度值。where r is the grayscale value of the input image, s is the grayscale value of the output image, c and γ are normal numbers, L is the grayscale level of the grayscale image, and gi represents the grayscale value of the ith pixel in the image .
CN201810364398.5A 2018-04-20 2018-04-20 An image-based fire identification system and method Active CN108520615B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810364398.5A CN108520615B (en) 2018-04-20 2018-04-20 An image-based fire identification system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810364398.5A CN108520615B (en) 2018-04-20 2018-04-20 An image-based fire identification system and method

Publications (2)

Publication Number Publication Date
CN108520615A CN108520615A (en) 2018-09-11
CN108520615B true CN108520615B (en) 2020-08-25

Family

ID=63429018

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810364398.5A Active CN108520615B (en) 2018-04-20 2018-04-20 An image-based fire identification system and method

Country Status (1)

Country Link
CN (1) CN108520615B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113436406B (en) * 2021-08-25 2021-11-12 广州乐盈信息科技股份有限公司 A sound and light alarm system
CN115641516B (en) * 2022-02-24 2023-09-22 李学广 Unmanned aerial vehicle remote control display method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4567367A (en) * 1983-01-13 1986-01-28 Brown De Colstoun Francois Method for detecting a source of heat, more particularly a forest fire in a watched area, and system for carrying out said method
JPH0540894A (en) * 1991-08-06 1993-02-19 Hochiki Corp Monitoring device
US5936245A (en) * 1996-06-03 1999-08-10 Institut Francais Du Petrole Method and system for remote sensing of the flammability of the different parts of an area flown over by an aircraft
US7541938B1 (en) * 2006-03-29 2009-06-02 Darell Eugene Engelhaupt Optical flame detection system and method
CN101458865A (en) * 2008-05-09 2009-06-17 丁国锋 Fire disaster probe system and method
CN101577033A (en) * 2009-05-26 2009-11-11 官洪运 Multiband infrared image-type fire detecting system and fire alarm system thereof
CN101609589A (en) * 2008-06-17 2009-12-23 侯荣琴 Multi-frequency image fire detection system
CN101625789A (en) * 2008-07-07 2010-01-13 北京东方泰坦科技有限公司 Method for monitoring forest fire in real time based on intelligent identification of smoke and fire
CN101650866A (en) * 2009-09-22 2010-02-17 华南理工大学 Fire detecting system applied to unmanned helicopter and fire detecting method thereof
CN102622845A (en) * 2012-03-31 2012-08-01 哈尔滨工业大学 Background interference elimination device and elimination method based on forest flash point de-disturbance point positioning device
CN104537792A (en) * 2014-12-26 2015-04-22 浙江大学 Transmission line wildfire satellite monitoring method based on background information
CN106503480A (en) * 2016-12-14 2017-03-15 中国科学院遥感与数字地球研究所 A kind of fixed statellite fire remote-sensing monitoring method
US9686513B2 (en) * 2011-03-02 2017-06-20 Disicon Forest fire video monitoring system and method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102484A (en) * 1986-10-17 1988-05-07 Miyata Kogyo Kk Abnormality monitoring device
JP3035377B2 (en) * 1991-07-16 2000-04-24 ホーチキ株式会社 Fire point detector
JP3292231B2 (en) * 1996-12-12 2002-06-17 富士通株式会社 Computer readable medium recording fire monitoring device and fire monitoring program
RU2003133287A (en) * 2001-05-11 2005-05-27 Детектор Электроникс Корпорэйшн (Us) METHOD AND DEVICE FOR FLAME DETECTION BY FORMING FLAME IMAGES
CN101393603B (en) * 2008-10-09 2012-01-04 浙江大学 Method for recognizing and detecting tunnel fire disaster flame
CN101527073B (en) * 2009-02-17 2010-12-01 丁国锋 Fire detection system and method thereof
CN102236947B (en) * 2010-04-29 2012-08-29 中国建筑科学研究院 Flame monitoring method and system based on video camera
CN102497509B (en) * 2011-12-14 2013-07-03 哈尔滨工业大学 Forest fire point disturbance-removing single point positioning method
WO2015021186A1 (en) * 2013-08-09 2015-02-12 Thermal Imaging Radar, LLC Methods for analyzing thermal image data using a plurality of virtual devices and methods for correlating depth values to image pixels
CN106157518A (en) * 2015-03-24 2016-11-23 青岛浩海网络科技股份有限公司 A kind of forest fire protection far infrared anti-false-alarm system and method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4567367A (en) * 1983-01-13 1986-01-28 Brown De Colstoun Francois Method for detecting a source of heat, more particularly a forest fire in a watched area, and system for carrying out said method
JPH0540894A (en) * 1991-08-06 1993-02-19 Hochiki Corp Monitoring device
US5936245A (en) * 1996-06-03 1999-08-10 Institut Francais Du Petrole Method and system for remote sensing of the flammability of the different parts of an area flown over by an aircraft
US7541938B1 (en) * 2006-03-29 2009-06-02 Darell Eugene Engelhaupt Optical flame detection system and method
CN101458865A (en) * 2008-05-09 2009-06-17 丁国锋 Fire disaster probe system and method
CN101609589A (en) * 2008-06-17 2009-12-23 侯荣琴 Multi-frequency image fire detection system
CN101625789A (en) * 2008-07-07 2010-01-13 北京东方泰坦科技有限公司 Method for monitoring forest fire in real time based on intelligent identification of smoke and fire
CN101577033A (en) * 2009-05-26 2009-11-11 官洪运 Multiband infrared image-type fire detecting system and fire alarm system thereof
CN101650866A (en) * 2009-09-22 2010-02-17 华南理工大学 Fire detecting system applied to unmanned helicopter and fire detecting method thereof
US9686513B2 (en) * 2011-03-02 2017-06-20 Disicon Forest fire video monitoring system and method
CN102622845A (en) * 2012-03-31 2012-08-01 哈尔滨工业大学 Background interference elimination device and elimination method based on forest flash point de-disturbance point positioning device
CN104537792A (en) * 2014-12-26 2015-04-22 浙江大学 Transmission line wildfire satellite monitoring method based on background information
CN106503480A (en) * 2016-12-14 2017-03-15 中国科学院遥感与数字地球研究所 A kind of fixed statellite fire remote-sensing monitoring method

Also Published As

Publication number Publication date
CN108520615A (en) 2018-09-11

Similar Documents

Publication Publication Date Title
US20240296726A1 (en) Multi-layer early warning and monitoring system and method for forest fire prevention applying big data technology
CN101673448A (en) Method and system for detecting forest fire
CN111879292B (en) A kind of coastline dynamic monitoring method, monitoring equipment and storage medium
Ahmad et al. A novel method for vegetation encroachment monitoring of transmission lines using a single 2D camera
KR101076734B1 (en) Information analysis type forest fire monitoring device and method
CN113900436B (en) Inspection control method, inspection control device, inspection control equipment and storage medium
RU2504014C1 (en) Method of controlling monitoring system and system for realising said method
KR20160099931A (en) Disaster preventing and managing method for the disaster harzard and interest area
EP3361412A1 (en) Black ice detection system, program, and method
CN108332927A (en) A kind of bridge surface crack detection device
CN108520615B (en) An image-based fire identification system and method
WO2020174916A1 (en) Imaging system
CN110488391A (en) For the Weather prediction system of zonule, method and storage medium
JP6500428B2 (en) Moving body detection device, moving body detection method, and moving body detection program
CN113744196A (en) A real-time monitoring method and system for engineering construction
CN113283285A (en) Method for accurately positioning address based on image recognition technology
CN104021576A (en) Method and system for tracking moving objects in scene
CN205142399U (en) Automatic snapshot system that checies of name of vessel
CN112508328A (en) Natural conservation place ecological quality monitoring system and method
KR20070028812A (en) Forest fire detection method and device using camera image
CN112380908B (en) Binocular vision measurement method and system for thermal power plant pipeline expansion amount
CN117612146A (en) Automatic reading and intelligent abnormality alarming method for power plant instrument
KR20240039785A (en) Apparatus and method for optimizing of object detection model for cctv
CN116052012A (en) A fire point identification method and system based on Himawari-8 satellite data
CN116246090A (en) System and method for identifying target based on example segmentation and infrared sensor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20200731

Address after: 130033, Linhe District, Jilin, Changchun Province, No. 3528 Linhe Street

Applicant after: JILIN CITY ACADEMY OF FORESTRY

Address before: 241003 Building B3-1, Phase I Service Outsourcing Park, Yijiang District, Wuhu City, Anhui Province

Applicant before: WUHU LINGSHANG INFORMATION TECHNOLOGY Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant