CN108011784B - A Dynamic Optimization Method for the Worst Connectivity Performance of Networks - Google Patents
A Dynamic Optimization Method for the Worst Connectivity Performance of Networks Download PDFInfo
- Publication number
- CN108011784B CN108011784B CN201711304021.2A CN201711304021A CN108011784B CN 108011784 B CN108011784 B CN 108011784B CN 201711304021 A CN201711304021 A CN 201711304021A CN 108011784 B CN108011784 B CN 108011784B
- Authority
- CN
- China
- Prior art keywords
- node
- network
- diameter
- optimization
- nodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005457 optimization Methods 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 18
- 230000006378 damage Effects 0.000 claims description 2
- 230000009467 reduction Effects 0.000 claims description 2
- 239000013307 optical fiber Substances 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- ZAKOWWREFLAJOT-CEFNRUSXSA-N D-alpha-tocopherylacetate Chemical compound CC(=O)OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C ZAKOWWREFLAJOT-CEFNRUSXSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
- H04L43/0805—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
- H04L43/0811—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking connectivity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0803—Configuration setting
- H04L41/0823—Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/12—Shortest path evaluation
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Environmental & Geological Engineering (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
本发明公开了一种网络最差连通性能的动态优化方法。它包括以下几个步骤:计算网络直径,获取对应的节点对集合;统计长度为直径的最短路径条数,获取最短路径数集合;约简节点对集合,依据约简后集合中元素的个数判断是否进行优化;依据判断结果,选择执行或者结束优化;随机选取集合中的数个节点对,新建直连边,构成新的网络,并重新执行以上步骤,以实现动态优化。本发明方法通过比较节点间连通的最差情形,优选节点对并针对性地增加边,从最差情形下动态优化网络的整体连通性能。本发明可以广泛应用于大量实际复杂系统,如Internet、交通网络等,为光纤路由布局、新增航线、轨道交通等优化设计提供重要参考依据。
The invention discloses a dynamic optimization method for the worst connection performance of the network. It includes the following steps: calculating the network diameter to obtain the corresponding set of node pairs; counting the number of shortest paths whose length is the diameter to obtain the set of shortest paths; reducing the set of node pairs, according to the number of elements in the reduced set Determine whether to optimize; according to the judgment result, choose to execute or end the optimization; randomly select several node pairs in the set, create a new direct connection edge to form a new network, and re-execute the above steps to achieve dynamic optimization. The method of the invention dynamically optimizes the overall connectivity performance of the network from the worst case by comparing the worst case of the connection between nodes, optimizing the pair of nodes and adding edges in a targeted manner. The invention can be widely used in a large number of actual complex systems, such as the Internet, traffic networks, etc., and provides an important reference for the optimal design of optical fiber routing layout, new routes, rail transit and the like.
Description
技术领域technical field
本发明涉及一种网络连通性能的动态优化方法。The invention relates to a dynamic optimization method for network connectivity performance.
背景技术Background technique
人类的生活和生产活动依赖于大量自然界及人造的复杂系统,对于一个给定系统,其各组件之间的联系和交互模式可以用网络表示,系统的各个组件可以抽象成网络中的顶点,组件间的联系抽象成边。Human life and production activities depend on a large number of natural and man-made complex systems. For a given system, the connections and interaction patterns between its components can be represented by a network, and each component of the system can be abstracted into vertices and components in the network. The connections between them are abstracted into edges.
网络整体的连通性能在较大程度上体现出对载体的传输和服务能力,因此受到许多应用领域,如Internet、交通网络、贸易网络等领域的广泛关注。目前对网络连通性的考量通常集中在对网络中某项指标(度、介数等)较高的节点进行蓄意攻击和对所有节点随机攻击这两种情形下节点间实际存在边和所有可能边的比例关系(参考Banks等人2015年发表在Ecology letters上的综述)。The overall connectivity of the network reflects the transmission and service capabilities of the carrier to a large extent, so it has received extensive attention in many application fields, such as the Internet, transportation networks, and trade networks. At present, the consideration of network connectivity usually focuses on deliberately attacking nodes with a high index (degree, betweenness, etc.) in the network and random attacks on all nodes. In these two cases, there are actually edges and all possible edges between nodes. (refer to the review published in Ecology letters by Banks et al. 2015).
针对于网络连通性能的动态变化,目前的研究多集中在随机增加边或受到外在因素牵引产生的网络演化,以及演化后对网络整体鲁棒性的影响。例如,Foti等人(J.Econ.Dyn.Control,2013)考虑了增加边以后网络在面对随机攻击和蓄意攻击时鲁棒性的变化,而在其贸易网络中边的增加是受经济政策影响的。网络连通性能的改善较多考量边的统计特性和绝大多数节点间的连通性,且边的增加具有随机性。目前的技术缺乏主动和针对性的优化,亦缺乏增加边的优选方式。Aiming at the dynamic change of network connectivity performance, the current research mostly focuses on the network evolution caused by random addition of edges or traction by external factors, and the influence of the evolution on the overall robustness of the network. For example, Foti et al. (J.Econ.Dyn.Control, 2013) considered changes in the network's robustness against random and deliberate attacks after adding edges, while the addition of edges in their trade network is influenced by economic policy affected. The improvement of network connectivity performance mainly considers the statistical characteristics of edges and the connectivity between most nodes, and the increase of edges is random. The current technology lacks active and targeted optimization, and also lacks an optimal way to add edges.
发明内容SUMMARY OF THE INVENTION
为了解决网络连通性能的针对性优化问题,本发明结合节点间最短路径的鲁棒性来评估节点间连通性的最差情形,提供待增边的优选方式,实现网络连通性能的动态优化。In order to solve the problem of targeted optimization of network connectivity performance, the present invention combines the robustness of the shortest path between nodes to evaluate the worst case of connectivity between nodes, provides an optimal way to add edges, and realizes dynamic optimization of network connectivity performance.
为了实现上述技术目的,本发明的技术方案是,一种网络最差连通性能的动态优化方法,包括以下步骤,In order to achieve the above technical purpose, the technical solution of the present invention is a dynamic optimization method for the worst connectivity performance of a network, comprising the following steps:
步骤一:计算网络直径并获取直径对应的节点对集合;Step 1: Calculate the network diameter and obtain the set of node pairs corresponding to the diameter;
步骤二:根据步骤一所得到的节点对集合,统计每一节点对间的最短路径条数,得到与节点对相对应的最短路径数集合;Step 2: According to the set of node pairs obtained in step 1, count the number of shortest paths between each node pair, and obtain a set of shortest path numbers corresponding to the node pairs;
步骤三:根据步骤二中获取的最短路径数集合,对步骤一中所得的节点对集合进行约简,获取连通性最差情形下的节点对;依据约简后的集合中元素的个数判断是否执行优化;Step 3: According to the set of shortest paths obtained in Step 2, reduce the set of node pairs obtained in Step 1 to obtain the node pair in the worst case of connectivity; judge according to the number of elements in the reduced set whether to perform optimization;
步骤四:根据步骤三所得的判断结果中的执行优化情形,随机选取步骤三所得集合中的数个节点对,分别增加一条直连边,由此产生新的网络;然后重新回到步骤一,依此循环,实施动态优化。Step 4: According to the execution optimization situation in the judgment result obtained in step 3, randomly select several node pairs in the set obtained in step 3, and add a directly connected edge respectively, thereby generating a new network; then return to step 1, In this cycle, dynamic optimization is implemented.
所述的方法,所述的步骤一中计算网络直径并获取直径对应的节点对集合的步骤为:In the described method, in the described step 1, the steps of calculating the network diameter and obtaining the node pair set corresponding to the diameter are:
步骤1:计算网络中任意两个节点间最短路径的长度;Step 1: Calculate the length of the shortest path between any two nodes in the network;
dij=min{P1 i→j,P2 i→j,...,Pn i→j}d ij =min{P 1 i→j ,P 2 i→j ,...,P n i→j }
其中dij代表节点i到节点j(i<j)最短路径的长度,n为从节点i到节点j的最短路径的数目统计值,Pk i→j表示从节点i到节点j的第k条路径的长度值,即第k条路径经过的边的数目;{P1 i→j,P2 i→j,...,Pn i→j}为节点i到节点j的所有路径长度值的集合。where d ij represents the length of the shortest path from node i to node j (i<j), n is the statistical value of the number of shortest paths from node i to node j, and P k i→j represents the kth path from node i to node j The length value of each path, that is, the number of edges passed by the kth path; {P 1 i→j , P 2 i→j ,...,P n i→j } is the length of all paths from node i to node j collection of values.
步骤2:计算网络直径;Step 2: Calculate the network diameter;
根据步骤一中步骤1所得的两节点间最短有向路径的长度,计算网络中任意两节点间最短路径长度的最大值,即直径:According to the length of the shortest directional path between two nodes obtained in step 1 in step 1, calculate the maximum length of the shortest path between any two nodes in the network, that is, the diameter:
D=maxdij D= maxdij
其中D代表网络的直径;maxdij表示任意两节点间最短路径长度的最大值。D represents the diameter of the network; maxd ij represents the maximum value of the shortest path length between any two nodes.
步骤3:获取直径对应的节点对集合;Step 3: Obtain the node pair set corresponding to the diameter;
根据步骤一中步骤2所得的直径,求直径对应的节点对集合,步骤为:According to the diameter obtained in step 2 in step 1, find the set of node pairs corresponding to the diameter, and the steps are:
U={(i,j)|dij=D}U={(i,j)|d ij =D}
其中U表示直径对应的节点对集合,(i,j)表示满足条件dij=D的节点对。Wherein U represents the node pair set corresponding to the diameter, and (i, j) represents the node pair satisfying the condition d ij =D.
所述的方法,所述的步骤二中得到与节点对相对应的最短路径数集合的步骤为:In the described method, the steps of obtaining the shortest path number set corresponding to the node pair in the second step are:
根据步骤一中步骤3获取的节点对集合,统计每一节点对间的最短路径条数,得到与节点对相对应的最短路径数集合,步骤为:According to the set of node pairs obtained in step 3 in step 1, count the number of shortest paths between each node pair, and obtain the set of shortest paths corresponding to the node pairs. The steps are:
V={Mij|(i,j)∈U}V={M ij |(i,j)∈U}
其中Mij表示节点对(i,j)相对应的最短路径数集合;V表示Mij的集合。Wherein M ij represents the set of shortest path numbers corresponding to the node pair (i, j); V represents the set of M ij .
所述的方法,所述的步骤三中对节点对集合进行约简并判断是否进行优化的步骤为:In the described method, the steps of reducing the set of nodes and judging whether to optimize in the third step are:
步骤1:获取连通性最差情形下的节点对;Step 1: Obtain the node pair in the worst case of connectivity;
根据步骤一中步骤3所得的节点对集合,抽取最短路径仅为1条的节点对,步骤为:According to the set of node pairs obtained in step 3 in step 1, extract the node pair with only one shortest path, and the steps are:
U′={(i,j)|Mij=1}U′={(i,j)|M ij =1}
其中U′表示对U约简后的节点对集,Mij=1表示节点对(i,j)之间的最短路径仅为1条;在此情形下,节点对间边的最小割集为1,破坏路径上任意一个节点和边都会导致网络直径的增加,使得网络最差连通性能恶化。Among them, U' represents the node pair set after U is reduced, and Mij = 1 means that there is only one shortest path between the node pair (i, j); in this case, the minimum cut set of the edge between the node pair is 1. Destruction of any node and edge on the path will lead to an increase in the diameter of the network, which will worsen the worst connectivity performance of the network.
步骤2:判断是否进行优化;Step 2: Determine whether to optimize;
根据步骤三中步骤1所得的节点对集合,依据集合中元素的个数来判断是否进行优化,步骤为:According to the set of node pairs obtained in step 1 in step 3, it is judged whether to optimize according to the number of elements in the set. The steps are:
其中(card(U′)≥1)表示对“U′中的元素个数大于等于1个”这个命题进行真假判断;T表示命题判断结果为真,即进入下一步的优化阶段;F表示命题判断结果为假,即终止优化。where (card(U′)≥1) Indicates that the proposition of "the number of elements in U' is greater than or equal to 1" is true or false; T indicates that the proposition judgment result is true, that is, the next optimization stage is entered; F indicates that the proposition judgment result is false, that is, the optimization is terminated.
所述的方法,所述的步骤四中执行优化的步骤为:In the described method, the steps of performing optimization in the described step 4 are:
根据步骤三中步骤2需要执行优化的情形进行优化,步骤为:According to the situation that the optimization needs to be performed in step 2 in step 3, the optimization is performed, and the steps are:
随机选择U′中t个节点对(i,j),用一条边直连;其中,t<card(U′);此处,给与优化实施者一定的自由度来依据实际情形选定每次优化的新增边数。Randomly select t node pairs (i, j) in U' and connect them directly with an edge; among them, t<card(U'); here, the optimization implementer is given a certain degree of freedom to select each node according to the actual situation. The number of new edges added for the suboptimization.
本发明通过比较节点间连通的最差情形,对网络连通性能实施主动优化。与现有技术相比,边的增加更具针对性,从改善节点对间连接鲁棒性的角度改善了网络连通性能的最差情形,规避了最差情形下蓄意攻击或随机攻击某些节点所带来的影响,以防最差情形变得更糟。优化的过程中可能导致网络直径的缩小,从而亦可能达到优化最差连通性的目的。The present invention implements active optimization of network connectivity performance by comparing the worst case of connectivity between nodes. Compared with the existing technology, the addition of edges is more targeted, and the worst case of network connectivity performance is improved from the perspective of improving the robustness of the connection between pairs of nodes, avoiding deliberate attacks or random attacks on some nodes in the worst case. impact before the worst-case scenario gets worse. The optimization process may lead to the reduction of the network diameter, which may also achieve the goal of optimizing the worst connectivity.
本发明的动态优化方法不仅适用于边不含方向和权值的简单网络,同样也适用于有向网络和加权网络。有向网络中步骤一的条件改为i≠j即可。针对于加权网络,将边的权值转化为路径长度来计算即可。因此,本发明可以广泛应用于大量实际复杂系统,如Internet、交通网络等网络,为光纤路由布局、新增航线、轨道等实施提供重要参考依据。The dynamic optimization method of the present invention is not only applicable to simple networks whose edges do not contain directions and weights, but also applicable to directed networks and weighted networks. The condition of step 1 in the directed network can be changed to i≠j. For the weighted network, the weight of the edge can be converted into the path length to calculate. Therefore, the present invention can be widely used in a large number of actual complex systems, such as the Internet, traffic networks and other networks, and provides an important reference for the implementation of optical fiber routing layout, new routes, tracks and the like.
下面结合附图对本发明作进一步说明。The present invention will be further described below in conjunction with the accompanying drawings.
附图说明Description of drawings
图1为为本发明的流程图。FIG. 1 is a flow chart of the present invention.
图2为本发明中的复杂网络示意图。FIG. 2 is a schematic diagram of a complex network in the present invention.
图3为本发明的执行优化的示意图。FIG. 3 is a schematic diagram of the execution optimization of the present invention.
具体实施方式Detailed ways
参见图1,图1为本发明的流程图。以下举例说明本发明的具体实施过程。Referring to FIG. 1, FIG. 1 is a flow chart of the present invention. The following examples illustrate the specific implementation process of the present invention.
实施例1:随机网络最差连通性能的动态优化Example 1: Dynamic Optimization of the Worst Connectivity Performance of a Stochastic Network
1)获取复杂网络1) Get a complex network
本实施例中对于一个50个节点的随机复杂网络,记为DN。网络表示为DN=(V,E),其中V为节点的集合,E为节点间边的集合。V中包含的节点为{v1,v2,…,v50}。在网络中,节点v1-v9、v1-v18、v1-v20、v1-v34、v3-v6、v5-v12、v5-v16、v5-v37、v5-v47、v6-v45、v7-v6、v8-v37、v9-v29、v11-v21、v11-v24、v12-v13、v12-v15、v13-v41、v14-v18、v14-v23、v16-v21、v16-v23、v18-v30、v18-v31、v21-v9、v21-v24、v21-v35、v22-v10、v22-v21、v23-v30、v23-v32、v25-v6、v26-v11、v26-v24、v26-v47、v27-v36、v27-v45、v28-v5、v28-v20、v29-v18、v30-v37、v31-v9、v31-v34、v32-v3、v32-v6、v32-v36、v32-v41、v33-v47、v34-v7、v34-v27、v34-v32、v34-v42、v35-v13、v35-v31、v35-v47、v36-v11、v36-v28、v36-v39、v36-v48、v37-v7、v37-v12、v37-v21、v37-v24、v37-v27、v37-v33、v37-v42、v37-v43、v38-v1、v38-v2、v38-v43、v39-v31、v40-v4、v40-v5、v40-v27、v40-v30、v40-v33、v40-v49、v41-v4、v41-v46、v42-v8、v42-v32、v42-v44、v42-v45、v43-v8、v43-v9、v43-v47、v43-v48、v44-v39、v45-v38、v46-v28、v46-v33、v47-v14、v47-v34、v47-v45、v48-v42、v49-v44、v50-v3、v50-v30、v50-v43之间存在一条无向无权边,其他节点间无连接。In this embodiment, a random complex network with 50 nodes is denoted as DN. The network is represented as DN=(V, E), where V is the set of nodes and E is the set of edges between nodes. The nodes contained in V are {v1, v2, ..., v50}. In the network, nodes v1-v9, v1-v18, v1-v20, v1-v34, v3-v6, v5-v12, v5-v16, v5-v37, v5-v47, v6-v45, v7-v6, v8 -v37, v9-v29, v11-v21, v11-v24, v12-v13, v12-v15, v13-v41, v14-v18, v14-v23, v16-v21, v16-v23, v18-v30, v18-v31 , v21-v9, v21-v24, v21-v35, v22-v10, v22-v21, v23-v30, v23-v32, v25-v6, v26-v11, v26-v24, v26-v47, v27-v36, v27 -v45, v28-v5, v28-v20, v29-v18, v30-v37, v31-v9, v31-v34, v32-v3, v32-v6, v32-v36, v32-v41, v33-v47, v34-v7 , v34-v27, v34-v32, v34-v42, v35-v13, v35-v31, v35-v47, v36-v11, v36-v28, v36-v39, v36-v48, v37-v7, v37-v12, v37 -v21, v37-v24, v37-v27, v37-v33, v37-v42, v37-v43, v38-v1, v38-v2, v38-v43, v39-v31, v40-v4, v40-v5, v40-v27 , v40-v30, v40-v33, v40-v49, v41-v4, v41-v46, v42-v8, v42-v32, v42-v44, v42-v45, v43-v8, v43-v9, v43-v47, v43 -v48, v44-v39, v45-v38, v46-v28, v46-v33, v47-v14, v47-v34, v47-v45, v48-v42, v49-v44, v50-v3, v50-v30, v50-v43 There is an undirected and weightless edge between them, and there is no connection between other nodes.
图2为本发明的实施例1中,依据节点之间的连接获取到的复杂网络示意图。FIG. 2 is a schematic diagram of a complex network obtained according to connections between nodes in Embodiment 1 of the present invention.
2)计算网络的直径及对应节点对集合2) Calculate the diameter of the network and the set of corresponding node pairs
网络直径定义为网络中任意两个可及节点之间最短路径长度的最大值。首先计算网络中任意两个节点间最短路径的长度。以节点对(v1,v2)之间最短路径的长度计算为例,它们之间存在的最短路径为v1~v38~v2,其中最短的路径包含2条边,因此长度为2。依次计算其他任意两节点间最短路径的长度,然后在所有长度值中求最大值。此处求得最大值为6,即为网络的直径大小。对应的节点对集合为{(v2,v10),(v3,v10),(v4,v10),(v10,v25),(v10,v49),(v25,v29)}。The network diameter is defined as the maximum value of the shortest path length between any two reachable nodes in the network. First calculate the length of the shortest path between any two nodes in the network. Taking the calculation of the length of the shortest path between the node pair (v1, v2) as an example, the shortest path between them is v1~v38~v2, and the shortest path contains 2 edges, so the length is 2. Calculate the length of the shortest path between any other two nodes in turn, and then find the maximum value among all the length values. The maximum value obtained here is 6, which is the diameter of the network. The corresponding set of node pairs is {(v2,v10),(v3,v10),(v4,v10),(v10,v25),(v10,v49),(v25,v29)}.
2)统计长度为直径的最短路径条数,获取最短路径数集合2) Count the number of shortest paths whose length is diameter, and obtain the set of shortest paths
先求节点对(v2,v10)间最短路径的条数,从节点v2沿着边行走,限定行走边数为6,走到节点v10,可得到3条最短路径。依次求得节点对(v3,v10),(v4,v10),(v10,v25),(v10,v49),(v25,v29)间最短路径的条数,分别为6条、6条、1条、6条、20条。获取的最短路径数集合为{6,6,1,6,20}。First find the number of shortest paths between the node pair (v2, v10), walk along the edge from the node v2, limit the number of walking edges to 6, and go to the node v10, you can get 3 shortest paths. Obtain the number of shortest paths between node pairs (v3, v10), (v4, v10), (v10, v25), (v10, v49), (v25, v29) in turn, which are 6, 6, 1 Article, 6, 20. The set of shortest path numbers obtained is {6,6,1,6,20}.
3)约简节点对集合并判断集合中元素3) Reduce the node pair set and judge the elements in the set
抽取最短路径数仅为1的节点对,集合{(v2,v10),(v3,v10),(v4,v10),(v10,v25),(v10,v49),(v25,v29)}被约简为{(v10,v25)}。判断集合中元素的个数,此时超过1个,因此执行下一步的优化。Extract the node pairs whose shortest path number is only 1, the set {(v2,v10),(v3,v10),(v4,v10),(v10,v25),(v10,v49),(v25,v29)} are Reduced to {(v10,v25)}. Judging the number of elements in the set, there is more than 1 at this time, so the next optimization is performed.
4)随机选取集合中的数个节点对,新建直连边4) Randomly select several node pairs in the set, and create new direct edges
此处,约简后的集合中只剩一个元素,故提取1个节点对,即(v10,v25),对网络新增一条无向无权边v10-v25,形成一个新的网络。Here, there is only one element left in the reduced set, so one node pair is extracted, namely (v10, v25), and an undirected and weightless edge v10-v25 is added to the network to form a new network.
图3为本发明的实施例1中执行优化的示意图。FIG. 3 is a schematic diagram of performing optimization in Embodiment 1 of the present invention.
5)新一轮优化5) A new round of optimization
计算新网络的直径及对应节点对,求得直径为6,对应节点对集合为{(v10,v49)}。获取的最短路径数集合为{9}。抽取最短路径数仅为1的节点对,得到一个空集合。判断集合中元素的个数,小于1个,因此优化结束。Calculate the diameter of the new network and the corresponding node pair, and find that the diameter is 6, and the corresponding node pair set is {(v10,v49)}. The obtained shortest path number set is {9}. Extract the node pairs whose shortest path number is only 1 to get an empty set. Determine the number of elements in the set, which is less than 1, so the optimization ends.
以上是对网络最差性能动态优化的一个例子分析。The above is an example analysis of dynamic optimization of the worst performance of the network.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711304021.2A CN108011784B (en) | 2017-12-11 | 2017-12-11 | A Dynamic Optimization Method for the Worst Connectivity Performance of Networks |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711304021.2A CN108011784B (en) | 2017-12-11 | 2017-12-11 | A Dynamic Optimization Method for the Worst Connectivity Performance of Networks |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108011784A CN108011784A (en) | 2018-05-08 |
CN108011784B true CN108011784B (en) | 2020-09-08 |
Family
ID=62057942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711304021.2A Active CN108011784B (en) | 2017-12-11 | 2017-12-11 | A Dynamic Optimization Method for the Worst Connectivity Performance of Networks |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108011784B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109120452B (en) * | 2018-08-31 | 2020-09-04 | 湖南工程学院 | An overall efficiency optimization method for complex networks based on network pruning |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103051533A (en) * | 2011-10-11 | 2013-04-17 | 中兴通讯股份有限公司 | Method and device for calculating route with protection service |
CN103973564A (en) * | 2013-01-31 | 2014-08-06 | 清华大学 | Interconnection network system and self-adaptation routing method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7761569B2 (en) * | 2004-01-23 | 2010-07-20 | Tiversa, Inc. | Method for monitoring and providing information over a peer to peer network |
-
2017
- 2017-12-11 CN CN201711304021.2A patent/CN108011784B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103051533A (en) * | 2011-10-11 | 2013-04-17 | 中兴通讯股份有限公司 | Method and device for calculating route with protection service |
CN103973564A (en) * | 2013-01-31 | 2014-08-06 | 清华大学 | Interconnection network system and self-adaptation routing method |
Non-Patent Citations (2)
Title |
---|
《利用路径优先级实现传感器网络中的拥塞避免》;赵成林 等;《北京邮电大学学报》;20120228;第35卷;第15-18页 * |
《战术自组网的分群与连通性问题的研究》;靳超;《中国优秀硕士学位论文全文数据库(信息科技辑)》;20110715(第07期);I136-420 * |
Also Published As
Publication number | Publication date |
---|---|
CN108011784A (en) | 2018-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Goh et al. | Universal behavior of load distribution in scale-free networks | |
KR102086936B1 (en) | User data sharing method and device | |
CN103294833B (en) | The junk user of concern relation based on user finds method | |
CN109617810A (en) | Data transmission method and device | |
Chakraborty et al. | Designing trust propagation algorithms based on simple multiplicative strategy for social networks | |
CN111491300A (en) | Risk detection method, device, equipment and storage medium | |
CN108011784B (en) | A Dynamic Optimization Method for the Worst Connectivity Performance of Networks | |
CN111510454A (en) | A continuous subgraph matching method, system and device for pattern graph change | |
Chishti | Data Aggregation Mechanisms in the Internet of Things: A Study, Qualitative and Quantitative Analysis. | |
CN109120431A (en) | The method, apparatus and terminal device that propagating source selects in complex network | |
Li et al. | Enhancing the robustness and efficiency of scale-free network with limited link addition | |
CN105471770B (en) | A kind of message processing method and device based on multi-core processor | |
CN115022067A (en) | Game-based network security defense method and device under asymmetric information | |
Qureshi et al. | Enhanced robustness strategy for IoT in smart cities based on data driven approach | |
CN106789588B (en) | Label dissemination method and device | |
Valencia et al. | ZigZag: An efficient deterministic Network-on-chip routing algorithm design | |
CN118368240A (en) | Path determination method, device, equipment and storage medium | |
Wang et al. | Protecting infrastructure networks from cost-based attacks | |
CN109727135A (en) | Method and computer-readable medium for improving information computing and processing capabilities of blockchain | |
Zhao et al. | A social network model with proximity prestige property | |
CN107171838B (en) | A kind of Web content based on limited content backup reconstructs method for optimizing | |
CN115665082A (en) | Method and system for identifying key nodes of social network based on information entropy improvement | |
CN104008136A (en) | Method and device for text searching | |
CN107018027A (en) | Link prediction method based on Bayesian estimation and common neighbor node degree | |
Xu et al. | Discovering the influences of complex network effects on recovering large scale multiagent systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |