CN108108812A - 用于卷积神经网络的高效可配置卷积计算加速器 - Google Patents
用于卷积神经网络的高效可配置卷积计算加速器 Download PDFInfo
- Publication number
- CN108108812A CN108108812A CN201711414668.0A CN201711414668A CN108108812A CN 108108812 A CN108108812 A CN 108108812A CN 201711414668 A CN201711414668 A CN 201711414668A CN 108108812 A CN108108812 A CN 108108812A
- Authority
- CN
- China
- Prior art keywords
- convolution
- ffir
- module
- fast
- mode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Theoretical Computer Science (AREA)
- Evolutionary Computation (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Neurology (AREA)
- Complex Calculations (AREA)
Abstract
Description
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201711414668.0A CN108108812B (zh) | 2017-12-20 | 2017-12-20 | 用于卷积神经网络的高效可配置卷积计算加速器 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201711414668.0A CN108108812B (zh) | 2017-12-20 | 2017-12-20 | 用于卷积神经网络的高效可配置卷积计算加速器 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN108108812A true CN108108812A (zh) | 2018-06-01 |
| CN108108812B CN108108812B (zh) | 2021-12-03 |
Family
ID=62212696
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201711414668.0A Active CN108108812B (zh) | 2017-12-20 | 2017-12-20 | 用于卷积神经网络的高效可配置卷积计算加速器 |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN108108812B (zh) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109558944A (zh) * | 2018-12-13 | 2019-04-02 | 北京智芯原动科技有限公司 | 基于可配置卷积层的卷积神经网络的算法优化方法及装置 |
| CN110880034A (zh) * | 2018-09-06 | 2020-03-13 | 三星电子株式会社 | 使用卷积神经网络的计算装置及其操作方法 |
| CN111832718A (zh) * | 2020-06-24 | 2020-10-27 | 上海西井信息科技有限公司 | 芯片架构 |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1278341A (zh) * | 1997-10-28 | 2000-12-27 | 爱特梅尔股份有限公司 | 快速规则的乘法器层次结构 |
| CN106909970A (zh) * | 2017-01-12 | 2017-06-30 | 南京大学 | 一种基于近似计算的二值权重卷积神经网络硬件加速器计算模块 |
| CN106936406A (zh) * | 2017-03-10 | 2017-07-07 | 南京大学 | 一种5并行快速有限冲击响应滤波器的实现 |
| CN107169560A (zh) * | 2017-04-19 | 2017-09-15 | 清华大学 | 一种自适应可重构的深度卷积神经网络计算方法和装置 |
-
2017
- 2017-12-20 CN CN201711414668.0A patent/CN108108812B/zh active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1278341A (zh) * | 1997-10-28 | 2000-12-27 | 爱特梅尔股份有限公司 | 快速规则的乘法器层次结构 |
| CN106909970A (zh) * | 2017-01-12 | 2017-06-30 | 南京大学 | 一种基于近似计算的二值权重卷积神经网络硬件加速器计算模块 |
| CN106936406A (zh) * | 2017-03-10 | 2017-07-07 | 南京大学 | 一种5并行快速有限冲击响应滤波器的实现 |
| CN107169560A (zh) * | 2017-04-19 | 2017-09-15 | 清华大学 | 一种自适应可重构的深度卷积神经网络计算方法和装置 |
Non-Patent Citations (1)
| Title |
|---|
| JICHEN WANG.ETC: ""Efficient Hardware Architectures for Deep Convolutional Neural Network"", 《IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I》 * |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110880034A (zh) * | 2018-09-06 | 2020-03-13 | 三星电子株式会社 | 使用卷积神经网络的计算装置及其操作方法 |
| CN109558944A (zh) * | 2018-12-13 | 2019-04-02 | 北京智芯原动科技有限公司 | 基于可配置卷积层的卷积神经网络的算法优化方法及装置 |
| CN109558944B (zh) * | 2018-12-13 | 2021-02-19 | 北京智芯原动科技有限公司 | 基于可配置卷积层的卷积神经网络的算法优化方法及装置 |
| CN111832718A (zh) * | 2020-06-24 | 2020-10-27 | 上海西井信息科技有限公司 | 芯片架构 |
Also Published As
| Publication number | Publication date |
|---|---|
| CN108108812B (zh) | 2021-12-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN104899182B (zh) | 一种支持可变分块的矩阵乘加速方法 | |
| JP5356537B2 (ja) | 前置加算器段を備えたデジタル信号処理ブロック | |
| Huang et al. | A high performance multi-bit-width booth vector systolic accelerator for NAS optimized deep learning neural networks | |
| CN108537331A (zh) | 一种基于异步逻辑的可重构卷积神经网络加速电路 | |
| CN111047034B (zh) | 一种基于乘加器单元的现场可编程神经网络阵列 | |
| Thakur et al. | FPGA-based parallel prefix speculative adder for fast computation application | |
| Li et al. | A precision-scalable energy-efficient bit-split-and-combination vector systolic accelerator for NAS-optimized DNNs on edge | |
| CN108108812A (zh) | 用于卷积神经网络的高效可配置卷积计算加速器 | |
| CN109284824A (zh) | 一种基于可重构技术的用于加速卷积和池化运算的装置 | |
| CN110647309A (zh) | 一种高速大位宽乘法器 | |
| Sravani et al. | Design and implementation of optimized fir filter using csa and booth multiplier for high speed signal processing | |
| Li et al. | A high-performance pixel-level fully pipelined hardware accelerator for neural networks | |
| Spagnolo et al. | Reconfigurable convolution architecture for heterogeneous systems-on-chip | |
| CN107092462B (zh) | 一种基于fpga的64位异步乘法器 | |
| US9787290B2 (en) | Resource-saving circuit structures for deeply pipelined systolic finite impulse response filters | |
| CN108429546A (zh) | 一种混合型fir滤波器设计方法 | |
| Joy et al. | Folding and register minimization transformation on DSP filter | |
| Lofandri et al. | Design and Optimization of a High-Speed VLSI Architecture for Integrated FIR Filters in Advanced Digital Signal Processing Applications | |
| CN113434811B (zh) | 一种2048点fft处理器ip核 | |
| Yin et al. | A reconfigurable accelerator for generative adversarial network training based on FPGA | |
| CN103699729A (zh) | 模乘法器 | |
| CN107862381A (zh) | 一种适用于多种卷积模式的fir滤波器实现 | |
| Zhou et al. | 64-bit prefix adders: Power-efficient topologies and design solutions | |
| Ge et al. | Throughput Maximization for Transformer Inference on Processing Near-Memory Architectures | |
| Subathradevi et al. | Delay optimized novel architecture of FIR filter using clustered-retimed MAC unit Cell for DSP applications |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| TA01 | Transfer of patent application right |
Effective date of registration: 20190430 Address after: Room 816, Block B, Software Building 9 Xinghuo Road, Jiangbei New District, Nanjing, Jiangsu Province Applicant after: Nanjing Fengxing Technology Co.,Ltd. Address before: 210023 Xianlin Avenue 163 Nanjing University Electronic Building 229, Qixia District, Nanjing City, Jiangsu Province Applicant before: Nanjing University |
|
| TA01 | Transfer of patent application right | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20260112 Address after: 210000 Jiangsu Province Nanjing City Qixia District Xianlin Street No. 163 Xianlin Avenue "Science and Technology Star" Innovation and Entrepreneurship Space of Nanjing University, Room 418-25 Patentee after: Nanjing Fengyu Intelligent Information Technology Co.,Ltd. Country or region after: China Address before: Room 816, Block B, Software Building 9 Xinghuo Road, Jiangbei New District, Nanjing, Jiangsu Province Patentee before: Nanjing Fengxing Technology Co.,Ltd. Country or region before: China |