CN107094207B - A kind of automatic testing method and its automatic detection device of traffic indicator exception - Google Patents
A kind of automatic testing method and its automatic detection device of traffic indicator exception Download PDFInfo
- Publication number
- CN107094207B CN107094207B CN201710494484.3A CN201710494484A CN107094207B CN 107094207 B CN107094207 B CN 107094207B CN 201710494484 A CN201710494484 A CN 201710494484A CN 107094207 B CN107094207 B CN 107094207B
- Authority
- CN
- China
- Prior art keywords
- index data
- traffic index
- jitter
- data
- detected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M3/00—Automatic or semi-automatic exchanges
- H04M3/22—Arrangements for supervision, monitoring or testing
- H04M3/26—Arrangements for supervision, monitoring or testing with means for applying test signals or for measuring
- H04M3/28—Automatic routine testing ; Fault testing; Installation testing; Test methods, test equipment or test arrangements therefor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M3/00—Automatic or semi-automatic exchanges
- H04M3/22—Arrangements for supervision, monitoring or testing
- H04M3/2227—Quality of service monitoring
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M3/00—Automatic or semi-automatic exchanges
- H04M3/22—Arrangements for supervision, monitoring or testing
- H04M3/2236—Quality of speech transmission monitoring
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Monitoring And Testing Of Exchanges (AREA)
Abstract
本发明揭示一种话务指标异常的自动检测方法及其自动检测装置、终端设备、储存介质。所述话务指标异常的自动检测方法包括如下步骤:采集各个业务线的话务指标数据;储存采集到的各个业务线的话务指标数据;将储存的每个业务线的历史话务指标数据,按照时间维度形成多个历史话务指标数据分片,并生成每个所述历史话务指标数据分片的抖动上升阈值和抖动下降阈值;根据与待检测的话务指标数据相对应的历史话务指标数据分片的抖动上升阈值和抖动下降阈值,判断该话务指标数据是否为异常数据;当该话务指标数据经检测为异常数据时,根据该话务指标数据所在的业务线的告警内容进行处理后,通知该业务线的负责对象。
The invention discloses an automatic detection method for traffic index abnormality, an automatic detection device, terminal equipment, and a storage medium. The abnormal automatic detection method of the traffic index comprises the following steps: collecting the traffic index data of each business line; storing the collected traffic index data of each business line; storing the historical traffic index data of each business line , forming a plurality of historical traffic index data fragments according to the time dimension, and generating a jitter rising threshold and a jitter falling threshold for each of the historical traffic index data fragments; according to the history corresponding to the traffic index data to be detected The jitter rising threshold and the jitter falling threshold of the traffic index data fragmentation determine whether the traffic index data is abnormal data; when the traffic index data is detected as abnormal data, according to the business line where the traffic index data is located After the alarm content is processed, notify the responsible object of the business line.
Description
技术领域technical field
本发明涉及通信技术领域,尤其涉及一种用于呼叫中心的话务指标异常的自动检测方法以及话务指标异常的自动检测装置、终端设备、储存介质。The invention relates to the field of communication technology, in particular to an automatic detection method for abnormal traffic indicators in a call center, an automatic detection device for abnormal traffic indicators, terminal equipment, and a storage medium.
背景技术Background technique
现有的呼叫中心监控平台,会对各个业务线的话务指标数据进行监控,但是监控的方式一般都是通过人工对各种监控项进行手动一一配置。目前一些拥有大规模呼叫中心的公司随着其业务的快速发展,需要进行监控的呼叫中心系统及业务线也呈指数级的上涨,这种传统的话务指标数据监控的方法已无法满足用户的需求。The existing call center monitoring platform monitors the traffic index data of each business line, but the monitoring method is generally to manually configure each monitoring item one by one. At present, with the rapid development of their business, some companies with large-scale call centers have exponentially increased the number of call center systems and business lines that need to be monitored. This traditional traffic index data monitoring method can no longer meet the needs of users. need.
具体来说,一方面由于各个业务线的曲线多样化且不具备统一特征,若针对上万的监控项仍然进行手动一一配置,则产生的工作量极大且效率极低、会浪费很多的人力成本;并且手动配置的实时性和准确性都无法得到保障,对于后续处理的及时性也造成了很大的影响。Specifically, on the one hand, because the curves of each business line are diversified and do not have uniform characteristics, if tens of thousands of monitoring items are still manually configured one by one, the workload will be huge and the efficiency will be extremely low, and a lot of time will be wasted. Labor costs; and the real-time and accuracy of manual configuration cannot be guaranteed, which also has a great impact on the timeliness of subsequent processing.
另一方面,呼叫中心各个业务线受多种客观因素影响,产生较多的误告。例如部分具备特殊时间(节假日或者航变等特殊时间)变化的业务曲线在该特殊时间内,会经常因非业务系统故障而引起话务指标数据抖动较大,产生较多的误告。而目前的监控方法无法有效地对这些误告过滤,也对监控的准确性造成了很大影响。On the other hand, each business line of the call center is affected by various objective factors, resulting in more false notifications. For example, some business curves with special time changes (such as holidays or flight changes) often cause large jitter of traffic index data due to non-business system failures during this special time, resulting in more false alarms. However, the current monitoring methods cannot effectively filter these false alarms, which also has a great impact on the accuracy of monitoring.
发明内容Contents of the invention
针对现有技术中的缺陷,本发明的目的是提供一种话务指标异常的自动检测方法以及话务指标异常的自动检测装置。该触话务指标异常的自动检测方法可以人工检测的人力成本、提高效率,并且还可以保障检测的实时性、准确性和及时性。Aiming at the defects in the prior art, the object of the present invention is to provide an automatic detection method and an automatic detection device for abnormal traffic indicators. The automatic detection method for the abnormality of the traffic index can reduce the labor cost of manual detection, improve efficiency, and can also ensure the real-time performance, accuracy and timeliness of detection.
根据本发明的一个方面提供一种话务指标异常的自动检测方法,所述话务指标异常的自动检测方法包括如下步骤:采集各个业务线的话务指标数据;储存采集到的各个业务线的话务指标数据;将储存的每个业务线的历史话务指标数据,按照时间维度形成多个历史话务指标数据分片,并生成每个所述历史话务指标数据分片的抖动上升阈值和抖动下降阈值;根据与待检测的话务指标数据相对应的历史话务指标数据分片的抖动上升阈值和抖动下降阈值,判断该话务指标数据是否为异常数据;当该话务指标数据经检测为异常数据时,根据该话务指标数据所在的业务线的告警内容进行处理后,通知该业务线的负责对象。According to one aspect of the present invention, an automatic detection method for traffic index abnormality is provided, and the automatic detection method for traffic index abnormality includes the following steps: collecting traffic index data of each business line; storing the collected traffic index data of each business line Traffic index data; the stored historical traffic index data of each business line is formed into a plurality of historical traffic index data fragments according to the time dimension, and the jitter rising threshold value of each of the historical traffic index data fragments is generated and the jitter drop threshold; according to the jitter rise threshold and the jitter drop threshold of the historical traffic index data fragmentation corresponding to the traffic index data to be detected, it is judged whether the traffic index data is abnormal data; when the traffic index data When it is detected as abnormal data, after processing according to the alarm content of the business line where the traffic index data is located, the responsible object of the business line is notified.
优选地,在形成多个历史话务指标数据分片,并生成每个所述历史话务指标数据分片的抖动上升阈值和抖动下降阈值的步骤中还包括如下步骤:选取第一时段内的各个业务线的所有历史话务指标数据;对选取的每个业务线的所有历史话务指标数据按照时间顺序进行均匀地划分,形成多个历史话务指标数据分片;获取每个历史话务指标数据分片中各个历史话务指标数据之间的抖动值,并生成该历史话务指标数据分片的抖动上升阈值和抖动下降阈值。Preferably, in the step of forming a plurality of historical traffic index data fragments, and generating the jitter rising threshold and jitter falling threshold of each of the historical traffic index data fragments, the following steps are further included: selecting the All historical traffic index data of each business line; divide all historical traffic index data of each selected business line evenly in time order to form multiple historical traffic index data fragments; obtain each historical traffic The jitter value between the various historical traffic index data in the index data slice, and generate the jitter rising threshold and the jitter falling threshold of the historical traffic index data slice.
优选地,当形成所述历史话务指标数据分片中的多个历史话务指标数据呈正态分布时,在生成该历史话务指标数据分片的抖动上升阈值和抖动下降阈值的步骤中还包括如下步骤:剔除该历史话务指标数据分片中多个数值最大的历史话务指标数据和多个数值最小的历史话务指标数据;补偿该历史话务指标数据分片中保留的各个历史话务指标数据所生成的抖动上升阈值和抖动下降阈值,并将补偿后的抖动上升阈值和抖动下降阈值分别作为该历史话务指标数据分片的抖动上升阈值和抖动下降阈值。Preferably, when the plurality of historical traffic index data in the historical traffic index data fragments are normally distributed, in the step of generating the jitter rising threshold and the jitter falling threshold of the historical traffic index data fragments It also includes the steps of: removing a plurality of historical traffic index data with the largest numerical value and a plurality of historical traffic index data with the smallest numerical value in the historical traffic index data fragmentation; The jitter rising threshold and the jitter falling threshold generated by the historical traffic index data, and the compensated jitter rising threshold and the jitter falling threshold are respectively used as the jitter rising threshold and the jitter falling threshold of the historical traffic index data fragmentation.
优选地,以12.5%的比例分别剔除该历史话务指标数据分片中多个数值最大的历史话务指标数据和多个数值最小的历史话务指标数据。Preferably, a plurality of historical traffic index data with the largest value and a plurality of historical traffic index data with the smallest value in the historical traffic index data slice are respectively eliminated at a ratio of 12.5%.
优选地,以30%的比例补偿该历史话务指标数据分片中保留的各个历史话务指标数据所生成的抖动上升阈值和抖动下降阈值。Preferably, the jitter up threshold and the jitter down threshold generated by each historical traffic index data retained in the historical traffic index data slice are compensated at a ratio of 30%.
优选地,所述第一时段为1个月或2个月。Preferably, the first period of time is 1 month or 2 months.
优选地,在判断该话务指标数据是否为异常数据的步骤中还包括如下步骤:保存待检测的话务指标数据及其附近连续的多个话务指标数据,形成一个待检测的话务指标数据分片;获取该待检测的话务指标数据分片内的各个话务指标数据之间的抖动值;根据该待检测的话务指标数据所属的业务线以及所在的时间段获取相对应的历史话务指标数据分片的抖动上升阈值和抖动下降阈值;当该待检测的话务指标数据分片中的连续多个抖动值超出第一合理值范围时,则对该待检测的话务指标数据分片进行局部趋势校验,计算平均值,并根据该待检测的话务指标数据分片的抖动范围选取一第二合理值范围,其中,第一合理值范围的最大值大于历史话务指标数据分片的抖动上升阈值,最小值小于历史话务指标数据分片的下降阈值;若该待检测的话务指标数据超过该第二合理值范围,将该待检测的话务指标数据视为异常数据。Preferably, the step of judging whether the traffic index data is abnormal data also includes the following steps: saving the traffic index data to be detected and a plurality of continuous traffic index data in its vicinity to form a traffic index to be detected Data fragmentation; obtain the jitter value between the various traffic index data in the traffic index data fragment to be detected; obtain the corresponding service line according to the business line and the time period where the traffic index data to be detected belongs The jitter rising threshold and the jitter falling threshold of the historical traffic index data fragment; when the continuous multiple jitter values in the traffic index data fragment to be detected exceed the first reasonable value range, the traffic to be detected Index data fragmentation carries out local trend check, calculates the average value, and selects a second reasonable value range according to the jitter range of the traffic index data fragmentation to be detected, wherein, the maximum value of the first reasonable value range is greater than the historical traffic The jitter rising threshold of traffic index data fragmentation, the minimum value is less than the descending threshold of historical traffic index data fragmentation; If the traffic index data to be detected exceeds the second reasonable value range, the traffic index data to be detected regarded as abnormal data.
优选地,对该待检测的话务指标数据分片进行局部趋势校验,计算平均值,并根据该待检测的话务指标数据分片的抖动范围选取一第二合理数据范围的条件为:连续两个抖动值分别超过历史话务指标数据分片的抖动上升阈值或抖动下降阈值的2倍;或者连续三个抖动值分别超过历史话务指标数据分片的抖动上升阈值或抖动下降阈值的1.8倍。Preferably, the local trend check is carried out to the traffic index data fragmentation to be detected, the average value is calculated, and the condition for selecting a second reasonable data range according to the jitter range of the traffic index data fragmentation to be detected is: Two consecutive jitter values exceed twice the jitter up threshold or jitter down threshold of the historical traffic index data slice respectively; or three consecutive jitter values exceed the jitter up threshold or the jitter down threshold of the historical traffic index data shard respectively 1.8 times.
优选地,保存的话务指标数据及该待检测的话务指标数据附近的多个话务指标数据的总数与该待检测的话务指标数据所对应的业务线的历史话务指标数据分片内的历史话务指标数据的总数相同。Preferably, the total number of the saved traffic index data and the plurality of traffic index data near the traffic index data to be detected and the historical traffic index data fragmentation of the service line corresponding to the traffic index data to be detected The total number of historical traffic index data in the same.
优选地,所述采集、储存的每个话务指标数据均为一个第二时段内的所有数据的总和或平均值。Preferably, each traffic index data collected and stored is the sum or average value of all data within a second period.
优选地,每条业务线中,采集、储存的每个话务指标数据选取的所述第二时段相同,所述第二时段为1分钟、2分钟、5分钟或者30分钟中的任一个。Preferably, in each service line, the second time period selected for each traffic index data collected and stored is the same, and the second time period is any one of 1 minute, 2 minutes, 5 minutes or 30 minutes.
根据本发明的另一个方面,还提供一种话务指标异常的自动检测装置,所述话务指标异常的自动检测装置包括:数据采集模块,用于采集各个业务线的话务指标数据;储存模块,与所述数据采集模块相连接,用于储存采集到的各个业务线的话务指标数据;抖动分析模块,与所述储存模块相连接,用于将储存的每个业务线的历史话务指标数据,按照时间维度形成多个历史话务指标数据分片,并生成每个所述历史话务指标数据分片的抖动上升阈值和抖动下降阈值;抖动检测模块,分别与所述抖动分析模块和所述采集模块相连接,用于根据与待检测的话务指标数据相对应的历史话务指标数据分片的抖动上升阈值和抖动下降阈值,判断该话务指标数据是否为异常数据;告警模块,与所述抖动检测模块相连接,用于当该话务指标数据经检测为异常数据时,根据该话务指标数据所在的业务线的告警内容进行处理后,通知该业务线的负责对象。According to another aspect of the present invention, there is also provided an automatic detection device for traffic index abnormality, the automatic detection device for traffic index abnormality includes: a data acquisition module, used to collect traffic index data of each business line; module, connected with the data collection module, used to store the collected traffic index data of each business line; the jitter analysis module, connected with the storage module, used to store the historical traffic data of each business line According to the traffic index data, a plurality of historical traffic index data fragments are formed according to the time dimension, and the jitter rising threshold and the jitter falling threshold of each of the historical traffic index data fragments are generated; the jitter detection module is respectively connected with the jitter analysis The module is connected with the acquisition module, and is used to determine whether the traffic index data is abnormal data according to the jitter rising threshold and the jitter falling threshold of the historical traffic index data fragmentation corresponding to the traffic index data to be detected; An alarm module, connected to the jitter detection module, used to notify the responsible person of the business line after processing according to the alarm content of the business line where the traffic index data is located when the traffic index data is detected as abnormal data object.
优选地,所述抖动分析模块包括:数据选取单元,用于选取第一时段内的各个业务线的所有历史话务指标数据;数据分片单元,与所述数据选取单元相连接,用于对选取的每个业务线的所有历史话务指标数据按照时间顺序进行均匀地划分,形成多个历史话务指标数据分片;阈值计算单元,与所述数据分片单元相连接,用于获取每个历史话务指标数据分片中各个历史话务指标数据之间的抖动值,并生成该历史话务指标数据分片的抖动上升阈值和抖动下降阈值。Preferably, the jitter analysis module includes: a data selection unit for selecting all historical traffic index data of each service line in the first period; a data fragmentation unit connected with the data selection unit for All the selected historical traffic index data of each business line are evenly divided according to time order to form a plurality of historical traffic index data fragments; the threshold calculation unit is connected with the data fragmentation unit for obtaining each The jitter value between each historical traffic index data in a historical traffic index data fragment, and generate the jitter rising threshold and jitter falling threshold of the historical traffic index data fragment.
优选地,当所述数据分片单元形成所述历史话务指标数据分片中的多个历史话务指标数据呈正态分布时,所述阈值计算单元还包括:数据剔除单元,剔除该历史话务指标数据分片中多个数值最大的历史话务指标数据和多个数值最小的历史话务指标数据;和数据修正单元,与所述数据剔除单元相连接,用于补偿该历史话务指标数据分片中保留的各个历史话务指标数据所生成的抖动上升阈值和抖动下降阈值,并将补偿后的抖动上升阈值和抖动下降阈值分别作为该历史话务指标数据分片的抖动上升阈值和抖动下降阈值。Preferably, when the multiple historical traffic index data in the historical traffic index data fragment formed by the data fragmentation unit are normally distributed, the threshold value calculation unit further includes: a data elimination unit, which eliminates the historical traffic index data A plurality of historical traffic index data with the largest numerical value and a plurality of historical traffic index data with the smallest numerical value in the fragmentation of the traffic index data; and a data correction unit connected with the data removal unit for compensating the historical traffic The jitter rising threshold and the jitter falling threshold generated by each historical traffic index data retained in the indicator data fragment, and the compensated jitter rising threshold and the jitter falling threshold are respectively used as the jitter rising threshold of the historical traffic index data fragment and jitter drop thresholds.
优选地,所述抖动检测模块包括:局部数据保存单元,用于保存待检测的话务指标数据及其附近连续的多个话务指标数据,形成一个待检测的话务指标数据分片;抖动值计算单元,与所述局部数据保存单元相连接,用于获取该待检测的话务指标数据分片内的各个话务指标数据之间的抖动值;抖动阈值获取单元,与局部数据保存单元相连接,所述用于根据该待检测的话务指标数据所属的业务线以及所在的时间段获取相对应的历史话务指标数据分片的抖动上升阈值和抖动下降阈值;抖动规则获取单元,与所述局部数据保存单元、所述局部数据保存单元和所述抖动值计算单元相连接,用于当该待检测的话务指标数据分片中的连续多个抖动值超出第一合理值范围时,对该待检测的话务指标数据分片进行局部趋势校验,计算平均值,并根据该待检测的话务指标数据分片的抖动范围选取一第二合理值范围,其中,第一合理值范围的最大值大于历史话务指标数据分片的抖动上升阈值,最小值小于历史话务指标数据分片的下降阈值;检测单元,与所述抖动规则获取单元相连接,当该待检测的话务指标数据超过该第二合理值范围,将该待检测的话务指标数据视为异常数据。Preferably, the jitter detection module includes: a local data storage unit, which is used to save the traffic index data to be detected and a plurality of continuous traffic index data in its vicinity, so as to form a piece of traffic index data to be detected; the jitter The value calculation unit is connected with the local data storage unit, and is used to obtain the jitter value between each traffic index data in the traffic index data slice to be detected; the jitter threshold acquisition unit is connected with the local data storage unit Connected, the jitter rising threshold and the jitter falling threshold for obtaining the corresponding historical traffic index data fragmentation according to the business line to which the traffic index data to be detected belong and the time period; the jitter rule acquisition unit, It is connected with the local data storage unit, the local data storage unit and the jitter value calculation unit, and is used for when the continuous multiple jitter values in the traffic index data fragment to be detected exceed the first reasonable value range , the local trend check is carried out on the traffic index data fragmentation to be detected, the average value is calculated, and a second reasonable value range is selected according to the jitter range of the traffic index data fragmentation to be detected, wherein, the first The maximum value of the reasonable value range is greater than the jitter rising threshold of the historical traffic index data fragmentation, and the minimum value is less than the descending threshold of the historical traffic index data fragmentation; the detection unit is connected with the described jitter rule acquisition unit, when the to-be-detected If the traffic index data exceeds the second reasonable value range, the traffic index data to be detected is regarded as abnormal data.
根据本发明的又一个方面,还提供一种终端设备,包括:处理器;以及存储器,存储有程序,其中,在所述处理器执行所述程序时,进行以下操作:采集各个业务线的话务指标数据;储存采集到的各个业务线的话务指标数据;将储存的每个业务线的历史话务指标数据,按照时间维度形成多个历史话务指标数据分片,并生成每个所述历史话务指标数据分片的抖动上升阈值和抖动下降阈值;根据与待检测的话务指标数据相对应的历史话务指标数据分片的抖动上升阈值和抖动下降阈值,判断该话务指标数据是否为异常数据;当该话务指标数据经检测为异常数据时,根据该话务指标数据所在的业务线的告警内容进行处理后,通知该业务线的负责对象。According to still another aspect of the present invention, there is also provided a terminal device, including: a processor; and a memory storing a program, wherein, when the processor executes the program, the following operations are performed: collect the words of each business line Store the collected traffic index data of each business line; form multiple historical traffic index data fragments according to the time dimension by storing the historical traffic index data of each business line, and generate each Describe the jitter rising threshold and the jitter falling threshold of the historical traffic index data fragmentation; judge the traffic index according to the jitter rising threshold and the jitter falling threshold of the historical traffic index data fragmentation corresponding to the traffic index data to be detected Whether the data is abnormal data; when the traffic index data is detected as abnormal data, after processing according to the alarm content of the business line where the traffic index data is located, notify the responsible object of the business line.
根据本发明的又一个方面,还提供一种储存介质,用于存储程序,其中,所述程序在被执行时使得终端设备进行以下操作:采集各个业务线的话务指标数据;储存采集到的各个业务线的话务指标数据;将储存的每个业务线的历史话务指标数据,按照时间维度形成多个历史话务指标数据分片,并生成每个所述历史话务指标数据分片的抖动上升阈值和抖动下降阈值;根据与待检测的话务指标数据相对应的历史话务指标数据分片的抖动上升阈值和抖动下降阈值,判断该话务指标数据是否为异常数据;当该话务指标数据经检测为异常数据时,根据该话务指标数据所在的业务线的告警内容进行处理后,通知该业务线的负责对象。According to still another aspect of the present invention, a storage medium is also provided for storing a program, wherein, when the program is executed, the terminal equipment performs the following operations: collect the traffic index data of each service line; store the collected The traffic index data of each business line; the stored historical traffic index data of each business line is formed into a plurality of historical traffic index data fragments according to the time dimension, and each of the historical traffic index data fragments is generated The jitter rising threshold and the jitter falling threshold; according to the jitter rising threshold and the jitter falling threshold of the historical traffic index data fragmentation corresponding to the traffic index data to be detected, it is judged whether the traffic index data is abnormal data; when the When the traffic index data is detected as abnormal data, after processing according to the alarm content of the business line where the traffic index data is located, the responsible object of the business line is notified.
相比于现有技术,本发明实施例提供的话务指标异常的自动检测方法和话务指标异常的自动检测装置通过将储存的每个业务线的历史话务指标数据,按照时间维度形成多个历史话务指标数据分片、并生成每个所述历史话务指标数据分片的抖动上升阈值和抖动下降阈值后,根据与待检测的话务指标数据相对应的历史话务指标数据分片的抖动上升阈值和抖动下降阈值,判断该话务指标数据是否为异常数据。进而,该话务指标异常的自动检测方法可以大大降低现有检测方法中使用人工进行检测的人力成本、提高效率,并且实时性和准确性都得到了有效保障,对于后续处理的及时性起到了重大的作用。Compared with the prior art, the embodiment of the present invention provides an automatic detection method for abnormal traffic indicators and an automatic detection device for abnormal traffic indicators by forming multiple data according to the time dimension by storing the historical traffic indicator data of each business line. historical traffic index data fragments, and generate the jitter rising threshold and jitter falling threshold of each historical traffic index data fragment, according to the historical traffic index data corresponding to the traffic index data to be detected The jitter rising threshold and jitter falling threshold of the chip are used to judge whether the traffic index data is abnormal data. Furthermore, the automatic detection method for abnormal traffic indicators can greatly reduce the labor cost of using manual detection in the existing detection methods, improve efficiency, and the real-time and accuracy are effectively guaranteed, which plays a role in the timeliness of subsequent processing. significant role.
此外,该话务指标异常的自动检测方法和话务指标异常的自动检测装置还通过保存待检测的话务指标数据及该待检测的话务指标数据附近的多个话务指标数据形成一个待检测的话务指标数据分片,当待检测的话务指标数据分片中的连续多个抖动值超出第一合理值范围时,对该待检测的话务指标数据分片进行局部趋势校验,计算平均值,并根据该待检测的话务指标数据分片的抖动范围选取一第二合理值范围,仅仅当待检测的话务指标数据超过该第二合理值范围时才视为异常检测成功,因此,针对有大幅度抖动异常的话务指标数据具有明显有效的检测效果,更能有效地减少抖动后回落产生的误告现象。In addition, the automatic detection method for traffic index abnormality and the automatic detection device for traffic index abnormality also form a waiting list by saving the traffic index data to be detected and a plurality of traffic index data near the traffic index data to be detected. The detected traffic index data fragmentation, when the continuous multiple jitter values in the traffic index data fragments to be detected exceed the first reasonable value range, the local trend verification is performed on the traffic index data fragments to be detected , calculate the average value, and select a second reasonable value range according to the jitter range of the traffic index data fragmentation to be detected, and only when the traffic index data to be detected exceeds the second reasonable value range, it is regarded as abnormal detection Success, therefore, it has an obvious and effective detection effect on the traffic index data with large jitter abnormalities, and can more effectively reduce the false alarm phenomenon caused by the drop after jitter.
附图说明Description of drawings
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:Other characteristics, objects and advantages of the present invention will become more apparent by reading the detailed description of non-limiting embodiments made with reference to the following drawings:
图1为本发明的一个实施例的一种话务指标异常的自动检测方法的流程图;Fig. 1 is the flow chart of a kind of automatic detection method of traffic indicator abnormality of an embodiment of the present invention;
图2为本发明的一个实施例的话务指标异常的自动检测方法中形成历史话务指标数据分片、生成抖动上升阈值和抖动下降阈值的各个步骤的流程图;Fig. 2 is a flow chart of each step of forming historical traffic index data fragmentation, generating a jitter rising threshold and a jitter falling threshold in an automatic detection method for traffic index anomalies according to an embodiment of the present invention;
图3为本发明的一个实施例的话务指标异常的自动检测方法中生成抖动上升阈值和抖动下降阈值的各个步骤的流程图。Fig. 3 is a flowchart of various steps of generating a jitter rising threshold and a jitter falling threshold in an automatic detection method for abnormal traffic indicators according to an embodiment of the present invention.
图4为本发明的一个实施例的话务指标异常的自动检测方法中判断该话务指标数据是否为异常数据的各个步骤的流程图;以及Fig. 4 is a flowchart of each step of judging whether the traffic index data is abnormal data in the automatic detection method of traffic index abnormality according to an embodiment of the present invention; and
图5为本发明的一个实施例的一种话务指标异常的自动检测装置的结构示意图。Fig. 5 is a schematic structural diagram of an automatic detection device for abnormal traffic indicators according to an embodiment of the present invention.
具体实施方式Detailed ways
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本发明将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。Example embodiments will now be described more fully with reference to the accompanying drawings. Example embodiments may, however, be embodied in many forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of example embodiments to those skilled in the art. The same reference numerals denote the same or similar structures in the drawings, and thus their repeated descriptions will be omitted.
所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本发明的实施方式的充分理解。然而,本领域技术人员应意识到,没有特定细节中的一个或更多,或者采用其它的方法、组元、材料等,也可以实践本发明的技术方案。在某些情况下,不详细示出或描述公知结构、材料或者操作以避免模糊本发明。The described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are provided in order to give a thorough understanding of embodiments of the invention. However, those skilled in the art will appreciate that the technical solutions of the present invention may be practiced without one or more of the specific details, or with other methods, components, materials, and the like. In some instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring the invention.
此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。Furthermore, the drawings are merely schematic illustrations of the present disclosure and are not necessarily drawn to scale. The same reference numerals in the drawings denote the same or similar parts, and thus repeated descriptions thereof will be omitted. Some of the block diagrams shown in the drawings are functional entities and do not necessarily correspond to physically or logically separate entities. These functional entities may be implemented in software, or in one or more hardware modules or integrated circuits, or in different network and/or processor means and/or microcontroller means.
依据本发明的主旨构思,本发明的一种话务指标异常的自动检测方法包括如下步骤:采集各个业务线的话务指标数据;储存采集到的各个业务线的话务指标数据;将储存的每个业务线的历史话务指标数据,按照时间维度形成多个历史话务指标数据分片,并生成每个所述历史话务指标数据分片的抖动上升阈值和抖动下降阈值;根据与待检测的话务指标数据相对应的历史话务指标数据分片的抖动上升阈值和抖动下降阈值,判断该话务指标数据是否为异常数据;当该话务指标数据经检测为异常数据时,根据该话务指标数据所在的业务线的告警内容进行处理后,通知该业务线的负责对象。According to the gist of the present invention, a method for automatically detecting traffic index abnormalities of the present invention includes the following steps: collecting the traffic index data of each business line; storing the collected traffic index data of each business line; storing the stored traffic index data; The historical traffic index data of each line of business forms a plurality of historical traffic index data fragments according to the time dimension, and generates the jitter rising threshold and the jitter falling threshold of each described historical traffic index data fragmentation; The jitter rising threshold and the jitter falling threshold of the historical traffic index data fragmentation corresponding to the detected traffic index data, judge whether the traffic index data is abnormal data; when the traffic index data is detected as abnormal data, according to After processing the alarm content of the business line where the traffic index data is located, the responsible object of the business line is notified.
下面结合附图和实施例对本发明的技术内容进行进一步地说明。The technical content of the present invention will be further described below in conjunction with the accompanying drawings and embodiments.
请参见图1,其示出了本发明的一个实施例的一种话务指标异常的自动检测方法的流程图。如图1所示,在本发明的实施例中,所述话务指标异常的自动检测方法包括如下步骤:Please refer to FIG. 1 , which shows a flow chart of an automatic detection method for abnormal traffic indicators according to an embodiment of the present invention. As shown in Figure 1, in an embodiment of the present invention, the automatic detection method of described traffic indicator abnormality comprises the following steps:
步骤S10:采集各个业务线的话务指标数据。具体来说,在此步骤中,是将大规模呼叫中心的各个业务线的话务指标数据(例如话务总量、成功率等)通过统一的接口方式,按照接口契约采集实时的数据,进而,将这些数据送往消息队列。后续分别将这些数据送往其他功能模块用于储存和检测。Step S10: collecting traffic index data of each service line. Specifically, in this step, the traffic index data (such as total traffic volume, success rate, etc.) , send the data to the message queue. Subsequently, these data are sent to other functional modules for storage and detection.
步骤S20:储存采集到的各个业务线的话务指标数据。在此步骤中,将采集到的沿着时间序列的所有数据,通过聚合计算按照不同时段进行分类存储。具体来说,储存的每个话务指标数据均为一个第二时段内的所有数据的总和或平均值。每条业务线中,储存的每个话务指标数据选取的第二时段相同,各个业务线之间,话务指标数据选取的第二时段可以是不相同的。其中,该第二时段可以为1分钟、2分钟、5分钟或者30分钟中的任一个。例如,对于一些业务线而言,储存的每个话务指标数据可以沿着是时间序列上每1分钟内的所有数据的总和或者每1分钟内的所有数据的平均值;对于另一些业务线而言,储存的每个务指标数据也可以沿着是时间序列上每5分钟内的所有数据的总和或者每5分钟内的所有数据的平均值。进而,对上述各个业务线的话务指标数据处理之后存储在开源可靠的企业级存储系统当中。该存储系统需要支持各种获取数据的方式,以便数据使用。Step S20: storing the collected traffic index data of each business line. In this step, all the collected data along the time series are classified and stored according to different time periods through aggregation calculation. Specifically, each stored traffic index data is the sum or average value of all data in a second time period. In each business line, the second time period selected for each stored traffic index data is the same, and the second time period selected for the traffic index data may be different among various business lines. Wherein, the second period of time may be any one of 1 minute, 2 minutes, 5 minutes or 30 minutes. For example, for some business lines, the data of each traffic index stored can be the sum of all data in each minute or the average value of all data in each minute in time series; for other business lines In other words, the stored data of each service indicator can also be the sum of all the data in every 5 minutes or the average value of all the data in every 5 minutes on the time series. Furthermore, the traffic index data of each of the above business lines is processed and stored in an open-source and reliable enterprise-level storage system. The storage system needs to support various ways of obtaining data so that the data can be used.
步骤S30:将储存的每个业务线的历史话务指标数据,按照时间维度形成多个历史话务指标数据分片,并生成每个所述历史话务指标数据分片的抖动上升阈值和抖动下降阈值。在此步骤中,即可以理解为生成各条业务线中用于判断话务指标数据是否为异常数据的抖动规则。Step S30: Form a plurality of historical traffic index data fragments according to the time dimension of the stored historical traffic index data of each business line, and generate the jitter rising threshold and jitter of each historical traffic index data fragment drop threshold. In this step, it can be understood as generating a jitter rule for judging whether the traffic index data is abnormal data in each business line.
具体来说,请参见图2,其示出了本发明的一个实施例的话务指标异常的自动检测方法中形成历史话务指标数据分片、生成抖动上升阈值和抖动下降阈值的各个步骤的流程图。如图2所示,在上述步骤S30中还包括如下步骤:Specifically, please refer to FIG. 2, which shows the steps of forming historical traffic index data fragmentation, generating jitter rising threshold and jitter falling threshold in the automatic detection method of traffic index abnormality according to an embodiment of the present invention flow chart. As shown in Figure 2, the above step S30 also includes the following steps:
步骤S301:选取第一时段内的各个业务线的所有历史话务指标数据。可选地,第一时段为1个月或2个月。若以选取第二时段为1分钟(即储存的每个话务指标数据可以沿着是时间序列上每1分钟内的所有数据的总和或者平均值)的一条业务线为例,则在此步骤中,从上述储存的每个业务线的所有历史话务指标数据中选取2个月内的每1分钟的历史话务指标数据,以2个月内每1分钟的历史话务指标数据作为后续生成抖动上升阈值和抖动下降阈值的依据。需要说明的是,该第一时段可以根据用户对于数据精准性的要求而进行变化,例如也可以是选取3个月或4个月的历史话务指标数据,在此不予赘述。Step S301: Select all historical traffic index data of each service line in the first period. Optionally, the first period is 1 month or 2 months. As an example, if the second time period is selected as 1 minute (that is, each traffic index data stored can be along the sum or average value of all data in each minute on the time series) as an example, then in this step , select the historical traffic index data per minute within 2 months from all the historical traffic index data of each business line stored above, and use the historical traffic index data per minute within 2 months as a follow-up The basis for generating the jitter rising threshold and jitter falling threshold. It should be noted that the first period of time can be changed according to the user's requirement for data accuracy, for example, 3 months or 4 months of historical traffic index data can also be selected, which will not be repeated here.
步骤S302:对选取的每个业务线的所有历史话务指标数据按照时间顺序进行均匀地划分,形成多个历史话务指标数据分片。具体来说,以选取第二时段为1分钟(即储存的每个话务指标数据可以沿着是时间序列上每1分钟内的所有数据的总和或者平均值)的一条业务线为例,可以按照时间顺序将第一时段(例如上述2个月)内的所有的历史话务指标数据,以每10个数据作为一个历史话务指标数据分片进行划分(即每个历史话务指标数据分片包括10分钟内的历史话务指标数据),进而,假设监控的业务线为一天24个小时内,则可以将该业务线一天的所有历史话务指标数据分为144个历史话务指标数据分片。需要说明的是,在本发明的另一些实施例中,每个历史话务指标数据分片中包括的历史话务指标数据的数量是可以变化的,在此实施例中仅仅以每10个历史话务指标数据为例,在此不予赘述。Step S302: Evenly divide all historical traffic index data of each selected business line according to time order to form multiple historical traffic index data fragments. Specifically, taking a business line where the second time period is selected as 1 minute (that is, each traffic index data stored can be along the sum or average value of all data in each minute on the time series) as an example, you can All historical traffic index data in the first period (such as the above-mentioned 2 months) are divided according to time order with every 10 data as a historical traffic index data fragment (that is, each historical traffic index data fragment slice includes historical traffic index data within 10 minutes), and then, assuming that the monitored business line is within 24 hours a day, all historical traffic index data of the business line for one day can be divided into 144 historical traffic index data Fragmentation. It should be noted that, in other embodiments of the present invention, the quantity of historical traffic index data included in each historical traffic index data fragment can be changed, and in this embodiment only every 10 historical The traffic index data is taken as an example, which will not be repeated here.
步骤S303:获取每个历史话务指标数据分片中各个历史话务指标数据之间的抖动值,并生成该历史话务指标数据分片的抖动上升阈值和抖动下降阈值。具体来说,各个历史话务指标数据之间的抖动值是指沿时间序列上,相邻的两个历史话务指标数据之间,沿时间序列、后一个值减去前一个值(例如当前值减去前一个值)的差值。进而,上述的以每10个数据作为一个历史话务指标数据分片中,包括了9个抖动值。历史话务指标数据分片的抖动值包括了上升值和下降值。抖动上升值是指后一个值减去前一个值的差值为正数的值(即后一个历史话务指标数据的值大于前一个历史话务指标数据的值);相应地,抖动下降值是指后一个值减去前一个值的差值为负数的值(即后一个历史话务指标数据的值小于前一个历史话务指标数据的值)。进而,抖动上升阈值可以是上述第一时段内所有相同时间段的历史话务指标数据分片中所有抖动上升值中的最大值;而抖动下降阈值可以是上述第一时段内所有相同时间段的历史话务指标数据分片的所有抖动下降值中的最小值。以上述选取第二时段为1分钟(即储存的每个话务指标数据可以沿着是时间序列上每1分钟内的所有数据的总和或者平均值)的一条业务线为例,假设按照时间顺序将2个月内的所有的历史话务指标数据,以10个数据作为一个历史话务指标数据分片,则一天的数据可以分为144片,将其分别标记为0-143;其中,第0片为每天的0:00-0:10时段的历史话务指标数据分片,2个月即包括了60个第0片;第1片为每天的0:10-0:20时段的历史话务指标数据分片,2个月即包括了60个第1片,以此类推。因此,对于0:00-0:10时段的历史话务指标数据分片而言,其抖动上升阈值即为60个第0片内所有抖动上升值中的最大值,其抖动下降阈值即为60个第0片内所有所有抖动下降值中的最小值。Step S303: Obtain the jitter value between the historical traffic index data in each historical traffic index data segment, and generate the jitter rising threshold and the jitter falling threshold of the historical traffic index data segment. Specifically, the jitter value between each historical traffic index data refers to along the time series, between two adjacent historical traffic index data, along the time series, the latter value minus the previous value (such as the current value minus the previous value). Furthermore, the above-mentioned 10 pieces of data are used as a piece of historical traffic index data, including 9 jitter values. The jitter value of the historical traffic index data fragment includes rising and falling values. The jitter rise value refers to the value that the difference between the latter value minus the previous value is a positive number (that is, the value of the latter historical traffic index data is greater than the value of the previous historical traffic index data); correspondingly, the jitter drop value It means that the difference between the latter value minus the previous value is a negative value (that is, the value of the latter historical traffic index data is smaller than the value of the previous historical traffic index data). Furthermore, the jitter rising threshold may be the maximum value of all the jitter rising values in the historical traffic index data fragments of all the same time periods in the first period; and the jitter falling threshold may be the maximum value of all the same time periods in the first period. The minimum value among all the jitter reduction values of the historical traffic index data slice. Take the above-mentioned business line where the second time period is selected as 1 minute (that is, each traffic index data stored can be along the sum or average value of all data in each minute on the time series) as an example, assuming that the time sequence is All the historical traffic index data within 2 months are divided into 10 data as a historical traffic index data fragmentation, then the data of one day can be divided into 144 pieces, which are marked as 0-143 respectively; among them, the first Slice 0 is the fragmentation of historical traffic indicator data during the period of 0:00-0:10 every day, including 60 pieces of slice 0 in 2 months; slice 1 is the history of the period of 0:10-0:20 every day Traffic index data fragmentation includes 60 first slices in 2 months, and so on. Therefore, for the fragmentation of historical traffic index data in the period from 0:00 to 0:10, the jitter rising threshold is the maximum value of all jitter rising values in the 60th slice, and the jitter falling threshold is 60 The minimum value of all jitter reduction values in slice 0.
进一步地,请参见图3,其示出了本发明的一个实施例的话务指标异常的自动检测方法中生成抖动上升阈值和抖动下降阈值的各个步骤的流程图。具体来说,在图2所示的实施例中,上述步骤S302中各条业务线的划分的所有历史话务指标数据分片中,当任一个历史话务指标数据分片中的多个历史话务指标数据呈正态分布时,则如图3所示,针对该历史话务指标数据分片、在生成抖动上升阈值和抖动下降阈值的步骤中还包括如下步骤:Further, please refer to FIG. 3 , which shows a flow chart of steps of generating a jitter rising threshold and a jitter falling threshold in an automatic detection method for abnormal traffic indicators according to an embodiment of the present invention. Specifically, in the embodiment shown in FIG. 2 , among all the historical traffic index data fragments divided by each business line in step S302 above, when multiple historical traffic index data fragments in any one historical traffic index data fragment When the traffic index data is normally distributed, then as shown in Figure 3, for the fragmentation of the historical traffic index data, the steps of generating the jitter rising threshold and the jitter falling threshold also include the following steps:
步骤S3031:剔除该历史话务指标数据分片中多个数值最大的历史话务指标数据和多个数值最小的历史话务指标数据。可选地,以12.5%的比例分别剔除该历史话务指标数据分片中多个数值最大的历史话务指标数据和多个数值最小的历史话务指标数据。例如,在以每16个数据作为一个历史话务指标数据分片的实施例中,则可以剔除16个数据中最大的两个值和最小的两个值。或者以2个月内的同一个时段(例如每天的0:00-0:10时段)形成的历史话务指标数据分片中的600个数据为例,则可以剔除600个数据中最大的75个值和最小的75个值,在此不予赘述。Step S3031: Eliminate a plurality of historical traffic index data with the largest value and a plurality of historical traffic index data with the smallest value in the historical traffic index data slice. Optionally, a plurality of historical traffic index data with the largest values and a plurality of historical traffic index data with the smallest values in the historical traffic index data slice are respectively eliminated at a ratio of 12.5%. For example, in an embodiment where every 16 pieces of data are used as a piece of historical traffic indicator data, the two largest values and the two smallest values among the 16 pieces of data can be eliminated. Or take the 600 pieces of data in the historical traffic indicator data fragment formed in the same time period within 2 months (such as the time period of 0:00-0:10 every day) as an example, then the largest 75% of the 600 pieces of data can be eliminated. values and the minimum 75 values, which will not be described here.
步骤S3032:补偿该历史话务指标数据分片中保留的各个历史话务指标数据所生成的抖动上升阈值和抖动下降阈值,并将补偿后的抖动上升阈值和抖动下降阈值分别作为该历史话务指标数据分片的抖动上升阈值和抖动下降阈值。可选地,以30%的比例补偿该历史话务指标数据分片中保留的各个历史话务指标数据所生成的抖动上升阈值和抖动下降阈值。具体来说,若同样以每16个数据作为一个历史话务指标数据分片为例,当剔除最大的两个值和最小的两个值后,剩余的12个数据中计算该12个历史话务指标数据所生成的抖动上升阈值和抖动下降阈值,并且对该该12个历史话务指标数据所生成的抖动上升阈值和抖动下降阈值进行补偿,例如在该12个历史话务指标数据所生成的抖动上升阈值的基础上增加该数值的30%、以作为最终生成的历史话务指标数据分片中的抖动上升阈值;在该12个历史话务指标数据所生成的抖动下降阈值的基础上减去该数值的30%、以作为最终生成的历史话务指标数据分片中的抖动下降阈值。上述步骤S303可以剔除历史话务指标数据中因故障引起的异常数据。Step S3032: Compensate the jitter up threshold and jitter down threshold generated by each historical traffic index data retained in the historical traffic index data slice, and use the compensated jitter up threshold and jitter down threshold respectively as the historical traffic The jitter up threshold and jitter down threshold for metric data sharding. Optionally, the jitter up threshold and the jitter down threshold generated by each historical traffic index data retained in the historical traffic index data slice are compensated at a ratio of 30%. Specifically, if every 16 pieces of data are used as an example of a historical traffic index data fragmentation, after removing the two largest values and the two smallest values, the 12 historical traffic indicators are calculated from the remaining 12 data. The jitter rising threshold and the jitter falling threshold generated by the traffic index data, and the jitter rising threshold and the jitter falling threshold generated by the 12 historical traffic index data are compensated, for example, when the 12 historical traffic index data are generated On the basis of the jitter rising threshold value, add 30% of this value as the jitter rising threshold value in the finally generated historical traffic index data fragmentation; on the basis of the jitter falling threshold value generated by the 12 historical traffic index data Subtracting 30% of this value is used as the jitter reduction threshold in the finally generated historical traffic index data slice. The above step S303 can eliminate abnormal data caused by faults in the historical traffic index data.
步骤S40:根据与待检测的话务指标数据相对应的历史话务指标数据分片的抖动上升阈值和抖动下降阈值,判断该话务指标数据是否为异常数据。请参见图4,其示出了本发明的一个实施例的话务指标异常的自动检测方法中判断该话务指标数据是否为异常数据的各个步骤的流程图。具体来说,在判断该话务指标数据是否为异常数据的步骤(即步骤S40)中还包括如下步骤:Step S40: Determine whether the traffic index data is abnormal data according to the jitter rising threshold and the jitter falling threshold of the historical traffic index data slice corresponding to the traffic index data to be detected. Please refer to FIG. 4 , which shows a flow chart of each step of judging whether the traffic index data is abnormal data in the method for automatically detecting abnormal traffic index according to an embodiment of the present invention. Specifically, the step of judging whether the traffic index data is abnormal data (ie step S40) also includes the following steps:
步骤S401:保存该待检测的话务指标数据及该待检测的话务指标数据附近连续的多个话务指标数据,形成一个待检测的话务指标数据分片。可选地,保存的话务指标数据及该待检测的话务指标数据附近的多个话务指标数据的总数与该待检测的话务指标数据所对应的业务线的历史话务指标数据分片中的历史话务指标数据的总数相同。例如可以沿时间序列保存靠近该待检测的话务指标数据的10个话务指标数据,形成一个待检测的话务指标数据分片,用于进行抖动检测。Step S401: Save the traffic index data to be detected and a plurality of consecutive traffic index data near the traffic index data to be detected to form a segment of the traffic index data to be detected. Optionally, the total number of the saved traffic index data and the plurality of traffic index data near the traffic index data to be detected is divided into the historical traffic index data of the service line corresponding to the traffic index data to be detected. The total number of historical traffic index data in the slice is the same. For example, 10 traffic index data close to the traffic index data to be detected may be saved along the time series to form a segment of the traffic index data to be detected for jitter detection.
步骤S402:获取该待检测的话务指标数据分片内的各个话务指标数据之间的抖动值。具体来说,在此步骤中,即为计算上述形成的待检测的话务指标数据分片中的各个话务指标数据之间的抖动值。Step S402: Obtain the jitter value between each traffic index data in the traffic index data segment to be detected. Specifically, in this step, the jitter value between each traffic index data in the traffic index data fragments to be detected formed above is calculated.
步骤S403:根据该待检测的话务指标数据所属的业务线以及所在的时间段获取相对应的历史话务指标数据分片的抖动上升阈值和抖动下降阈值。具体来说,在此步骤中,即为根据该待检测的话务指标数据所属的业务线的类型以及所在的时间段(例如具体的每天的几点几分)获取相对应的历史话务指标数据分片,并且获取根据上述步骤S30所得到的该对应的历史话务指标数据分片的抖动上升阈值和抖动下降阈值。例如,该待检测的话务指标数据所属的业务线的类型以及所在的时间段为0:00-0:10时段,则其对应的历史话务指标数据分片即为上述将每天形成的144个不同时间段的历史话务指标数据分片中的第0片。Step S403: Obtain the jitter up threshold and jitter down threshold of the corresponding historical traffic index data slice according to the service line to which the traffic index data to be detected belongs and the time period. Specifically, in this step, the corresponding historical traffic indicators are obtained according to the type of the business line to which the traffic indicator data to be detected belongs and the time period (for example, the specific time of day). The data is segmented, and the jitter up threshold and jitter down threshold of the corresponding historical traffic index data segment obtained according to the above step S30 are obtained. For example, the type of business line to which the traffic index data to be detected belongs and the time period is 0:00-0:10, then the corresponding historical traffic index data fragmentation is the above-mentioned 144 formed every day The 0th slice in the historical traffic indicator data slices of different time periods.
步骤S404:当该待检测的话务指标数据分片中的连续多个抖动值超出第一合理值范围时,则对该待检测的话务指标数据分片进行局部趋势校验,所述局部趋势校验的步骤为计算待检测的话务指标数据分片的平均值,并根据该平均值和待检测的话务指标数据分片的抖动范围选取一第二合理值范围。具体来说,在本发明的实施例中,对该待检测的话务指标数据分片进行局部趋势校验条件可以为:连续两个抖动值分别超过历史话务指标数据分片的抖动上升阈值或抖动下降阈值的2倍;或者连续三个抖动值分别超过历史话务指标数据分片的抖动上升阈值或抖动下降阈值的1.8倍。其中,第一合理值范围的最大值大于历史话务指标数据分片的抖动上升阈值,最小值小于历史话务指标数据分片的下降阈值。第二合理值范围是根据计算得到的该待检测的话务指标数据分片的平均值(平均值的计算排除上升点)并结合该待检测的话务指标数据分片中各个抖动值形成的抖动范围来确定的,例如,根据该待检测的话务指标数据分片中各个抖动值、确定待检测的话务指标数据分片中的抖动最大值和抖动最小值;第二合理范围中的最大值即为该待检测的话务指标数据分片的平均值与其抖动最大值之和,第二合理范围中的最小值即为该待检测的话务指标数据分片的平均值与其抖动最小值之和。需要说明的是,上述判断待检测的历史话务指标数据分片中,连续超过历史话务指标数据分片的抖动上升阈值或抖动下降阈值的抖动值数量以及第一合理值范围可以根据实际的需求进行调整;第二合理值也可以根据实际的需求进行调整。该步骤可以有效地减少数据出现异常抖动后因回落而产生的误告。Step S404: When the multiple consecutive jitter values in the traffic index data fragment to be detected exceed the first reasonable value range, then perform a local trend check on the traffic index data fragment to be detected, the local The step of trend verification is to calculate the average value of the traffic index data fragments to be detected, and select a second reasonable value range according to the average value and the jitter range of the traffic index data fragments to be detected. Specifically, in an embodiment of the present invention, the condition for performing local trend verification on the traffic index data fragments to be detected may be: two consecutive jitter values respectively exceed the jitter rising thresholds of the historical traffic index data fragments Or twice the jitter drop threshold; or three consecutive jitter values exceeding 1.8 times the jitter rise threshold or jitter drop threshold of the historical traffic index data slice respectively. Wherein, the maximum value of the first reasonable value range is greater than the jitter rising threshold of the historical traffic index data slice, and the minimum value is smaller than the falling threshold of the historical traffic index data slice. The second reasonable value range is formed according to the calculated average value of the traffic index data fragmentation to be detected (calculation of the average value excludes rising points) and in combination with each jitter value in the traffic index data fragmentation to be detected. Determined by the jitter range, for example, according to each jitter value in the traffic index data fragmentation to be detected, determine the jitter maximum value and the jitter minimum value in the traffic index data fragmentation to be detected; in the second reasonable range The maximum value is the sum of the average value of the traffic index data fragments to be detected and the maximum jitter value thereof, and the minimum value in the second reasonable range is the average value of the traffic index data fragments to be detected and the minimum jitter sum of values. It should be noted that, among the historical traffic index data fragments to be detected, the number of jitter values and the first reasonable value range that continuously exceed the jitter rising threshold or the jitter falling threshold of the historical traffic index data fragments can be determined according to the actual The demand is adjusted; the second reasonable value can also be adjusted according to the actual demand. This step can effectively reduce false alarms caused by data fallback after abnormal data jitter occurs.
步骤S405:若该待检测的话务指标数据超过该第二合理值范围,将该待检测的话务指标数据视为异常数据。具体来说,若该待检测的话务指标数据超过上述步骤S404中获取的第二合理值范围,则视为异常检测成功,进而,可以进行后续的告警步骤。若该待检测的话务指标数据并未超过该第二合理值范围,视为异常检测失败,即该待检测的话务指标数据为正常数据,进而,可以进行下一个话务指标数据的抖动检测。Step S405: If the traffic index data to be detected exceeds the second reasonable value range, the traffic index data to be detected is regarded as abnormal data. Specifically, if the traffic index data to be detected exceeds the second reasonable value range obtained in the above step S404, it is considered that the abnormality detection is successful, and further, the subsequent alarm step can be performed. If the traffic index data to be detected does not exceed the second reasonable value range, it is regarded as an abnormality detection failure, that is, the traffic index data to be detected is normal data, and then the next traffic index data can be jittered detection.
步骤S50:若该话务指标数据经检测为异常数据时,根据该话务指标数据所在的业务线的告警内容进行处理后,通知该业务线的负责对象。其中,告警内容根据不同的业务线以及检测的不同的话务指标数据有所不同,例如,可以告警的内容为机票预订的业务线的话务总量出现异常等。后续通知的方式可以是发送邮件通知或者短信等方式告知相关业务负责人。Step S50: If the traffic index data is detected as abnormal data, after processing according to the alarm content of the business line where the traffic index data is located, notify the responsible object of the business line. Among them, the content of the alarm is different according to different business lines and different detected traffic index data. For example, the content of the alarm can be that the total traffic volume of the business line for ticket booking is abnormal. The method of follow-up notification can be to notify the relevant business person in charge by sending an email notification or a short message.
结合上述图1至图4所示实施例,本发明实施例提供的话务指标异常的自动检测方法通过将储存的每个业务线的历史话务指标数据,按照时间维度形成多个历史话务指标数据分片、并生成每个所述历史话务指标数据分片的抖动上升阈值和抖动下降阈值后,根据与待检测的话务指标数据相对应的历史话务指标数据分片的抖动上升阈值和抖动下降阈值,判断该话务指标数据是否为异常数据。进而,该话务指标异常的自动检测方法可以大大降低现有检测方法中使用人工进行检测的人力成本、提高效率,并且实时性和准确性都得到了有效保障,对于后续处理的及时性起到了重大的作用。In combination with the above-mentioned embodiments shown in FIG. 1 to FIG. 4 , the automatic detection method for abnormal traffic indicators provided by the embodiments of the present invention forms multiple historical traffic indicators according to the time dimension by storing the historical traffic indicator data of each business line. After the indicator data is fragmented and the jitter rising threshold and the jitter falling threshold of each said historical traffic index data fragment are generated, according to the jitter rising of the historical traffic index data fragment corresponding to the traffic index data to be detected Threshold and jitter drop threshold, to judge whether the traffic index data is abnormal data. Furthermore, the automatic detection method for abnormal traffic indicators can greatly reduce the labor cost of using manual detection in the existing detection methods, improve efficiency, and the real-time and accuracy are effectively guaranteed, which plays a role in the timeliness of subsequent processing. significant role.
此外,该话务指标异常的自动检测方法中还通过保存待检测的话务指标数据及该待检测的话务指标数据附近的多个话务指标数据形成一个待检测的话务指标数据分片,当待检测的话务指标数据分片中的连续多个抖动值超出第一合理值范围时,对该待检测的话务指标数据分片进行局部趋势校验,计算平均值,并根据该待检测的话务指标数据分片的抖动范围选取一第二合理值范围,仅仅当待检测的话务指标数据超过该第二合理值范围时才视为异常检测成功,因此,针对有大幅度抖动异常的话务指标数据具有明显有效的检测效果,更能有效地减少抖动后回落产生的误告现象。In addition, in the automatic detection method of traffic index abnormality, a segment of traffic index data to be detected is formed by saving the traffic index data to be detected and a plurality of traffic index data near the traffic index data to be detected , when the multiple consecutive jitter values in the traffic index data fragment to be detected exceed the first reasonable value range, the local trend check is performed on the traffic index data fragment to be detected, the average value is calculated, and according to the The jitter range of the traffic index data fragmentation to be detected selects a second reasonable value range, and only when the traffic index data to be detected exceeds the second reasonable value range, it is considered as abnormal detection success. Therefore, for large The traffic index data with abnormal jitter has obvious and effective detection effect, and can more effectively reduce the false alarm phenomenon caused by the drop after jitter.
进一步地,本发明还提供一种话务指标异常的自动检测装置。请参见图5,其示出了本发明的一个实施例的一种话务指标异常的自动检测装置的结构示意图。该话务指标异常的自动检测装置主要用于实现上述图1至图4所示的话务指标异常的自动检测方法。在图5所示的实施例中,所述话务指标异常的自动检测装置包括:数据采集模块1、储存模块2、抖动分析模块3、抖动检测模块4以及告警模块5。Furthermore, the present invention also provides an automatic detection device for traffic index abnormality. Please refer to FIG. 5 , which shows a schematic structural diagram of an automatic detection device for abnormal traffic indicators according to an embodiment of the present invention. The device for automatically detecting abnormal traffic indicators is mainly used to realize the automatic detection method for abnormal traffic indicators shown in FIGS. 1 to 4 above. In the embodiment shown in FIG. 5 , the device for automatically detecting abnormal traffic indicators includes: a data collection module 1 , a storage module 2 , a jitter analysis module 3 , a jitter detection module 4 and an alarm module 5 .
具体来说,数据采集模块1用于采集各个业务线的话务指标数据。Specifically, the data collection module 1 is used to collect traffic index data of each service line.
储存模块2与数据采集模块1相连接,用于储存采集到的各个业务线的话务指标数据。The storage module 2 is connected with the data collection module 1 and used for storing the collected traffic index data of each business line.
抖动分析模块3与储存模块2相连接,用于将储存的每个业务线的历史话务指标数据,按照时间维度形成多个历史话务指标数据分片,并生成每个所述历史话务指标数据分片的抖动上升阈值和抖动下降阈值。The jitter analysis module 3 is connected with the storage module 2, and is used to form a plurality of historical traffic index data fragments according to the time dimension according to the historical traffic index data of each business line stored, and generate each of the historical traffic index data. The jitter up threshold and jitter down threshold for metric data sharding.
具体来说,抖动分析模块3包括:数据选取单元31、数据分片单元32以及阈值计算单元33。数据选取单元31用于选取第一时段内的各个业务线的所有历史话务指标数据。数据分片单元32与数据选取单元31相连接,用于对选取的每个业务线的所有历史话务指标数据按照时间顺序进行均匀地划分,形成多个历史话务指标数据分片。阈值计算单元33与数据分片单元32相连接,用于获取每个历史话务指标数据分片中各个历史话务指标数据之间的抖动值,并生成该历史话务指标数据分片的抖动上升阈值和抖动下降阈值。进一步地,当所述数据分片单元形成所述历史话务指标数据分片中的多个历史话务指标数据呈正态分布时,阈值计算单元33还可以包括:数据剔除单元和数据修正单元。其中,数据剔除单元用于按照第一比例分别剔除该历史话务指标数据分片中多个较大历史话务指标数据和多个较小历史话务指标数据。数据修正单元与数据剔除单元相连接,用于以第二比例补偿该历史话务指标数据分片中保留的最大值和最小值,并将补偿后的该历史话务指标数据分片中的最大值和最小值分别作为该历史话务指标数据分片的抖动上升阈值和抖动下降阈值。Specifically, the jitter analysis module 3 includes: a data selection unit 31 , a data slice unit 32 and a threshold calculation unit 33 . The data selection unit 31 is used to select all historical traffic index data of each service line in the first period. The data fragmentation unit 32 is connected to the data selection unit 31, and is used to evenly divide all historical traffic index data of each selected business line according to time order to form a plurality of historical traffic index data fragments. The threshold calculation unit 33 is connected with the data fragmentation unit 32, and is used to obtain the jitter value between each historical traffic index data in each historical traffic index data fragmentation, and generate the jitter of the historical traffic index data fragmentation Rising threshold and jitter falling threshold. Further, when the multiple historical traffic index data in the historical traffic index data fragment formed by the data fragmentation unit are normally distributed, the threshold calculation unit 33 may also include: a data elimination unit and a data correction unit . Wherein, the data elimination unit is configured to respectively eliminate a plurality of larger historical traffic index data and a plurality of smaller historical traffic index data in the historical traffic index data slice according to a first ratio. The data correction unit is connected with the data elimination unit, and is used for compensating the maximum value and the minimum value retained in the historical traffic index data slice with the second ratio, and the maximum value and minimum value in the compensated historical traffic index data slice. The value and the minimum value are respectively used as the jitter rising threshold and jitter falling threshold of the historical traffic index data slice.
抖动检测模块4分别与抖动分析模块3和数据采集模块1相连接,用于根据与待检测的话务指标数据相对应的历史话务指标数据分片的抖动上升阈值和抖动下降阈值,判断该话务指标数据是否为异常数据。具体来说,抖动检测模块4包括:局部数据保存单元41、抖动值计算单元42、抖动阈值获取单元43、抖动规则获取单元44和检测单元45。The jitter detection module 4 is connected with the jitter analysis module 3 and the data acquisition module 1 respectively, and is used for judging the Whether the traffic index data is abnormal data. Specifically, the shake detection module 4 includes: a local data storage unit 41 , a shake value calculation unit 42 , a shake threshold acquisition unit 43 , a shake rule acquisition unit 44 and a detection unit 45 .
其中,局部数据保存单元41用于保存待检测的话务指标数据及其附近连续的多个话务指标数据,形成一个待检测的话务指标数据分片。Wherein, the local data storage unit 41 is used for storing the traffic index data to be detected and multiple consecutive traffic index data in its vicinity, forming a segment of the traffic index data to be detected.
抖动值计算单元42与局部数据保存单元41相连接,用于获取该待检测的话务指标数据分片内的各个话务指标数据之间的抖动值。The jitter value calculation unit 42 is connected to the local data storage unit 41, and is used to obtain the jitter value between various traffic index data in the traffic index data segment to be detected.
抖动阈值获取单元43与局部数据保存单元41相连接,用于根据该待检测的话务指标数据所属的业务线以及所在的时间段获取相对应的历史话务指标数据分片的抖动上升阈值和抖动下降阈值。The jitter threshold acquisition unit 43 is connected with the local data storage unit 41, and is used to obtain the jitter rising threshold and the jitter threshold of the corresponding historical traffic index data fragmentation according to the business line to which the traffic index data to be detected belongs and the time period. Jitter drop threshold.
抖动规则获取单元44与局部数据保存单元41、抖动值计算单元42以及抖动阈值获取单元43相连接,用于当该待检测的话务指标数据分片中的连续多个抖动值超出第一合理值范围时,对该待检测的话务指标数据分片进行局部趋势校验,计算平均值,并根据该待检测的话务指标数据分片的抖动范围选取一第二合理值范围,其中,第一合理值范围的最大值大于历史话务指标数据分片的抖动上升阈值,最小值小于历史话务指标数据分片的下降阈值。The jitter rule acquisition unit 44 is connected with the local data storage unit 41, the jitter value calculation unit 42 and the jitter threshold acquisition unit 43, and is used for when the continuous multiple jitter values in the traffic index data slice to be detected exceed the first reasonable When the value range, the traffic index data fragmentation to be detected is carried out local trend verification, calculates the average value, and selects a second reasonable value range according to the jitter range of the traffic index data fragmentation to be detected, wherein, The maximum value of the first reasonable value range is greater than the jitter rising threshold of the historical traffic index data slice, and the minimum value is smaller than the falling threshold of the historical traffic index data slice.
检测单元45与抖动规则获取单元44相连接,当该待检测的话务指标数据超过该第二合理值范围,将该待检测的话务指标数据视为异常数据。The detection unit 45 is connected to the jitter rule acquisition unit 44, and when the traffic index data to be detected exceeds the second reasonable value range, the traffic index data to be detected is regarded as abnormal data.
告警模块5与抖动检测模块4相连接,用于当该话务指标数据经检测为异常数据时,根据该话务指标数据所在的业务线的告警内容进行处理后,通知该业务线的负责对象。The alarm module 5 is connected with the jitter detection module 4, and is used for notifying the responsible object of the business line after processing according to the alarm content of the service line where the traffic indicator data is located when the traffic index data is detected as abnormal data .
进一步地,本发明还提供一种终端设备。该终端设备可以是例如服务器、电脑等设备。该终端设备包括:处理器;以及存储器,存储有程序,其中,在所述处理器执行所述程序时,进行以下操作:Further, the present invention also provides a terminal device. The terminal device may be, for example, a server, a computer, and other devices. The terminal device includes: a processor; and a memory storing a program, wherein, when the processor executes the program, the following operations are performed:
采集各个业务线的话务指标数据;Collect the traffic index data of each business line;
储存采集到的各个业务线的话务指标数据;Store the collected traffic index data of each business line;
将储存的每个业务线的历史话务指标数据,按照时间维度形成多个历史话务指标数据分片,并生成每个所述历史话务指标数据分片的抖动上升阈值和抖动下降阈值;Forming a plurality of historical traffic index data fragments according to the time dimension of the stored historical traffic index data of each business line, and generating a jitter rising threshold and a jitter falling threshold for each of the historical traffic index data fragments;
根据与待检测的话务指标数据相对应的历史话务指标数据分片的抖动上升阈值和抖动下降阈值,判断该话务指标数据是否为异常数据;Judging whether the traffic index data is abnormal data according to the jitter rising threshold and the jitter falling threshold of the historical traffic index data fragmentation corresponding to the traffic index data to be detected;
当该话务指标数据经检测为异常数据时,根据该话务指标数据所在的业务线的告警内容进行处理后,通知该业务线的负责对象。When the traffic index data is detected as abnormal data, after processing according to the alarm content of the business line where the traffic index data is located, the responsible object of the business line is notified.
进一步地,本发明还提供一种存储介质。该存储介质可以指硬盘存储芯片等器件,用于存储程序,其中所述程序在被执行时使得终端设备执行上述图1所示的话务指标异常的自动检测方法。具体来说,所述程序在被执行时使得终端设备执行如下步骤:Further, the present invention also provides a storage medium. The storage medium may refer to a device such as a hard disk storage chip, and is used to store a program. When the program is executed, the terminal device executes the automatic detection method for abnormal traffic indicators shown in FIG. 1 above. Specifically, when the program is executed, the terminal device performs the following steps:
所述程序在被执行时使得终端设备进行以下操作:When the program is executed, the terminal device performs the following operations:
采集各个业务线的话务指标数据;Collect the traffic index data of each business line;
储存采集到的各个业务线的话务指标数据;Store the collected traffic index data of each business line;
将储存的每个业务线的历史话务指标数据,按照时间维度形成多个历史话务指标数据分片,并生成每个所述历史话务指标数据分片的抖动上升阈值和抖动下降阈值;Forming a plurality of historical traffic index data fragments according to the time dimension of the stored historical traffic index data of each business line, and generating a jitter rising threshold and a jitter falling threshold for each of the historical traffic index data fragments;
根据与待检测的话务指标数据相对应的历史话务指标数据分片的抖动上升阈值和抖动下降阈值,判断该话务指标数据是否为异常数据;Judging whether the traffic index data is abnormal data according to the jitter rising threshold and the jitter falling threshold of the historical traffic index data fragmentation corresponding to the traffic index data to be detected;
当该话务指标数据经检测为异常数据时,根据该话务指标数据所在的业务线的告警内容进行处理后,通知该业务线的负责对象。When the traffic index data is detected as abnormal data, after processing according to the alarm content of the business line where the traffic index data is located, the responsible object of the business line is notified.
综上所述,本发明实施例提供的话务指标异常的自动检测方法和话务指标异常的自动检测装置通过将储存的每个业务线的历史话务指标数据,按照时间维度形成多个历史话务指标数据分片、并生成每个所述历史话务指标数据分片的抖动上升阈值和抖动下降阈值后,根据与待检测的话务指标数据相对应的历史话务指标数据分片的抖动上升阈值和抖动下降阈值,判断该话务指标数据是否为异常数据。进而,该话务指标异常的自动检测方法可以大大降低现有检测方法中使用人工进行检测的人力成本、提高效率,并且实时性和准确性都得到了有效保障,对于后续处理的及时性起到了重大的作用。In summary, the embodiment of the present invention provides an automatic detection method for abnormal traffic indicators and an automatic detection device for abnormal traffic indicators by forming multiple historical traffic indicators according to the time dimension by storing the historical traffic indicator data of each business line. Traffic index data fragmentation, and after generating the jitter rising threshold and the jitter falling threshold of each described historical traffic index data fragmentation, according to the historical traffic index data fragmentation corresponding to the traffic index data to be detected The jitter rising threshold and the jitter falling threshold judge whether the traffic index data is abnormal data. Furthermore, the automatic detection method for abnormal traffic indicators can greatly reduce the labor cost of using manual detection in the existing detection methods, improve efficiency, and the real-time and accuracy are effectively guaranteed, which plays a role in the timeliness of subsequent processing. significant role.
此外,该话务指标异常的自动检测方法和话务指标异常的自动检测装置还通过保存待检测的话务指标数据及该待检测的话务指标数据附近的多个话务指标数据形成一个待检测的话务指标数据分片,当待检测的话务指标数据分片中的连续多个抖动值超出第一合理值范围时,对该待检测的话务指标数据分片进行局部趋势校验,计算平均值,并根据该待检测的话务指标数据分片的抖动范围选取一第二合理值范围,仅仅当待检测的话务指标数据超过该第二合理值范围时才视为异常检测成功,因此,针对有大幅度抖动异常的话务指标数据具有明显有效的检测效果,更能有效地减少抖动后回落产生的误告现象。In addition, the automatic detection method for traffic index abnormality and the automatic detection device for traffic index abnormality also form a waiting list by saving the traffic index data to be detected and a plurality of traffic index data near the traffic index data to be detected. The detected traffic index data fragmentation, when the continuous multiple jitter values in the traffic index data fragments to be detected exceed the first reasonable value range, the local trend verification is performed on the traffic index data fragments to be detected , calculate the average value, and select a second reasonable value range according to the jitter range of the traffic index data fragmentation to be detected, and only when the traffic index data to be detected exceeds the second reasonable value range, it is regarded as abnormal detection Success, therefore, it has an obvious and effective detection effect on the traffic index data with large jitter abnormalities, and can more effectively reduce the false alarm phenomenon caused by the drop after jitter.
虽然本发明已以可选实施例揭示如上,然而其并非用以限定本发明。本发明所属技术领域的技术人员,在不脱离本发明的精神和范围内,当可作各种的更动与修改。因此,本发明的保护范围当视权利要求书所界定的范围为准。Although the present invention has been disclosed above with optional embodiments, they are not intended to limit the present invention. Those skilled in the art to which the present invention belongs can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be determined by the scope defined in the claims.
Claims (15)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710494484.3A CN107094207B (en) | 2017-06-26 | 2017-06-26 | A kind of automatic testing method and its automatic detection device of traffic indicator exception |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710494484.3A CN107094207B (en) | 2017-06-26 | 2017-06-26 | A kind of automatic testing method and its automatic detection device of traffic indicator exception |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN107094207A CN107094207A (en) | 2017-08-25 |
| CN107094207B true CN107094207B (en) | 2019-10-01 |
Family
ID=59640887
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201710494484.3A Active CN107094207B (en) | 2017-06-26 | 2017-06-26 | A kind of automatic testing method and its automatic detection device of traffic indicator exception |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN107094207B (en) |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107766533B (en) * | 2017-10-27 | 2020-07-28 | 携程旅游网络技术(上海)有限公司 | Automatic detection method and system, storage medium, and electronic device for abnormal traffic volume |
| CN109726068A (en) * | 2017-10-31 | 2019-05-07 | 北京国双科技有限公司 | A kind of data detection method and device |
| CN108664603B (en) * | 2018-05-09 | 2022-06-03 | 北京奇艺世纪科技有限公司 | Method and device for repairing abnormal aggregation value of time sequence data |
| CN108881646B (en) * | 2018-05-30 | 2021-04-02 | 平安科技(深圳)有限公司 | Task tracking method, device, equipment and storage medium of call center |
| CN109274842B (en) * | 2018-09-18 | 2020-08-07 | 阿里巴巴集团控股有限公司 | Method, device and equipment for positioning key factors of customer service level fluctuation |
| CN112152868B (en) * | 2019-06-28 | 2022-05-06 | 北京金山云网络技术有限公司 | Network fault detection method and device, electronic equipment and storage medium |
| CN112152869B (en) * | 2019-06-28 | 2022-05-06 | 北京金山云网络技术有限公司 | Network detection method, device, electronic device and storage medium |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105162994A (en) * | 2015-09-24 | 2015-12-16 | 携程计算机技术(上海)有限公司 | Method and system for detecting traffic fault of call center and server |
| CN106357939A (en) * | 2016-09-30 | 2017-01-25 | 携程旅游信息技术(上海)有限公司 | Call traffic monitoring method and monitoring system |
| CN106856442A (en) * | 2015-12-09 | 2017-06-16 | 北京神州泰岳软件股份有限公司 | A kind of performance indications monitoring method and device |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8503663B2 (en) * | 2005-06-30 | 2013-08-06 | Interactive Intelligence, Inc. | System and method for agent queue activation in a contact center |
| US8150022B2 (en) * | 2007-12-19 | 2012-04-03 | Dell Products L.P. | Call center queue management |
-
2017
- 2017-06-26 CN CN201710494484.3A patent/CN107094207B/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105162994A (en) * | 2015-09-24 | 2015-12-16 | 携程计算机技术(上海)有限公司 | Method and system for detecting traffic fault of call center and server |
| CN106856442A (en) * | 2015-12-09 | 2017-06-16 | 北京神州泰岳软件股份有限公司 | A kind of performance indications monitoring method and device |
| CN106357939A (en) * | 2016-09-30 | 2017-01-25 | 携程旅游信息技术(上海)有限公司 | Call traffic monitoring method and monitoring system |
Also Published As
| Publication number | Publication date |
|---|---|
| CN107094207A (en) | 2017-08-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN107094207B (en) | A kind of automatic testing method and its automatic detection device of traffic indicator exception | |
| US9070121B2 (en) | Approach for prioritizing network alerts | |
| CN107766533B (en) | Automatic detection method and system, storage medium, and electronic device for abnormal traffic volume | |
| CN103392176B (en) | For predicting the apparatus and method that network event spreads unchecked | |
| CN107528749A (en) | Website Usability detection method, apparatus and system based on cloud protection daily record | |
| CN107231493B (en) | Automatic alarm method and its device, storage medium, the electronic equipment of call center | |
| CN104618948B (en) | The method and system of transmitting file in a kind of monitoring | |
| CN108492150B (en) | Method and system for determining entity heat degree | |
| CN107465575A (en) | The monitoring method and system of a kind of cluster | |
| CN105162994A (en) | Method and system for detecting traffic fault of call center and server | |
| CN110647447B (en) | Abnormal instance detection method, device, equipment and medium for distributed system | |
| CN116049146B (en) | Database fault processing method, device, equipment and storage medium | |
| WO2018125628A1 (en) | A network monitor and method for event based prediction of radio network outages and their root cause | |
| CN104917836A (en) | Method and device for monitoring and analyzing availability of computing equipment based on cluster | |
| CN108599977A (en) | System and method based on statistical method monitoring system availability | |
| CN110662024A (en) | Video quality diagnosis method and device based on multiple frames and electronic equipment | |
| CN106357939A (en) | Call traffic monitoring method and monitoring system | |
| CN104991939A (en) | Transaction data monitoring method and system | |
| CN111062503B (en) | A method, system, terminal and storage medium for power grid monitoring and alarm processing | |
| CN106294066A (en) | Alert data processing method and device | |
| CN114095394A (en) | Network node fault detection method and device, electronic equipment and storage medium | |
| CN110633165B (en) | Fault processing method, device, system server and computer readable storage medium | |
| CN109462510B (en) | A method and device for quality assessment of CDN nodes | |
| CN119127559A (en) | Abnormal positioning method, device, electronic equipment and storage medium | |
| CN109388546B (en) | Method, device and system for processing faults of application program |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |