[go: up one dir, main page]

CN107240094A - A kind of visible ray and infrared image reconstructing method for electrical equipment on-line checking - Google Patents

A kind of visible ray and infrared image reconstructing method for electrical equipment on-line checking Download PDF

Info

Publication number
CN107240094A
CN107240094A CN201710355723.7A CN201710355723A CN107240094A CN 107240094 A CN107240094 A CN 107240094A CN 201710355723 A CN201710355723 A CN 201710355723A CN 107240094 A CN107240094 A CN 107240094A
Authority
CN
China
Prior art keywords
mrow
image
msub
visible light
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710355723.7A
Other languages
Chinese (zh)
Inventor
金立军
艾建勇
吕利军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201710355723.7A priority Critical patent/CN107240094A/en
Publication of CN107240094A publication Critical patent/CN107240094A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Image Processing (AREA)

Abstract

本发明涉及一种用于电气设备在线检测的可见光和红外图像重构方法,该方法包括以下步骤:对红外图像和可见光图像分别进行有效特征分析;进行基于轮廓信息的图像配准;利用图像配准结果,根据有效特征分析结果对图像配准后的红外图像和可见光图像进行有效特征提取,并进行图像叠加,完成可见光图像与红外图像重构。与现有技术相比,本发明具有非常直观地反应电气设备缺陷特征、有利于对电气设备缺陷的全面准确判断、算法稳定、信息保留度高和适用性强等优点。

The invention relates to a visible light and infrared image reconstruction method used for online detection of electrical equipment. The method comprises the following steps: performing effective feature analysis on infrared images and visible light images respectively; performing image registration based on contour information; utilizing image registration According to the results of the effective feature analysis, effective feature extraction is performed on the infrared image and visible light image after image registration, and the images are superimposed to complete the reconstruction of the visible light image and the infrared image. Compared with the prior art, the present invention has the advantages of intuitively reflecting the defect characteristics of electrical equipment, being conducive to comprehensive and accurate judgment of electrical equipment defects, stable algorithm, high degree of information retention and strong applicability.

Description

一种用于电气设备在线检测的可见光和红外图像重构方法A Visible Light and Infrared Image Reconstruction Method for Online Inspection of Electrical Equipment

技术领域technical field

本发明涉及电气设备故障检测与诊断,尤其是涉及一种用于电气设备在线检测的可见光和红外图像重构方法。The invention relates to electrical equipment fault detection and diagnosis, in particular to a visible light and infrared image reconstruction method for electrical equipment on-line detection.

背景技术Background technique

随着我国电网规模不断扩大,对电网运行的安全性和可靠性要求也越来越高,而电网电气设备长期运行会出现磨损、氧化、腐蚀、老化、污秽以及外力导致的缺陷,所以对电气设备进行状态检修,及时排查故障隐患,对维护电网安全稳定运行极为重要。With the continuous expansion of the scale of my country's power grid, the requirements for the safety and reliability of power grid operation are getting higher and higher, and the long-term operation of electrical equipment in the power grid will cause wear, oxidation, corrosion, aging, pollution and defects caused by external forces. It is extremely important to maintain the safe and stable operation of the power grid by carrying out condition-based maintenance of equipment and timely troubleshooting hidden troubles.

在电气设备故障检测与诊断领域,可见光图像检测、红外图像检测等非接触式检测方法凭借着成本低、速度快、不停电检修等特点,得到了越来越广泛地应用。运用可见光图像的轮廓、纹理、色彩等特征可识别电气设备的机械故障,如电力线异物、导线断股、绝缘子掉片、防震锤移位、间隔棒断裂等;运用红外图像可检测电气设备异常温升故障,如金具接触不良、接线端过热、外绝缘表面放电发热等。电网设备虽种类繁多,但大多数电气设备都存在轮廓纹理不全、色彩变化明显、温升较高等缺陷特征,这些缺陷在巡线过程中分别被可见光和红外成像设备捕捉,但由于单一检测系统仅根据片面参数信息作出推断,常常造成电气设备故障的误诊及漏诊。为此,进行电气设备的可见光与红外图像进行融合重构,将两类图像的有效特征集成于一张图像,不仅能降低信息冗余度,也有利于对电气设备故障的全面准确判断。In the field of fault detection and diagnosis of electrical equipment, non-contact detection methods such as visible light image detection and infrared image detection have been more and more widely used due to their low cost, fast speed, and non-stop maintenance. Using the outline, texture, color and other features of visible light images can identify mechanical failures of electrical equipment, such as foreign objects in power lines, broken wires, insulators falling off, displacement of anti-vibration hammers, broken spacers, etc.; use infrared images to detect abnormal temperature of electrical equipment Faults, such as poor contact of fittings, overheating of terminals, discharge and heating of outer insulation surface, etc. Although there are many types of power grid equipment, most electrical equipment has defect characteristics such as incomplete outline texture, obvious color change, and high temperature rise. Making inferences based on one-sided parameter information often leads to misdiagnosis and missed diagnosis of electrical equipment failures. For this reason, the visible light and infrared images of electrical equipment are fused and reconstructed, and the effective features of the two types of images are integrated into one image, which can not only reduce information redundancy, but also facilitate comprehensive and accurate judgment of electrical equipment failures.

发明内容Contents of the invention

本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种用于电气设备在线检测的可见光和红外图像重构方法。通过对同一电气设备的可见光图像和红外图像进行基于轮廓信息的图像配准,将两种图像的有效特征进行结合,重构为一张包含可见光和红外两方面图像信息的二维图像。The object of the present invention is to provide a visible light and infrared image reconstruction method for on-line detection of electrical equipment in order to overcome the above-mentioned defects in the prior art. Through the image registration based on the contour information of the visible light image and infrared image of the same electrical equipment, the effective features of the two images are combined to reconstruct a two-dimensional image containing both visible light and infrared image information.

本发明的目的可以通过以下技术方案来实现:The purpose of the present invention can be achieved through the following technical solutions:

一种用于电气设备在线检测的可见光和红外图像重构方法,该方法包括以下步骤:A visible light and infrared image reconstruction method for online detection of electrical equipment, the method includes the following steps:

S1、对红外图像和可见光图像分别进行有效特征分析;S1. Perform effective feature analysis on infrared images and visible light images respectively;

S2、进行基于轮廓信息的图像配准;S2. Perform image registration based on contour information;

S3、利用图像配准结果,根据有效特征分析结果对图像配准后的红外图像和可见光图像进行有效特征提取,并进行图像叠加,完成可见光图像与红外图像重构。S3. Using the image registration result, effective feature extraction is performed on the infrared image and the visible light image after the image registration according to the effective feature analysis result, and the images are superimposed to complete the reconstruction of the visible light image and the infrared image.

步骤S2基于轮廓信息的图像配准包括以下步骤:Step S2 image registration based on contour information includes the following steps:

S201、对红外图像和可见光图像分别进行图像预处理后得到红外图像轮廓图和可见光图像轮廓图;S201. Perform image preprocessing on the infrared image and the visible light image respectively to obtain an infrared image contour map and a visible light image contour map;

S202、对红外图像轮廓图和可见光图像轮廓图进行最佳仿射变换搜索,并进行最佳仿射变换;S202. Perform an optimal affine transformation search on the infrared image contour map and the visible light image contour map, and perform the optimal affine transformation;

S203、对红外图像原图进行最佳仿射变换,完成图像配准。S203. Perform optimal affine transformation on the original infrared image to complete image registration.

所述的有效特征分析具体为通过图像处理、特征处理和特征选择步骤选取体现电气设备缺陷或故障的特征。The effective feature analysis is specifically to select features reflecting electrical equipment defects or faults through image processing, feature processing and feature selection steps.

所述的最佳仿射变换搜索采用红外图像轮廓图和可见光图像轮廓图的平均最近距离进行图像配准度衡量,平均最近距离D(A,B)计算公式函数为:The optimal affine transformation search uses the average closest distance between the infrared image profile and the visible light image profile to measure the image registration degree, and the average shortest distance D (A, B) calculation formula function is:

D(A,B)=min(d(A,B),d(B,A))D(A,B)=min(d(A,B),d(B,A))

其中,A,B分别为电气设备的可见光轮廓图像和红外轮廓图像,ai、bi分别为图像A中第i个轮廓点、B中第j个轮廓点,aj、bi分别为图像A中第j个轮廓点、B中第i个轮廓点,nA、nB分别为图像A、B中的轮廓点个数,d(A,B)、d(B,A)分别为图像A上的点到图像B的平均最近距离、图像B上的点到图像A的平均最近距离。Among them, A and B are the visible light contour image and infrared contour image of the electrical equipment respectively, a i and b i are the i-th contour point in image A and the j-th contour point in B respectively, and a j and b i are the image The j-th contour point in A and the i-th contour point in B, n A , n B are the number of contour points in images A and B respectively, d(A,B), d(B,A) are the images The average closest distance from the point on A to image B, and the average closest distance from the point on image B to image A.

S3中的可见光图像与红外图像重构过程如下:The reconstruction process of visible light image and infrared image in S3 is as follows:

其中,Iinf和Ivis分别为红外图像和可见光图像的RGB像素值,I1(x,y)为重构后的RGB像素值,T(x,y)为红外图像上坐标为(x,y)的像素点温度值,Tthresh为红外图像的温度阈值。Among them, I inf and I vis are the RGB pixel values of the infrared image and the visible light image respectively, I 1 (x, y) is the reconstructed RGB pixel value, and T(x, y) is the coordinate (x, y) on the infrared image y) pixel temperature value, T thresh is the temperature threshold of the infrared image.

所述的最佳仿射变换搜索具体为寻找进行仿射变换的最优参数组合。The search for the best affine transformation is specifically to find the optimal combination of parameters for affine transformation.

与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:

1.本发明将电气设备的可见光与红外图像进行融合重构,将两类图像的有效特征集成于一张图像,大幅地降低信息冗余度,也有利于对电气设备缺陷的全面准确判断;1. The present invention fuses and reconstructs the visible light and infrared images of electrical equipment, integrates the effective features of the two types of images into one image, greatly reduces information redundancy, and is also conducive to comprehensive and accurate judgment of electrical equipment defects;

2.本发明将电气设备红外图像的异常温升区域反映到可见光图像上,非常直观地反应电气设备缺陷特征,同时也精确地对电气设备缺陷位置进行定位;2. The present invention reflects the abnormal temperature rise area of the infrared image of the electrical equipment on the visible light image, which reflects the defect characteristics of the electrical equipment very intuitively, and at the same time accurately locates the defect position of the electrical equipment;

3.本发明算法稳定,信息保留度高,可靠性强,对于拍摄角度和图像大小相差不大的可见光和红外图像都能进行准确的重构;3. The algorithm of the present invention is stable, the information retention is high, and the reliability is strong, and both visible light and infrared images with similar shooting angles and image sizes can be accurately reconstructed;

4.本发明适用性强,不仅适用于绝缘子、杆塔、金具等电气设备故障检测,还能运用于遥感、安检、机械磨损检测等需要结合红外图像和可见光图像信息的领域。4. The present invention has strong applicability, and is not only suitable for fault detection of electrical equipment such as insulators, pole towers, and fittings, but also can be applied to fields such as remote sensing, security inspection, and mechanical wear detection that require combining infrared and visible light image information.

附图说明Description of drawings

图1为本发明方法的可见光和红外图像重构流程图;Fig. 1 is the flow chart of visible light and infrared image reconstruction of the method of the present invention;

图2为本发明方法的粒子群算法流程图;Fig. 2 is the particle swarm algorithm flowchart of the inventive method;

图3为本发明举例的电力杆塔的可见光图像;Fig. 3 is the visible light image of the power pole tower of example of the present invention;

图4为本发明举例的电力杆塔的红外图像;Fig. 4 is the infrared image of the electric power tower of example of the present invention;

图5为本发明举例的电力杆塔的可见光轮廓图;Fig. 5 is the visible light contour diagram of the example electric power tower of the present invention;

图6为本发明举例的电力杆塔的红外图像轮廓图;Fig. 6 is the infrared image profile diagram of the example electric power tower of the present invention;

图7为本发明举例的电力杆塔的可见光和红外图像轮廓图配准后效果;Fig. 7 is the effect after the registration of the visible light and infrared image contour map of the example electric power tower of the present invention;

图8为本发明举例的电力杆塔的可见光和红外图像重构效果图。Fig. 8 is an effect diagram of visible light and infrared image reconstruction of an example electric power tower in the present invention.

图中:1、可见光图像,2、红外图像,3、有效特征分析,4、基于轮廓信息的图像配准,5、灰度化、阈值分割、边缘提取,6、可见光和红外图像轮廓图,7、最佳仿射变换搜索,8、红外图像原图进行最佳仿射变换,9、有效特征提取与图像叠加,10、可见光和红外图像重构。In the figure: 1. Visible light image, 2. Infrared image, 3. Effective feature analysis, 4. Image registration based on contour information, 5. Grayscale, threshold segmentation, edge extraction, 6. Visible light and infrared image contour map, 7. Optimal affine transformation search, 8. Optimal affine transformation of the original infrared image, 9. Effective feature extraction and image superposition, 10. Visible light and infrared image reconstruction.

具体实施方式detailed description

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the drawings in the embodiments of the present invention. Obviously, the described embodiments are part of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts shall fall within the protection scope of the present invention.

实施例Example

如图1所示,适用于电气设备在线检测的可见光和红外图像重构方法,通过对同一电气设备的可见光图像1和红外图像2进行基于轮廓信息的图像配准4,将两种图像的有效特征进行结合,重构为一张包含可见光和红外两方面图像信息的二维图像。As shown in Figure 1, the visible light and infrared image reconstruction method suitable for online detection of electrical equipment, by performing image registration 4 based on contour information on the visible light image 1 and infrared image 2 of the same electrical equipment, the effective The features are combined and reconstructed into a two-dimensional image containing both visible light and infrared image information.

所述的有效特征可通过有效特征分析后选择,有效特征分析是指通过图像处理、特征提取和特征选择后选取能最好的表现电气设备缺陷或故障的特征,通过比较多种正常和存在缺陷的电气设备的可见光和红外图像,选取的红外图像的有效特征为高温升区域,可见光图像的有效特征为电气设备的轮廓、色彩和纹理,此外,可见光图像的背景对于电气设备的故障定位也十分重要。The effective features can be selected after effective feature analysis. Effective feature analysis refers to the selection of features that can best represent electrical equipment defects or faults after image processing, feature extraction and feature selection. By comparing various normal and existing defects The visible light and infrared images of the electrical equipment, the effective feature of the selected infrared image is the high temperature rise area, and the effective feature of the visible light image is the outline, color and texture of the electrical equipment. In addition, the background of the visible light image is also very important for the fault location of the electrical equipment. important.

所述的基于轮廓信息的图像配准通过对红外图像和可见光图像进行灰度化、阈值分割、边缘提取等图像预处理后获取可见光和红外图像轮廓图,所述的阈值分割中的阈值是指自适应灰度阈值,一般采用最大类间方差法确定灰度阈值,所述的边缘提取采用canny边缘检测算子进行。通过最佳仿射变换搜索使目标对象的可见光和红外图像轮廓图重合,最后通过红外图像原图进行最佳仿射变换实现图像配准过程,所述的最佳仿射变换搜索可通过粒子群搜索算法实现。The image registration based on contour information obtains contour maps of visible light and infrared images after image preprocessing such as grayscale conversion, threshold segmentation, and edge extraction are performed on infrared images and visible light images. The threshold in the threshold segmentation refers to For adaptive gray threshold, the gray threshold is generally determined by the method of maximum variance between classes, and the edge extraction is performed by a canny edge detection operator. The visible light and infrared image contours of the target object are overlapped through the best affine transformation search, and finally the best affine transformation is performed on the original infrared image to realize the image registration process. The best affine transformation search can be achieved through particle swarm Search algorithm implementation.

所述的仿射变换包括平移变换,伸缩变换和旋转变换,平移变换矩阵为:Described affine transformation comprises translation transformation, scaling transformation and rotation transformation, and translation transformation matrix is:

tx、ty分别为图像横向平移量和纵向平移量,伸缩变换的矩阵为:t x , t y are the horizontal translation and vertical translation of the image respectively, and the matrix of the scaling transformation is:

Cx、Cy分别为图像横向伸缩量和纵向伸缩量,旋转变换的矩阵为:C x , C y are the image horizontal expansion and vertical expansion respectively, and the matrix of rotation transformation is:

θ为图像旋转角度。所述的最佳仿射变换搜索过程即为寻找最优仿射变换参数组合(tx0,ty0,Cx0,Cy0,θ0),使红外轮廓图经过这一仿射变化后,红外图像轮廓和可见光图像轮廓重合效果最佳。θ is the image rotation angle. The optimal affine transformation search process is to find the optimal affine transformation parameter combination (t x0 , ty0 , C x0 , C y0 , θ 0 ), so that after the infrared profile undergoes this affine change, the infrared The overlapping effect of image contour and visible light image contour is the best.

所述粒子群算法中,设第i个粒子位置为Xi=(xi1,xi2,...,xi5),它经历过的最好位置记为Pi=(pi1,pi2,...,pi5)。粒子i的速度用Vi=(vi1,vi2,...,vi5)表示。对每一代粒子,粒子采用下式来更新自己的速度和位置:In the particle swarm optimization algorithm, the position of the i-th particle is set as Xi = (x i1 , x i2 ,..., x i5 ), and the best position it has experienced is recorded as P i = (p i1 , p i2 ,...,p i5 ). The velocity of particle i is represented by V i =(v i1 ,v i2 ,...,v i5 ). For each generation of particles, the particles use the following formula to update their speed and position:

vk+1 id=vk id+c1*rand1*(pk id-xk id)+c2*rand2*(pk gd-xk id) (1)v k+1 id =v k id +c 1 *rand 1 *(p k id -x k id )+c 2 *rand 2 *(p k gd -x k id ) (1)

xk+1 id=xk id+vk+1 id (2)x k+1 id =x k id +v k+1 id (2)

k为迭代次数,xk id是当前粒子的位置,c1,c2是学习因子,rand1和rand2为[0,1]区间内的随机数。Pg为所有粒子中的最佳位置,记为Pg=(pg1,pg2,...,pg5)。k is the number of iterations, x k id is the position of the current particle, c 1 and c 2 are learning factors, rand 1 and rand 2 are random numbers in the interval [0,1]. P g is the best position among all particles, recorded as P g =(p g1 ,p g2 ,...,p g5 ).

所述用粒子群算法进行最佳仿射变换搜索过程中的图像配准度(适应度)由可见光和红外轮廓图像的平均最近距离来衡量,平均最近距离D(A,B)计算公式即适应度函数为:The image registration degree (fitness) in the best affine transformation search process with the particle swarm algorithm is measured by the average shortest distance of visible light and infrared contour images, and the average shortest distance D (A, B) calculation formula is the adaptation The degree function is:

D(A,B)=min(d(A,B),d(B,A)) (3)D(A,B)=min(d(A,B),d(B,A)) (3)

其中,A,B分别为电气设备的可见光轮廓图像和红外轮廓图像,ai、bi分别为图像A中第i个轮廓点、B中第j个轮廓点,aj、bi分别为图像A中第j个轮廓点、B中第i个轮廓点,nA、nB分别为图像A、B中的轮廓点个数,d(A,B)、d(B,A)分别为图像A上的点到图像B的平均最近距离、图像B上的点到图像A的平均最近距离。Among them, A and B are the visible light contour image and infrared contour image of the electrical equipment respectively, a i and b i are the i-th contour point in image A and the j-th contour point in B respectively, and a j and b i are the image The j-th contour point in A and the i-th contour point in B, n A , n B are the number of contour points in images A and B respectively, d(A,B), d(B,A) are the images The average closest distance from the point on A to image B, and the average closest distance from the point on image B to image A.

所述的可见光与红外图像重构是在红外图像原图进行最佳仿射变换后,根据有效特征分析的结果对可见光图像和红外图像进行有效特征提取与图像叠加实现,所述的图像叠加将红外图像的高温升区域覆盖在可见光图像上。重构过程如下:The visible light and infrared image reconstruction is achieved by performing effective feature extraction and image superposition on the visible light image and infrared image according to the results of effective feature analysis after the original infrared image is subjected to the optimal affine transformation. The image superposition will The elevated regions of the infrared image are overlaid on the visible image. The reconstruction process is as follows:

Iinf和Ivis分别为红外图像和可见光图像的RGB像素值,I为重构后的RGB像素值。Tthresh红外图像的温度阈值,用于区分高温升区域,同样可以采用最大类间方差法进行计算。I inf and I vis are the RGB pixel values of the infrared image and the visible light image respectively, and I is the reconstructed RGB pixel value. T thresh is the temperature threshold of the infrared image, which is used to distinguish high-temperature rise areas, and can also be calculated by the maximum between-class variance method.

如图3电气设备的可见光图像通过可见光相机拍摄,如图4红外图像通过红外热像仪拍摄。在进行电气设备的可见光和红外图像拍摄时,应尽量保持可见光和红外的拍摄角度一致,拍摄距离可有所差异,但目标在两者图像中大小差别不宜过大。As shown in Figure 3, the visible light image of electrical equipment is taken by a visible light camera, and as shown in Figure 4, the infrared image is taken by an infrared thermal imager. When taking visible light and infrared images of electrical equipment, the shooting angles of visible light and infrared should be kept as consistent as possible. The shooting distance can be different, but the size difference of the target in the two images should not be too large.

对拍摄好的可见光图像1和红外图像2进行有效特征分析3,通过比较多种正常工作和故障的电气设备的可见光和红外图像,并对其进行灰度化、阈值分割等图像预处理,计算其特征量并采用Fisher准则选择其有效特征,得到的需要保留的有效特征为可见光图像中的电气设备轮廓、纹理、色彩特征和红外图像中的高温升区域的面积和最值。Perform effective feature analysis 3 on the captured visible light image 1 and infrared image 2, compare the visible light and infrared images of various normal and faulty electrical equipment, and perform image preprocessing such as grayscale and threshold segmentation, and calculate Its feature quantity is selected by using the Fisher criterion to select its effective features. The effective features that need to be preserved are the electrical equipment outline, texture, color features in the visible light image, and the area and maximum value of the high temperature rise area in the infrared image.

对图3和图4所示的现场拍摄的电力杆塔的可见光图像和红外图像进行基于轮廓信息的图像配准4,通过灰度化、阈值分割、边缘提取5获取可见光和红外图像轮廓图6,运用最大类间方差法确定的图3和图4的可见光图像的灰度阈值为100,红外图像的灰度阈值为25,运用canny算子对可见光和红外图像进行边缘提取时敏感度阈值均为0.2,图像处理后的电力铁塔的可见光和红外轮廓图如图5和图6所示。Image registration based on contour information 4 is performed on the visible light images and infrared images of power towers captured on site as shown in Figure 3 and Figure 4, and the visible light and infrared image contours 6 are obtained through grayscale, threshold segmentation, and edge extraction 5, The gray threshold of the visible light images in Figure 3 and Figure 4 determined by the method of maximum inter-class variance is 100, the gray threshold of the infrared image is 25, and the sensitivity threshold of the visible light and infrared images is both 0.2, the visible and infrared contours of the power tower after image processing are shown in Figure 5 and Figure 6.

采用粒子群算法对图5和图6所示的电力铁塔的可见光和红外轮廓图进行最佳仿射变换搜索7,首先需通过计算阈值分割后的可见光和红外图像的二值图像重心和面积确定寻优搜索范围。设可见光和红外图像的二值图像重心坐标差为(x0,y0),面积比为r0,则红外图像横向平移量和纵向平移量tx、ty的搜索区间分别为[x0-100,x0+100]和[y0-100,y0+100],红外图像横向伸缩量和纵向伸缩量Cx、Cy的搜索区间均为[r0-0.5,r0+0.5],红外图像θ旋转角度的搜索区间默认为[-0.5,0.5]。电力铁塔的可见光和红外图像的二值图像重心坐标差为(73,22),面积比为0.7439。然后进行粒子群算法搜索最佳仿射变换,搜索流程如图2所示。将仿射变换参数搜索区间全归一化为[0,1],限定粒子搜索的最大速度为0.1,进行粒子群速度和位置的初始化,计算图像匹配度,即适应度,记录适应度最小的粒子位置。不断地对粒子群进行迭代更新计算适应度,直至达到最大迭代次数或适应度达到要求,此时记录的适应度最小的粒子位置所代表的参数即为最佳仿射变换参数。最大迭代次数一般设定为50次,指定适应度一般设为0.1。Use the particle swarm optimization algorithm to search for the best affine transformation of the visible light and infrared contour maps of the power tower shown in Figures 5 and 6. First, it is necessary to determine the center of gravity and area of the binary image of the visible light and infrared images after threshold segmentation. Refine the search scope. Assuming that the barycentric coordinate difference of the binary image between the visible light and the infrared image is (x 0 , y 0 ), and the area ratio is r 0 , the search intervals of the infrared image’s lateral translation and vertical translation t x and ty are respectively [x 0 -100, x 0 +100] and [y 0 -100, y 0 +100], the search intervals of the infrared image horizontal expansion and vertical expansion C x and C y are both [r 0 -0.5, r 0 +0.5 ], the search interval of the infrared image θ rotation angle defaults to [-0.5,0.5]. The difference in barycentric coordinates of the binary images of the visible light and infrared images of the power tower is (73, 22), and the area ratio is 0.7439. Then the particle swarm algorithm is used to search for the best affine transformation, and the search process is shown in Figure 2. Normalize the search interval of affine transformation parameters to [0,1], limit the maximum speed of particle search to 0.1, initialize the particle swarm speed and position, calculate the image matching degree, that is, fitness, and record the one with the smallest fitness Particle position. Constantly iteratively update and calculate the fitness of the particle swarm until the maximum number of iterations is reached or the fitness meets the requirements. At this time, the parameter represented by the recorded particle position with the smallest fitness is the best affine transformation parameter. The maximum number of iterations is generally set to 50, and the specified fitness is generally set to 0.1.

如图7所示,红外图像轮廓图进行最佳仿射变换后,红外图像轮廓和可见光图像轮廓基本重叠,此时的适应度为1.3。将红外图像原图进行最佳仿射变换8,红外图像的RGB三个分量的图像均按照最佳仿射变换参数进行变换,完成基于轮廓信息的图像配准4过程。As shown in Figure 7, after the optimal affine transformation is performed on the infrared image contour map, the infrared image contour and the visible light image contour basically overlap, and the fitness at this time is 1.3. The original image of the infrared image is subjected to optimal affine transformation 8, and the images of the three RGB components of the infrared image are transformed according to the optimal affine transformation parameters, and the process of image registration 4 based on contour information is completed.

完成图像配准后的可见光和红外图像,进行有效特征提取和图像叠加9。将红外图像的温升高于温度阈值的区域从红外原图像中提取出来,并以覆盖的方式叠加在可见光图像上,即将可见光图像RGB分量的对应位置的像素值被红外图像RGB分量取代,完成可见光与红外图像重构10。经最大类间方差算法确定的图4中电力铁塔的红外图像温度阈值为28℃,图像叠加重构后的效果如图8所示。Visible light and infrared images after image registration are completed, and effective feature extraction and image superposition are carried out9. The area where the temperature rise of the infrared image is higher than the temperature threshold is extracted from the original infrared image, and superimposed on the visible light image in an overlay manner, that is, the pixel value of the corresponding position of the RGB component of the visible light image is replaced by the RGB component of the infrared image, and the completion Visible and Infrared Image Reconstruction10. The temperature threshold of the infrared image of the power tower in Figure 4 determined by the maximum inter-class variance algorithm is 28°C, and the effect of image superposition and reconstruction is shown in Figure 8.

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。The above is only a specific embodiment of the present invention, but the protection scope of the present invention is not limited thereto. Any person familiar with the technical field can easily think of various equivalents within the technical scope disclosed in the present invention. Modifications or replacements shall all fall within the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.

Claims (6)

1.一种用于电气设备在线检测的可见光和红外图像重构方法,其特征在于,该方法包括以下步骤:1. A visible light and infrared image reconstruction method for online detection of electric equipment, is characterized in that, the method comprises the following steps: S1、对红外图像和可见光图像分别进行有效特征分析;S1. Perform effective feature analysis on infrared images and visible light images respectively; S2、进行基于轮廓信息的图像配准;S2. Perform image registration based on contour information; S3、利用图像配准结果,根据有效特征分析结果对图像配准后的红外图像和可见光图像进行有效特征提取,并进行图像叠加,完成可见光图像与红外图像重构。S3. Using the image registration result, effective feature extraction is performed on the infrared image and the visible light image after the image registration according to the effective feature analysis result, and the images are superimposed to complete the reconstruction of the visible light image and the infrared image. 2.根据权利要求1所述的一种用于电气设备在线检测的可见光和红外图像重构方法,其特征在于,步骤S2基于轮廓信息的图像配准包括以下步骤:2. A visible light and infrared image reconstruction method for online detection of electrical equipment according to claim 1, wherein the image registration based on contour information in step S2 comprises the following steps: S201、对红外图像和可见光图像分别进行图像预处理后得到红外图像轮廓图和可见光图像轮廓图;S201. Perform image preprocessing on the infrared image and the visible light image respectively to obtain an infrared image contour map and a visible light image contour map; S202、对红外图像轮廓图和可见光图像轮廓图进行最佳仿射变换搜索,并进行最佳仿射变换;S202. Perform an optimal affine transformation search on the infrared image contour map and the visible light image contour map, and perform the optimal affine transformation; S203、对红外图像原图进行最佳仿射变换,完成图像配准。S203. Perform optimal affine transformation on the original infrared image to complete image registration. 3.根据权利要求1所述的一种用于电气设备在线检测的可见光和红外图像重构方法,其特征在于,所述的有效特征分析具体为通过图像处理、特征处理和特征选择步骤选取体现电气设备缺陷或故障的特征。3. A visible light and infrared image reconstruction method for on-line detection of electrical equipment according to claim 1, wherein said effective feature analysis is embodied through image processing, feature processing and feature selection steps A characteristic of a defect or failure in electrical equipment. 4.根据权利要求2所述的一种用于电气设备在线检测的可见光和红外图像重构方法,其特征在于,所述的最佳仿射变换搜索采用红外图像轮廓图和可见光图像轮廓图的平均最近距离进行图像配准度衡量,平均最近距离D(A,B)计算公式函数为:4. A kind of visible light and infrared image reconstruction method that is used for electrical equipment on-line detection according to claim 2, is characterized in that, described optimal affine transformation search adopts the infrared image contour map and the visible light image contour map The average shortest distance is used to measure the image registration degree, and the calculation formula function of the average shortest distance D(A,B) is: D(A,B)=min(d(A,B),d(B,A))D(A,B)=min(d(A,B),d(B,A)) <mrow> <mi>d</mi> <mrow> <mo>(</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>n</mi> <mi>A</mi> </msub> </mfrac> <munder> <mo>&amp;Sigma;</mo> <mrow> <msub> <mi>a</mi> <mi>i</mi> </msub> <mo>&amp;Element;</mo> <mi>A</mi> </mrow> </munder> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mrow> <msub> <mi>b</mi> <mi>j</mi> </msub> <mo>&amp;Element;</mo> <mi>B</mi> </mrow> </munder> <mo>|</mo> <mo>|</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>b</mi> <mi>j</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mrow> <mi>d</mi> <mrow> <mo>(</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>n</mi> <mi>A</mi> </msub> </mfrac> <munder> <mo>&amp;Sigma;</mo> <mrow> <msub> <mi>a</mi> <mi>i</mi> </msub> <mo>&amp;Element;</mo> <mi>A</mi> </mrow> </munder> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mrow> <msub> <mi>b</mi> <mi>j</mi> </msub> <mo>&amp;Element;</mo> <mi>B</mi> </mrow> </munder> <mo>|</mo> <mo>|</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>b</mi> <mi>j</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mrow> <mi>d</mi> <mrow> <mo>(</mo> <mi>B</mi> <mo>,</mo> <mi>A</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>n</mi> <mi>B</mi> </msub> </mfrac> <munder> <mo>&amp;Sigma;</mo> <mrow> <msub> <mi>b</mi> <mi>i</mi> </msub> <mo>&amp;Element;</mo> <mi>B</mi> </mrow> </munder> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mrow> <msub> <mi>a</mi> <mi>j</mi> </msub> <mo>&amp;Element;</mo> <mi>A</mi> </mrow> </munder> <mo>|</mo> <mo>|</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>a</mi> <mi>j</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mrow> <mi>d</mi> <mrow> <mo>(</mo> <mi>B</mi> <mo>,</mo> <mi>A</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>n</mi> <mi>B</mi> </msub> </mfrac> <munder> <mo>&amp;Sigma;</mo> <mrow> <msub> <mi>b</mi> <mi>i</mi> </msub> <mo>&amp;Element;</mo> <mi>B</mi> </mrow> </munder> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mrow> <msub> <mi>a</mi> <mi>j</mi> </msub> <mo>&amp;Element;</mo> <mi>A</mi> </mrow> </munder> <mo>|</mo> <mo>|</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>a</mi> <mi>j</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> 其中,A,B分别为电气设备的可见光轮廓图像和红外轮廓图像,ai、bi分别为图像A中第i个轮廓点、B中第j个轮廓点,aj、bi分别为图像A中第j个轮廓点、B中第i个轮廓点,nA、nB分别为图像A、B中的轮廓点个数,d(A,B)、d(B,A)分别为图像A上的点到图像B的平均最近距离、图像B上的点到图像A的平均最近距离。Among them, A and B are the visible light contour image and infrared contour image of the electrical equipment respectively, a i and b i are the i-th contour point in image A and the j-th contour point in B respectively, and a j and b i are the image The j-th contour point in A and the i-th contour point in B, n A , n B are the number of contour points in images A and B respectively, d(A,B), d(B,A) are the images The average closest distance from the point on A to image B, and the average closest distance from the point on image B to image A. 5.根据权利要求1所述的一种用于电气设备在线检测的可见光和红外图像重构方法,其特征在于,S3中的可见光图像与红外图像重构过程如下:5. A kind of visible light and infrared image reconstruction method for on-line detection of electrical equipment according to claim 1, is characterized in that, the visible light image and infrared image reconstruction process in S3 is as follows: <mrow> <msub> <mi>I</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>I</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>f</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>T</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&amp;GreaterEqual;</mo> <msub> <mi>T</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>r</mi> <mi>e</mi> <mi>s</mi> <mi>h</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>I</mi> <mrow> <mi>v</mi> <mi>i</mi> <mi>s</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>T</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <msub> <mi>T</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>r</mi> <mi>e</mi> <mi>s</mi> <mi>h</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> <mrow> <msub> <mi>I</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>I</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>f</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>T</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&amp;GreaterEqual;</mo> <msub> <mi>T</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>r</mi> <mi>e</mi> <mi>s</mi> <mi>h</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>I</mi> <mrow> <mi>v</mi> <mi>i</mi> <mi>s</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>T</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <msub> <mi>T</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>r</mi> <mi>e</mi> <mi>s</mi> <mi>h</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> 其中,Iinf和Ivis分别为红外图像和可见光图像的RGB像素值,I1(x,y)为重构后的RGB像素值,T(x,y)为红外图像上坐标为(x,y)的像素点温度值,Tthresh为红外图像的温度阈值。Among them, I inf and I vis are the RGB pixel values of the infrared image and the visible light image respectively, I 1 (x, y) is the reconstructed RGB pixel value, and T(x, y) is the coordinate (x, y) on the infrared image y) pixel temperature value, T thresh is the temperature threshold of the infrared image. 6.根据权利要求2所述的一种用于电气设备在线检测的可见光和红外图像重构方法,其特征在于,所述的最佳仿射变换搜索具体为寻找进行仿射变换的最优参数组合。6. A visible light and infrared image reconstruction method for online detection of electrical equipment according to claim 2, characterized in that the search for the best affine transformation is specifically to find the optimal parameters for affine transformation combination.
CN201710355723.7A 2017-05-19 2017-05-19 A kind of visible ray and infrared image reconstructing method for electrical equipment on-line checking Pending CN107240094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710355723.7A CN107240094A (en) 2017-05-19 2017-05-19 A kind of visible ray and infrared image reconstructing method for electrical equipment on-line checking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710355723.7A CN107240094A (en) 2017-05-19 2017-05-19 A kind of visible ray and infrared image reconstructing method for electrical equipment on-line checking

Publications (1)

Publication Number Publication Date
CN107240094A true CN107240094A (en) 2017-10-10

Family

ID=59985877

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710355723.7A Pending CN107240094A (en) 2017-05-19 2017-05-19 A kind of visible ray and infrared image reconstructing method for electrical equipment on-line checking

Country Status (1)

Country Link
CN (1) CN107240094A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108061847A (en) * 2017-12-23 2018-05-22 华北电力大学(保定) A dry-type reactor epoxy resin insulation medium crack detection method
CN108230237A (en) * 2017-12-15 2018-06-29 同济大学 A kind of multispectral image reconstructing method for electrical equipment on-line checking
CN108932721A (en) * 2018-06-28 2018-12-04 上海电力学院 A kind of infrared Image Segmentation and fusion method for crusing robot
CN109196551A (en) * 2017-10-31 2019-01-11 深圳市大疆创新科技有限公司 Image processing method, equipment and unmanned plane
CN109978821A (en) * 2019-02-03 2019-07-05 湖南工业大学 A kind of wheel wear monitoring method based on image recognition
CN111464800A (en) * 2019-01-21 2020-07-28 佳能株式会社 Image processing apparatus, system, method, and computer-readable storage medium
CN113589117A (en) * 2021-08-16 2021-11-02 国网江苏省电力有限公司泰州供电分公司 Power equipment defect detection system and detection method
CN114155192A (en) * 2021-10-26 2022-03-08 山东大齐通信电子有限公司 Coal mine iron removal method and system based on reflection gray
CN115147468A (en) * 2022-04-02 2022-10-04 杭州汇萃智能科技有限公司 A bi-optical image registration method, system and readable storage medium
CN116563283A (en) * 2023-07-10 2023-08-08 山东联兴能源集团有限公司 Steam boiler gas leakage detection method and detection device based on image processing

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1546960A (en) * 2003-12-05 2004-11-17 广州科易光电技术有限公司 Real time display control device for composite video of infrared thermal imaging image and visible light image
US20090238432A1 (en) * 2008-03-21 2009-09-24 General Electric Company Method and system for identifying defects in radiographic image data corresponding to a scanned object
CN101957325A (en) * 2010-10-14 2011-01-26 山东鲁能智能技术有限公司 Substation equipment appearance abnormality recognition method based on substation inspection robot
CN103714548A (en) * 2013-12-27 2014-04-09 西安电子科技大学 Infrared image and visible image registration method based on visual attention
CN104253482A (en) * 2014-08-08 2014-12-31 济南大学 Image data base and inspection robot-based equipment trouble detection method
CN104268853A (en) * 2014-03-06 2015-01-07 上海大学 Infrared image and visible image registering method
CN104361314A (en) * 2014-10-21 2015-02-18 华北电力大学(保定) Method and device for positioning power transformation equipment on basis of infrared and visible image fusion
CN105205818A (en) * 2015-09-18 2015-12-30 国网上海市电力公司 Method for registering infrared image and visible light image of electrical equipment
CN105354851A (en) * 2015-11-20 2016-02-24 中国安全生产科学研究院 Infrared and visible light video fusion method and fusion system adaptive to distance
CN105488562A (en) * 2015-11-27 2016-04-13 浙江工业大学义乌科学技术研究院有限公司 Irregular part stock layout method based on multi-factor particle swarm algorithm

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1546960A (en) * 2003-12-05 2004-11-17 广州科易光电技术有限公司 Real time display control device for composite video of infrared thermal imaging image and visible light image
US20090238432A1 (en) * 2008-03-21 2009-09-24 General Electric Company Method and system for identifying defects in radiographic image data corresponding to a scanned object
CN101957325A (en) * 2010-10-14 2011-01-26 山东鲁能智能技术有限公司 Substation equipment appearance abnormality recognition method based on substation inspection robot
CN103714548A (en) * 2013-12-27 2014-04-09 西安电子科技大学 Infrared image and visible image registration method based on visual attention
CN104268853A (en) * 2014-03-06 2015-01-07 上海大学 Infrared image and visible image registering method
CN104253482A (en) * 2014-08-08 2014-12-31 济南大学 Image data base and inspection robot-based equipment trouble detection method
CN104361314A (en) * 2014-10-21 2015-02-18 华北电力大学(保定) Method and device for positioning power transformation equipment on basis of infrared and visible image fusion
CN105205818A (en) * 2015-09-18 2015-12-30 国网上海市电力公司 Method for registering infrared image and visible light image of electrical equipment
CN105354851A (en) * 2015-11-20 2016-02-24 中国安全生产科学研究院 Infrared and visible light video fusion method and fusion system adaptive to distance
CN105488562A (en) * 2015-11-27 2016-04-13 浙江工业大学义乌科学技术研究院有限公司 Irregular part stock layout method based on multi-factor particle swarm algorithm

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ENRIQUE COIRAS 等: "A Segment-based Registration Technique for Visual-IR Images", 《CORLOS MIRAVET》 *
丁明跃 等编著: "《物联网识别技术》", 31 July 2012, 中国铁道出版社 *
刘波 等: "基于射线轮廓点匹配的生猪红外与可见光图像自动配准", 《农业工程学报》 *
孔韦韦 等编著: "《图像融合技术:基于多分辨率非下采样理论与方法》", 31 July 2015, 西安电子科技大学出版社 *
郝松傲 等: "热红外图像与可见光图像的配准与融合", 《四川测绘》 *
金立军 等: "基于红外与可见光图像信息融合的绝缘子污秽等级识别", 《中国电机工程学报》 *
陈家斌 编著: "《高压电器》", 31 January 2003, 中国电力出版社 *
陶冰洁 等: "采用仿射变换的红外与可见光图像配准方法", 《光电工程》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109196551B (en) * 2017-10-31 2021-08-27 深圳市大疆创新科技有限公司 Image processing method and device and unmanned aerial vehicle
CN109196551A (en) * 2017-10-31 2019-01-11 深圳市大疆创新科技有限公司 Image processing method, equipment and unmanned plane
WO2019084825A1 (en) * 2017-10-31 2019-05-09 深圳市大疆创新科技有限公司 Image processing method and device, and unmanned aerial vehicle
CN108230237B (en) * 2017-12-15 2021-06-04 同济大学 A Multispectral Image Reconstruction Method for Online Detection of Electrical Equipment
CN108230237A (en) * 2017-12-15 2018-06-29 同济大学 A kind of multispectral image reconstructing method for electrical equipment on-line checking
CN108061847A (en) * 2017-12-23 2018-05-22 华北电力大学(保定) A dry-type reactor epoxy resin insulation medium crack detection method
CN108932721A (en) * 2018-06-28 2018-12-04 上海电力学院 A kind of infrared Image Segmentation and fusion method for crusing robot
CN111464800B (en) * 2019-01-21 2022-05-03 佳能株式会社 Image processing apparatus, system, method, and computer-readable storage medium
CN111464800A (en) * 2019-01-21 2020-07-28 佳能株式会社 Image processing apparatus, system, method, and computer-readable storage medium
US11361408B2 (en) 2019-01-21 2022-06-14 Canon Kabushiki Kaisha Image processing apparatus, system, image processing method, and non-transitory computer-readable storage medium
CN109978821A (en) * 2019-02-03 2019-07-05 湖南工业大学 A kind of wheel wear monitoring method based on image recognition
CN113589117A (en) * 2021-08-16 2021-11-02 国网江苏省电力有限公司泰州供电分公司 Power equipment defect detection system and detection method
CN113589117B (en) * 2021-08-16 2024-05-07 国网江苏省电力有限公司泰州供电分公司 A kind of electric power equipment defect detection system and detection method
CN114155192A (en) * 2021-10-26 2022-03-08 山东大齐通信电子有限公司 Coal mine iron removal method and system based on reflection gray
CN115147468A (en) * 2022-04-02 2022-10-04 杭州汇萃智能科技有限公司 A bi-optical image registration method, system and readable storage medium
CN116563283A (en) * 2023-07-10 2023-08-08 山东联兴能源集团有限公司 Steam boiler gas leakage detection method and detection device based on image processing
CN116563283B (en) * 2023-07-10 2023-09-08 山东联兴能源集团有限公司 Steam boiler gas leakage detection method and detection device based on image processing

Similar Documents

Publication Publication Date Title
CN107240094A (en) A kind of visible ray and infrared image reconstructing method for electrical equipment on-line checking
CN103487729B (en) Based on the power equipments defect detection method that ultraviolet video and infrared video merge
CN111798407B (en) A Fault Diagnosis Method for Energized Equipment Based on Neural Network Model
CN107843818B (en) High-voltage insulation fault diagnosis method based on heterogeneous image temperature rise and partial discharge characteristics
CN102565625B (en) Method for intelligently diagnosing thermal defects of high-voltage transmission line based on infrared image
CN108230237B (en) A Multispectral Image Reconstruction Method for Online Detection of Electrical Equipment
CN102928742B (en) Infrared image automatic fault identifying method for high-voltage equipment
CN102508110B (en) Texture-based insulator fault diagnostic method
CN108254077B (en) GIS thermal fault diagnosis method based on local and global feature information fusion
CN111624229B (en) Intelligent charged equipment fault diagnosis method based on infrared imaging
CN103247039B (en) A kind of high voltage cable live detection method based on composite vision
CN101957325A (en) Substation equipment appearance abnormality recognition method based on substation inspection robot
CN112734698B (en) Cable terminal abnormality diagnosis method and device based on infrared image
CN105388414A (en) Omnidirectional fault automatic identification method of isolation switch
CN110335271B (en) Infrared detection method and device for electrical component failure
CN116167999B (en) Distribution line zero-value insulator infrared thermal image detection method based on image matching
CN113418617A (en) Three-dimensional temperature field measuring and diagnosing method for box type transformer of wind power plant
CN115953347B (en) A method and system for industrial defect detection under single viewing angle
CN102798469A (en) Angular-point-characteristic-based method for accurately measuring temperature of electrical equipment
Li et al. Intelligent identification method of insulation pull rod defects based on intactness‐aware Mosaic data augmentation and fusion of YOLOv5s
CN104008544A (en) Transformer substation casing pipe infrared image locating method based on BRISK
CN120219287A (en) A method and system for monitoring abnormal temperature rise of battery packs in power plants
CN116576969A (en) A method and system for assessing the severity of internal fever in GIS
CN108573233A (en) A kind of power grid ceramic insulator recognition methods based on image processing techniques
Lin et al. Yolov7-DROT: Rotation Mechanism Based Infrared Object Fault Detection for Substation Isolator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171010

RJ01 Rejection of invention patent application after publication