[go: up one dir, main page]

CN107077201A - 用于多模式会话交互中的口头语言理解的眼睛注视 - Google Patents

用于多模式会话交互中的口头语言理解的眼睛注视 Download PDF

Info

Publication number
CN107077201A
CN107077201A CN201580050763.XA CN201580050763A CN107077201A CN 107077201 A CN107077201 A CN 107077201A CN 201580050763 A CN201580050763 A CN 201580050763A CN 107077201 A CN107077201 A CN 107077201A
Authority
CN
China
Prior art keywords
visual element
user
input
attentively
computer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580050763.XA
Other languages
English (en)
Other versions
CN107077201B (zh
Inventor
A·普罗科菲瓦
F·A·塞利基尔马兹
D·Z·哈卡尼-图尔
L·赫科
M·斯拉尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microsoft Technology Licensing LLC
Original Assignee
Microsoft Technology Licensing LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microsoft Technology Licensing LLC filed Critical Microsoft Technology Licensing LLC
Publication of CN107077201A publication Critical patent/CN107077201A/zh
Application granted granted Critical
Publication of CN107077201B publication Critical patent/CN107077201B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0093Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/012Head tracking input arrangements
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/013Eye tracking input arrangements
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/167Audio in a user interface, e.g. using voice commands for navigating, audio feedback
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/174Facial expression recognition
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/20Movements or behaviour, e.g. gesture recognition
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/08Speech classification or search
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L17/00Speaker identification or verification techniques
    • G10L17/22Interactive procedures; Man-machine interfaces
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/038Indexing scheme relating to G06F3/038
    • G06F2203/0381Multimodal input, i.e. interface arrangements enabling the user to issue commands by simultaneous use of input devices of different nature, e.g. voice plus gesture on digitizer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Computational Linguistics (AREA)
  • Optics & Photonics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Social Psychology (AREA)
  • User Interface Of Digital Computer (AREA)
  • Machine Translation (AREA)
  • Position Input By Displaying (AREA)

Abstract

描述了改进对与计算机化会话系统相关联的视觉上下文中的视觉元素的引用的理解和/或解析的准确性。本文描述的技术利用注视输入与姿势和/或语音输入来改进计算机化会话系统中的口头语言理解。通过改进系统能够关于视觉上下文中的视觉元素来解析引用(或解释用户的意图)的准确性,利用注视输入和语音输入改善了会话系统中的口头语言理解。在至少一个示例中,本文中的技术描述了跟踪注视以生成注视输入,标识语音输入以及从该用户输入提取注视特征和词汇特征。至少部分地基于该注视特征和该词汇特征,可以解析被指向视觉上下文中的视觉元素的用户话语。

Description

用于多模式会话交互中的口头语言理解的眼睛注视
背景技术
当人类彼此交谈时,他们自然地将例如语音、姿势、面部/头部姿态和表情等来自不同模态的信息进行组合。随着计算机化设备的激增,人类具有与计算机化设备相关联的显示器交互的更多机会。口头对话系统或会话系统使得人类用户能够通过诸如语音和/或姿态的各种通信模式与计算系统通信。当前会话系统基于各种通信模式来标识用户与会话系统交互的意图。在一些示例中,会话系统通过计算用户的话语以及项目的词汇描述与屏幕上相关联的文本之间的相似性来解析用户话语中的引用表达。在其他示例中,屏幕上对象标识对于理解用户的意图是必要的,因为用户的话语关于用户可以引用的屏幕上的对象是不清楚的。因此,当前技术利用诸如语音和姿势的多模式输入来确定用户在屏幕上引用哪些对象。
发明内容
本文描述了用于理解和解析对与会话计算系统相关联的视觉上下文中对视觉元素的引用的技术。本文中的技术描述至少部分地基于从用户输入(例如,注视、语音等)提取的眼睛注视特征和词汇特征来检测注视、识别语音、以及解释关于视觉上下文中的视觉元素的用户的意图。
在至少一个示例中,本文描述的技术包括:标识诸如web浏览器、应用界面或一些其他会话系统的视觉上下文中可用于用户交互的视觉元素。另外,本文描述的技术包括:接收与视觉上下文中的一个或多个视觉元素相关联的用户输入。在至少一个示例中,用户输入可以包括从语音输入得到的且引用预期特定视觉元素的用户话语以及与视觉元素中的至少一些视觉元素相关联的用户注视输入。本文描述的技术还包括:至少部分地基于用户话语和视觉元素来提取词汇特征,并且至少部分地基于用户注视输入来提取视觉元素和注视特征。此外,本文描述的技术包括:至少部分地基于词汇特征和注视特征来确定与用户输入相关联的一个或多个视觉元素的特定视觉元素。在一些示例中,确定特定视觉元素还可以至少部分地基于热图特征。
提供本发明内容以便以简化形式介绍将在以下具体实施方式中进一步描述的概念的选择。本发明内容不旨在标识所要求保护的主题的关键特征或必要特征,也不旨在用于限制所要求保护的主题的范围。
附图说明
参考附图来描述具体实施方式。在附图中,附图标记的最左边的数字标识附图标记首次出现的附图。不同附图中相同的附图标记指示相似或完全相同的项目。
图1示出了用于解析对与计算机化会话系统相关联的视觉上下文中的视觉元素的引用的示例性环境。
图2示出了包括各种设备和组件的示例性操作环境,其可以被实现用于解析对与计算机化会话系统相关联的视觉上下文中的视觉元素的引用。
图3示出了可以实现用于解析对与计算机化会话系统相关联的视觉上下文中的视觉元素的引用的示例性操作环境。
图4示出了用于解析对与计算机化会话系统相关联的视觉上下文中的视觉元素的引用的示例性处理。
图5示出了用于至少部分地基于词汇特征和注视特征来确定在用户话语中引用的特定视觉元素的示例性处理。
图6示出了用于过滤和标识与计算机化会话系统相关联的视觉上下文中所预期的视觉元素的处理。
具体实施方式
本文描述了用于提高对与会话计算系统相关联的视觉上下文中的视觉元素的引用的理解和解析的准确性的技术。随着在显示器上呈现信息的计算系统的可用性和使用的增加,用户越来越多地寻求机会与系统说话、引用显示器上的视觉元素,以执行与视觉元素相关联的任务。基于用户注视与姿势和/或语音输入的用户注视跟踪和注视输入利用,可以通过提升系统能够理解并解析对视觉上下文中的视觉元素的引用的准确性来改进会话系统中的口头语言理解。
本文描述的技术将注视输入与语音输入组合以更准确地标识用户在显示器上引用的或在另一视觉上下文中呈现的视觉元素。在至少一个示例中,本文描述的技术至少部分地基于与注视和/或语音输入相关联的特征来检测注视、识别语音、并且解释关于视觉上下文中的视觉元素的用户意图。用注视输入补充语音输入的多模式通信降低了标识作为用户话语的预期目标的视觉元素的错误率。也就是说,知道用户正在看和/或关注什么可以通过提升可以解析用户话语中的引用表达的准确性来改进口头语言理解。组合语音和注视输入可以简化用于确定当用户与会话计算系统交互时用户意思是什么和/或正在引用什么的处理。
示意性环境
下面描述的环境仅仅是一个示例,不旨在将下面描述的系统的应用限制到任何一个特定的操作环境。在不脱离所要求保护的主题的精神和范围的情况下,可以使用其他环境。本文描述的各种类型的处理可以在任何数量的环境中实现,包括但不限于独立计算系统、网络环境(例如,局域网或广域网)、对等网络环境、分布式计算(例如,云计算)环境等。
图1示出了用于解析对视觉上下文中的视觉元素的引用的示例性环境100。环境100包括经由一个或多个用户设备104与视觉上下文交互的一个或多个用户102。视觉上下文可以包括向用户呈现信息并且被配置为接收基于用户在呈现的信息中所看到的来指引动作和/或选择的用户输入的任何环境。视觉上下文可以包括web浏览器、会话交互系统、人类机器人和/或其他人类/机器交互系统等。在至少一个示例中,web浏览器可以是自由形式的web浏览器,诸如使用户能够浏览任何网页的web浏览器(例如,Internet 等)。会话交互系统可以是可以经由用户界面向用户102呈现表示电影、餐馆、时间等的视觉元素的应用。
一个或多个用户设备104可以包括例如台式计算机、膝上型计算机、智能电话、视频游戏控制台、电视或下面参照图2描述的用户设备104中的任何一个。一个或更多用户设备104可以与跟踪组件106以及在至少一些示例中的显示器108通信。在至少一个示例中,跟踪组件106和/或显示器108可以集成到一个或更多用户设备104中。在其他示例中,跟踪组件106和/或显示器108可以是连接到一个或多个用户设备104的分离的设备。在图1中,显示器108被集成到用户设备104中,并且跟踪组件106独立于用户设备104。跟踪组件106可以包括可以用于跟踪眼睛注视、头部姿态、身体移动等的任何传感器、照相机、设备、系统等。例如,跟踪组件106可以包括Tobii Rex眼睛跟踪系统、Sentry眼睛跟踪系统、Microsoft技术等。
在至少一个示例中,显示器108可以表现用户界面,并且用户界面可以在诸如web浏览器或会话交互系统的视觉上下文中向用户102呈现一个或多个视觉元素,如上所述。视觉元素可以包括可以由会话计算系统执行的与任务和/或动作(诸如浏览、搜索、过滤等)相关联的文本、对象和/或项目。视觉元素可以经由显示器108呈现给用户102,以用于接收指引会话计算系统执行与视觉元素相关联的任务和/或动作的用户交互。在一些示例中,视觉上下文可以包括web浏览器,web浏览器包括各种形式的超链接、按钮、文本框等。超链接、按钮、文本框等每个均可以代表不同的视觉元素。在其他示例中,视觉上下文可以包括诸如应用界面的会话交互系统,并且可以呈现存储于系统中的项目集合,诸如电影、书籍、图像、餐馆等。代表电影、书、图像、餐馆等的文本和/或图像每个均可以代表不同的视觉元素。在其他示例中,视觉上下文可以包括人类机器人和/或其他人类/机器交互系统。在这样的示例中,显示器108不能作为系统的一部分被包括,并且视觉元素可以包括实体书、视频、图像等。视觉元素可以是动态的和/或情景的,并且可以根据视觉上下文和用户102与视觉元素的交互而改变。
如上所述,一个或多个用户设备104可以与计算机化会话系统的视觉上下文相关联。一个或多个用户102可以经由各种通信模式(诸如注视、语音、姿势、语音韵律、面部表情等)与视觉上下文交互。用户输入可以包括语音输入110、注视输入112、姿势输入等中的一个或多个。在一些示例中,至少两个用户102可以与视觉上下文交互。可以与一个或多个用户设备104相关联以检测和/或接收语音输入110的麦克风和组件可以检测由第一用户说出的用户语音输入110和由第二用户说出的语音输入110的差异。检测语音输入110之间的差异可以使一个或多个用户设备能够将第一用户的注视输入112与第一用户的语音输入110相匹配,并且能够将第一用户的输入与第二用户的注视输入112和第二用户的语音输入110相区分。
用户话语可以包括从语音输入110转录的输入。在一些示例中,用户话语可以包括对视觉上下文中的一个或多个视觉元素的引用。在用户话语中引用的一个或多个视觉元素可以表示用户102打算与之交互或指引其执行对应动作或任务的视觉元素。用户102可以与视觉上下文交互而不受可以构成用户话语的词汇、语法和/或意图选择的约束。在一些示例中,用户话语可以包括基于转录错误和/或可能导致错误的特定语音模式的错误。
用户话语可以包括用以指引会话系统执行与视觉上下文中呈现的视觉元素相关联的任务的命令。用户话语可以包括用于执行诸如滚动、跟随显示器上的链接、填充表格中的空格等请求的用户动作或用户选择的命令。在一些示例中,引用可以包括通用请求,独立于在视觉上下文中呈现给用户的任何视觉元素。例如,用户102可以要求计算机化会话系统“为我显示附近的电影”或“带我去鞋那里”。在其他示例中,引用可以包括引用在视觉上下文中呈现给用户102的视觉元素的命令。例如,用户102可以查看从西雅图WA(SEA)飞往毛伊岛HI(OGG)的多个离开航班选项,并且可以标识要购买的航班。用户102可以说出“将此航班添加到我的购物车”的词语,如图1中的语音输入110所示。如上所述,可以从语音输入110转录用户话语。
用户话语“将此航班添加到我的购物车”可能是不明确的,使得计算机化会话系统可能不知道用户102引用向用户102呈现的多个航班中的哪个航班。计算机化会话系统可以通过考虑在用户102做出用户话语之前、之中或之后不久用户102正在看哪个航班来更容易地标识用户话语中所引用的航班。
在至少一个示例中,用户话语可以包括如上所述的错误。在一些示例中,用户话语可以包括来自语音输入110的错误转录。用户102可能已经说出了词语“将此航班(flight)添加到我的购物车”,而转录的用户话语可能包括词语“将此战斗(fight)添加到我的购物车”。在其他示例中,用户话语可以反映引起转录错误的特定语音模式。用户102可能难以发出词“orange”并且可能想要购买到加利福尼亚州奥兰治县(Orange County)的航班。用户102可能希望说出“将到奥兰治县的航班添加到我的购物车”的词语,但是由于用户102错误地将“orange”发音为“onge”,则用户话语包括错误。然而,在转录错误或导致转录错误的语音模式两者的示例中,计算机化会话系统可以利用注视输入112来解决载有错误的用户话语。也就是说,通过确定在用户做出用户话语之前、之中或之后不久用户102观看和/或固定他或她的注视在其上的航班,计算机化会话系统可以标识用户102期望购买的航班。
注视可以表示在语音输入110期间用户的眼睛面向的方向。跟踪组件106可以跟踪用户注视以生成注视输入112。注视输入112可以包括眼睛注视输入、头部姿态输入和/或鼻子指向输入。头部姿态输入可以包括在语音输入110期间用户的头部姿态的配置。鼻子指向可以包括在语音输入110期间用户的鼻子指向的方向。头部姿态输入和鼻子指向输入各自均可以用作眼睛注视输入的代理。取决于跟踪组件106的范围,可以使用替代的和/或附加的面部取向特性(例如,头部姿态和/或鼻子指向)。在至少一个示例中,跟踪组件106可以在距离用户102的面部的预定距离内,因此,跟踪组件106可以跟踪用户102的眼睛注视用于注视输入112。在替代示例中,跟踪组件可以超出距离用户102的面部的预定距离,并且作为结果,跟踪组件106可以跟踪头部姿态或鼻子指向作为用于用户102注视的代理。
跟踪组件106可以跟踪用户102的眼睛的移动以生成用户102的注视输入112。至少部分地基于从语音输入110和注视输入112得到的用户话语,计算机化会话系统可以标识用户102期望在语音输入110中与哪个视觉元素交互。利用语音输入110和注视输入112的组合可以改进其中计算机化会话系统可以标识在语音输入110中引用的预期视觉元素的准确性。
图2示出了示例性操作环境200,其包括可以被实现为用于解析对视觉上下文中的视觉元素的引用的各种设备和组件。在至少一个示例中,可以远程地(例如,通过服务器、云等)执行本文所描述的技术。在一些示例中,可以如下所述的在计算设备上本地执行本文描述的技术。更具体地,示例性操作环境200可以包括服务提供者202、一个或多个网络204、一个或多个用户102以及与一个或多个用户102相关联的一个或多个用户设备104,如图1所示。
如图所示,服务提供者202可以包括一个或多个服务器和其他机器206和/或一个或多个用户设备104,其中任何一个可以包括一个或多个处理单元208和计算机可读介质210。在各种示例中,服务提供者202可以降低解析对与计算机化会话系统相关联的视觉上下文中的视觉元素的引用的错误率。
在一些示例中,网络204可以是本领域中已知的任何类型的网络,诸如互联网。此外,一个或多个用户设备104可以以任何方式通信地耦合到网络204,诸如通过全球或本地有线或无线连接(例如,局域网(LAN)、内联网等)。网络204可以促进服务器和其他机器206和/或与一个或多个用户102相关联的一个或多个用户设备104之间的通信。
在一些示例中,一个或多个用户102可以与对应的用户设备104交互以执行与一个或多个用户设备104相关联的各种功能,用户设备104可以包括一个或多个处理单元208、计算机可读介质210、跟踪组件106和显示器108。
一个或多个用户设备104可以表示各种各样的设备类型,并且不限于任何特定类型的设备。用户设备104的示例可以包括但不限于固定计算机、移动计算机、嵌入式计算机或其组合。示例性固定计算机可以包括台式计算机、工作站、个人计算机、瘦客户端、终端、游戏控制台、个人视频录像机(PVR)、机顶盒等。示例性移动计算机可以包括膝上型计算机、平板计算机、可佩戴计算机、植入式计算设备、电信设备、汽车计算机、个人数据助理(PDA)、便携式游戏设备、媒体播放器、照相机等。示例性嵌入式计算机可以包括具有网络功能的电视、用于包括在计算设备中的集成组件、电器、微控制器、数字信号处理器或任何其他类型的处理设备等。
服务提供者202可以是可以利用来自通信平台(包括在线通信平台)的特征集合的任何实体、服务器、平台等。此外,如图所示,服务提供者202可以包括一个或多个服务器和/或其他机器206,其可以包括一个或多个处理单元208和诸如存储器的计算机可读介质210。一个或多个服务器和/或其他机器206可以包括如下所述的设备。
示例支持以下场景:可以被包括在一个或多个服务器和/或其他机器206中的设备可以包括在群集或其他分组配置中操作以共享资源、平衡负载、提高性能、提供故障切换支持或冗余、或用于其他目的的一个或多个计算设备。被包括在一个或多个服务器和/或其他机器206中的设备可以属于各种类别或级别的设备,诸如传统的服务器类型设备、台式计算机类型设备、移动设备、专用型装置、嵌入型装置和/或可佩戴型装置。因此,尽管被示为台式计算机,但是设备可以包括各种各样的设备类型,并且不限于特定类型的设备。被包括在一个或多个服务器和/或其他机器206中的设备可以表示但不限于台式计算机、服务器计算机、web服务器计算机、个人计算机、移动计算机、膝上型计算机、平板计算机计算机、可穿戴计算机、植入计算设备、电信设备、汽车计算机、具有网络能力的电视、瘦客户端、终端、个人数字助理(PDA)、游戏控制台、游戏设备、工作站、媒体播放器、个人视频记录器(PVR)、机顶盒、照相机、用于包括在计算设备、电器或任何其他种类的计算设备中的集成组件。
可以被包括在一个或多个服务器和/或其他机器206中的设备可以包括具有诸如经由总线(例如其在一些情况下可以包括系统总线、数据总线、地址总线、PCI总线、Mini-PCI总线和任何种类的本地、外围和/或独立总线中的一个或多个)来可操作地连接到计算机可读介质210的一个或多个处理单元208的任何类型的计算设备。存储于计算机可读介质210上的可执行指令可以包括例如显示模块212、接收模块214、提取模块216、分析模块218以及可由处理单元208加载和执行的其他模块、程序或应用程序。替代地或另外地,本文所描述的功能可至少部分地由诸如加速器的一个或多个硬件逻辑组件来执行。例如但非限制,可以使用的示意类型硬件逻辑组件包括现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、片上系统系统(SOC)、复杂可编程逻辑器件(CPLD)等。例如,加速器可以表示混合设备,诸如来自ZYLEX或ALTERA的混合设备,其包括嵌入在FPGA结构中的CPU路线。
可以被包括在一个或多个服务器和/或其他机器206中的设备还可以包括一个或多个输入/输出(I/O)接口,一个或多个输入/输出(I/O)接口耦合到总线以允许设备与诸如用户输入外围设备(例如,键盘、鼠标、笔、游戏控制器、语音输入设备、触摸输入设备、姿势输入设备、眼睛和/或身体跟踪设备等)和/或输出外围设备(例如,显示器、打印机、音频扬声器、触觉输出等)进行通信。一个或多个输入/输出(I/O)接口可以允许用户设备104与跟踪组件106和/或显示器108进行通信。可以被包括在一个或多个服务器和/或其他机器206中的设备还可以包括一个或多个网络接口,一个或多个网络接口耦合到总线以能够实现计算设备和诸如一个或多个用户设备104的其他联网设备之间的通信。这样的网络接口可以包括一个或多个网络接口控制器(NIC)或用于通过网络发送和接收通信的其他类型的收发器设备。为了简单起见,从所示的设备中省略了一些组件。
用户设备104还可以包括一个或多个输入/输出(I/O)接口,一个或多个输入/输出(I/O)接口耦合到总线以允许用户设备104与诸如用户输入外围设备(例如,键盘、鼠标、笔、游戏控制器、语音输入设备、触摸输入设备、姿势输入设备、眼睛和/或身体跟踪设备等)和/或输出外围设备(例如,打印机、音频扬声器、触觉输出等)的其他设备进行通信。一个或多个输入/输出(I/O)接口可以允许用户设备104与跟踪组件106和/或显示器108通信。
处理单元208可以代表例如中央处理单元(CPU)型处理单元、GPU型处理单元、现场可编程门阵列(FPGA)、另一类数字信号处理器(DSP)、或在一些情况下可由CPU驱动的其它硬件逻辑组件。例如但非限制,可以使用的示意类型的硬件逻辑组件包括专用集成电路(ASIC)、专用标准产品(ASSP)、片上系统系统(SOC)、复杂可编程逻辑设备(CPLD)等。在各种示例中,处理单元208可以执行一个或多个模块和/或过程以使一个或多个用户设备104执行各种功能,如以上所阐述并在下面的公开中进一步详细说明的。另外,处理单元208中的每一个可以拥有其自己的本地存储器,其还可以存储程序模块、程序数据和/或一个或多个操作系统。
在至少一个示例中,一个或多个用户设备104中的计算机可读介质210可以包括促进用户设备104和用户102之间的交互的组件。例如,计算机可读介质210可以至少包括显示模块212、接收模块214、提取模块216和分析模块218,其可以经由至少一个处理单元208被实现为计算机可读指令、各种数据结构等来配置设备以减少在解析对与计算机化会话系统相关联的视觉上下文中的视觉元素的引用的错误率。
在至少一个示例中,显示模块212可以被配置为与显示器108通信并且使得在显示器108上呈现视觉元素(例如,文本、对象、项目等)。如上所述,显示器108可以表示用户界面,并且显示模块212可以与显示器通信以在与web浏览器或会话交互系统相关联的用户界面中向用户102呈现一个或多个视觉元素。视觉元素可以包括与可以由会话计算系统执行的任务和/或动作(诸如浏览、搜索、过滤等)相关联的文本、对象和/或项目。显示模块212可以经由显示器108向用户102呈现视觉元素,用于接收指引会话计算系统执行与视觉元素相关联的任务和/或动作的用户交互,如上所述。
在至少一个示例中,接收模块214可以被配置为从一个或多个用户102接收输入,诸如语音输入110、姿势、注视输入112、身体定位等,如下所述。接收模块214还可以被配置为将语音输入110转录成用户话语以供提取模块216处理。提取模块216可以被配置为至少部分地基于用户输入和视觉上下文中的视觉元素来提取特征。例如,提取模块216可以提取词汇相似性特征、语音匹配特征、注视特征和/或热图特征。关于提取模块216和特征的附加细节在下面描述。分析模块218可以被配置为至少部分地基于所提取的特征来解析对视觉上下文中的视觉元素的引用,如下所述。
根据用户设备104和/或服务器和/或其他机器206的确切配置和类型,计算机可读介质210可以包括计算机存储介质和/或通信介质。计算机存储介质可以包括易失性存储器、非易失性存储器和/或在任何方法或技术中实现以存储诸如计算机可读指令、数据结构、程序模块或其它数据的信息的其他持久性和/或辅助计算机存储介质、可移除和不可移除计算机存储介质。计算机存储器是计算机存储介质的示例。因此,计算机存储介质包括在作为设备的一部分或设备外部的设备和/或硬件组件中的有形和/或物理形式的介质,包括但不限于随机存取存储器(RAM)、静态随机存取存储器存储器(SRAM)、动态随机存取存储器(DRAM)、相变存储器(PRAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM)、闪存、光盘只读存储器(CD-ROM)、数字通用盘(DVD)、光卡或其他光学存储介质、微型硬盘驱动器、存储卡、磁带盒、磁带、磁盘存储、磁卡或其他磁性存储设备或介质、固态存储设备、存储阵列、网络附接存储、存储区域网络、托管计算机存储或可以用于存储和维护用于由计算设备访问的信息的任何其他存储存储器、存储设备和/或存储介质。
相比之下,通信介质可以在诸如载波的调制数据信号或其他传输机制中体现计算机可读指令、数据结构、程序模块或其他数据。如本文所定义的计算机存储介质不包括通信介质。
图3示出了可以被实现为用于解析对视觉上下文中的视觉元素的引用的示例性操作环境300。在至少一个示例中,操作环境300可以使得用户能够以自由形式web浏览视觉上下文、应用界面等来执行常见任务,诸如购买飞机票、查找餐馆、在线购物等。如上以下所述,示例性操作环境300利用接收模块214、提取模块216和分析模块218来改进口头语言理解可用于标识与计算机化会话系统相关联的视觉上下文中的视觉元素的准确性。显示模块212在图3中未示出。
如上所述,接收模块214可以被配置为从一个或多个用户102接收输入,诸如口头语音输入302(例如语音输入110)、姿势、注视输入304(例如注视输入112)、身体定位等。接收模块214可以经由麦克风或被配置为接收语音输入302的与用户设备104相关联的一些其他设备来接收语音输入302。在至少一个示例中,语音输入302可以包括对用户设备104的显示器108上的视觉元素的引用。引用可以显式地标识(例如,直接引用)网页上的项目,或者引用可以隐式地标识(例如,间接引用)网页上的项目。例如,语音输入302可以通过在语音输入302中包括链接、项目、电影等的全部或部分文本来直接引用链接、项目、电影等。在其他示例中,语音输入302可以包括诸如“为我显示红鞋”、“我想购买那个”或“顶部航班看起来不错”的隐式引用。语音输入302可以不受对词汇、语法、和/或可以构成语音输入的意图选择的限制。接收模块214可以被配置为通过转录语音输入302来生成用户话语。用户话语可以被发送到提取模块216用于处理。
另外,接收模块214可以经由跟踪组件106来接收注视输入304。在至少一个示例中,跟踪组件106跟踪用户102的眼睛注视固定。在一些示例中,如上所述,跟踪组件106可以跟踪用户102的头部姿态和/或用户的鼻子指向的方向作为注视固定的代理。跟踪组件106可以向接收模块214提供注视输入304。
接收模块214可以将输入数据306输出到提取模块216。输入数据306可以包括被转录为用户话语的语音输入302、注视输入304和/或其他形式的用户102输入。提取模块216可以被配置为至少部分地基于输入数据306来提取特征。提取模块216可以提取词汇特征、注视特征、热图特征等。
提取模块216可以提取一个或多个词汇特征。词汇相似性描述使用词和相关联的语义来确定两个或更多个词集合中的词之间的相似性的过程。词汇特征可以确定构成与视觉上下文中的一个或多个视觉元素相关联的文本的词与语音输入302中的词之间的词汇相似性。提取模块216可以利用自动语音识别(“ASR”)模型和/通用语言模型来计算词汇特征。提取模块216可以根据视觉项目的视觉上下文来利用各种模型和/或技术。例如,如果视觉上下文包括web浏览器,则提取模块216可以利用解析器来解析与显示器108上的视觉元素相关联的链接。
词汇特征的非限制性示例包括:与视觉上下文中的一个或多个视觉元素相关联的文本的术语向量与语音输入302之间的余弦相似性、与视觉上下文中的一个或多个视觉元素相关联的文本和语音输入302的最长公共子序列中的字符的数目、指示与视觉上下文中的一个或多个视觉元素相关联的文本是否被包括在语音输入302中的二元(binary)特征、以及在该文本被包括在语音输入302中的情况下与视觉上下文中的一个或多个视觉元素相关联的文本的长度。词汇特征可以在短语、词和/或字符级别计算。
提取模块216还可以提取一个或多个注视特征。注视特征可以表示在不同时间的视觉元素与注视输入304的固定点之间的距离。注视特征可以是基于时间的注视特征和/或基于距离的注视特征。基于距离的特征和基于时间的特征可以一起使用。
为了确定注视特征,提取模块216可以标识与链接(例如,在web浏览器视觉上下文中)和/或项目(例如,在会话系统视觉上下文中)相关联的文本和/或图片,并计算文本和/或图像周围的距离或与文本和/或图像相关联的区域。所计算的与文本和/或图像相关联的距离或区域可以表示边界框并且可以用于注视特征提取。注视特征可以考虑边界框的大小和/或表示用户102的注视有多频繁固定于边界框上或固定于边界框附近的频率。
提取模块216可以标识表示用户102的注视落在视觉上下文中何处的固定点。提取模块216可以利用模型来从注视输入数据306标识各个固定点。在至少一个示例中,提取模块216可以利用诸如速度阈值标识算法、隐马尔科夫模型固定标识算法、分散阈值标识算法、最小生成树标识算法、感兴趣区域标识算法和/或基于速度、基于分散和/或基于区域的算法的模型,以从注视输入数据306标识固定点。固定点可以被分组成群集,并且群集可以用于标识各个注视位置。一个群集可以由位于预定距离(例如,小于40个像素等)内的两个或多个单独固定点定义。固定点群集的质心可以用于提取下面描述的注视特征。
注视特征可以表示如上所述的在各个时间的边界框与一个或多个固定点群集的质心固定点之间的距离。注视特征的非限制性示例可以包括以下一项或多项:
·在语音输入302的起始处从质心固定点到边界框的距离;
·在语音输入302的结束处从质心固定点到边界框的距离;
·在语音输入302的起始和语音输入302的结束之间的时间期间从质心固定点到边界框的距离;
·在语音输入302开始之前的预定时间窗(例如,1秒、2秒等)期间从质心固定点到边界框的距离;
·在语音输入302开始之前的预定时间间隔(例如,1秒、2秒、3秒等)处边界框是否在质心固定点的预定半径(例如,1cm、3cm等)内;
·在接收到语音输入302时边界框是否在质心固定点的预定半径(例如,1cm、3cm等)内;
·边界框的大小;
·用户102在语音输入302期间观看边界框的频繁程度;
·在语音输入302期间用户102观看边界框的总时间长度;
·在语音输入302期间边界框在质心固定点的预定半径(例如,1cm、3cm等)内的频繁程度;和/或
·在语音输入302期间边界框在质心固定点的预定半径(例如,1cm、3cm等)内的总时间长度。
提取模块216还可以提取一个或多个热图特征。热图可以表示用户102可能在视觉上下文中正在看什么的概率模型。可以根据注视输入112(例如,眼睛注视、头部姿态等)来计算热图。在至少一个示例中,提取模块216可以利用单个固定点上的二维高斯模型来对用户102已经看了在视觉上下文中呈现的任何特定视觉元素的概率进行建模。如上所述,可以根据注视输入112(例如,眼睛注视、头部姿态等)来确定各个固定点。在一些示例中,高斯模型可以使用预定长度的半径。高斯模型可以对注视固定如何随时间改变进行建模,并且确定用于指示用户102可能观看视觉上下文中的特定视觉元素的可能性的概率。在至少一个示例中,基于眼睛注视输入112所确定的热图可以比基于头部姿态或鼻子指向注视输入112所确定的热图更能代表用户102可能正在看的内容。
提取模块216可以利用热图来提取热图特征。热图特征可以包括连接固定点和在视觉上下文中的视觉元素的一个或多个特征。如上所述,提取模块216可以计算可以呈现在与视觉上下文相关联的显示器108上的每个视觉元素(例如,文本、图片等)周围的距离或与之相关联的区域。所计算的与视觉元素相关联的距离或区域可以表示边界框并且可以用于热图特征提取。在至少一个示例中,热图特征可以至少部分地基于与边界框内的区域相关联的热图概率。与边界框内的区域相关联的热图概率可以用于计算用户102已经看了与显示器108上的边界框相对应的视觉元素的可能性。在一些示例中,热图特征可以包括在预定时间窗上捕获注视固定的一个或多个特征。
提取模块216可以至少部分地基于语音输入302、注视输入304和视觉上下文中的视觉元素来输出特征集合308。特征集合308可以包括词汇特征、眼睛注视特征和/或热图特征。
分析模块218可以被配置为至少部分地基于所提取的特征来解析对视觉上下文中的视觉元素的引用。在至少一个示例中,分析模块218可以利用分类系统来计算与各个视觉元素相关联的概率,并且至少部分地基于所计算的概率来确定哪个视觉元素是语音输入302的主题。在一些示例中,分析模块218可以至少部分地基于标识具有最高概率的视觉元素来标识作为语音输入的主题的视觉元素。在其他示例中,分析模块218可以利用分类系统来标识视觉上下文中具有超过预定阈值的计算概率的视觉元素。分析模块218可以将作为语音输入302的主题的视觉元素标识为具有超过预定阈值的计算概率的视觉元素之一。
在一些示例中,分析模块218可以在对视觉元素进行分类时考虑两个或更多个特征(例如,词汇特征、注视特征、热图特征等)的组合。在至少一个示例中,分析模块218可以利用分类器,分类器被配置为至少部分地基于由提取模块216提取的特征集合308来确定特定视觉元素是否是语音输入302的预期主题。在至少一个示例中,分类器可以包括icsiboost分类器、AdaBoost分类器、睡眠专家分类器、-Bayes分类器、Rocchio分类器、RIPPER分类器等。在一些示例中,分类器可以表示二元分类器。分析模块218可以输出预期引用的概率(例如,P(被引用的项目|项目,f_lexical,f_gaze),其中f_lexical是指词汇特征,并且f_gaze是指注视特征),其表示特定视觉元素是语音输入302的主题的可能性的测量。其他分类器可以由分析模块218用于解析对视觉上下文中的视觉元素的引用。
在至少一个示例中,分析模块218可以经由分类器接收用于处理的特征集合308,如图3所示。在一些示例中,特征集合可以包括特定视觉元素是至少部分地基于词汇特征的在语音输入302中被引用的视觉元素的概率,以及特定视觉元素是至少部分地基于注视特征的视觉元素的概率。分类器可以将两个概率相乘在一起以计算可用于确定特定视觉元素是否是用户102打算在视觉上下文中与之交互的特定视觉元素的新概率。在其他示例中,分析模块218可以单独地对每个特征(例如,词汇特征、注视特征、热图特征)进行分类,然后对分类的输出进行组合以解析对视觉上下文中的视觉元素的引用。替代地,分析模块218可以将第一分类器应用于从用户话语110提取的词汇特征集合,并且如果用户话语模糊和/或不明确,则将第二分类器应用于从注视输入112提取的注视特征集合。
分析模块218可以包括:过滤模块,用于标识具有最高概率的一个或多个视觉元素和/或具有被确定为高于预定阈值的概率的一个或多个视觉元素。在一些示例中,分析模块218可以另外地或替代地包括:排序模块,用于至少部分地基于由分析模块218确定的概率来对视觉元素进行排序。分析模块218可以利用排序模块的结果来解析对视觉上下文中的视觉元素的引用。在一些示例中,具有最高概率的视觉元素可以排列在视觉元素列表的顶部,并且分析模块218可以确定顶部排列的视觉元素是用户话语的预期目标。
图4示出了用于确定与计算机化会话系统相关联的视觉上下文中的一个或多个视觉元素中的预期视觉元素的示例性过程400。
框402示出标识可用于接收视觉上下文中的用户交互的视觉元素。如上所述,视觉上下文可以包括:web浏览器、会话交互系统或用于显示视觉元素的一些其他视觉上下文。各个视觉元素可以与可以由计算机化会话系统执行的动作和/或任务相关联。提取模块216可以标识视觉元素,并且如上所述,可以确定视觉元素周围的距离和/或区域(例如,边界框)。
框404示出接收与视觉上下文中的一个或多个视觉元素相关联的用户输入。接收模块214可以接收用户输入,诸如可以被转录为用户话语的语音输入302、注视输入304(例如,眼睛注视、头部姿态等)、姿势输入等。在至少一个示例中,语音输入302可以引用视觉上下文中的一个或多个视觉元素的特定视觉元素。如上所述,语音输入302可以明确地引用特定的视觉元素和/或隐含地引用特定的视觉元素。语音输入302可以不受可以构成语音输入302的词汇、语法和/或意图的选择的约束。除了语音输入302之外,接收模块214可以接收注视输入304。至少在一个示例中,当用户102与计算机化计算系统交互时,可以由跟踪用户注视、头部姿态等的跟踪组件106来收集注视输入304。
框406示出至少部分地基于视觉元素和用户输入来提取词汇特征和注视特征。提取模块216可以提取词汇特征、注视特征和热图特征,如上所述。提取注视特征可以包括计算在预定时间处在针对各个视觉元素确定的限定区域(例如,边界框)和与注视输入304相关联的固定点(例如,质心固定点和/或任何固定点)之间的距离。提取词汇特征可以包括计算与视觉上下文中的视觉元素的各个视觉元素相关联的文本与语音输入302之间的词汇相似性,如上所述。提取热图特征可以包括提取将注视输入304固定与在显示器108上呈现的视觉元素连接的一个或多个特征。
框408示出确定与用户输入相关联的一个或多个视觉元素的特定视觉元素。分析模块218可以至少部分地基于词汇特征和注视特征来确定作为语音输入302的预期主题的视觉元素。确定预期视觉元素可以包括经由二元分类器对视觉元素进行分类,如上所述。分析模块218可以利用分类器来计算与视觉元素相关联的概率。如上所述,分析模块218可以至少部分地基于所计算的概率来对视觉元素进行进一步的过滤和/或排序。分析模块218可以至少基于所计算的概率来确定特定视觉元素。在至少一些示例中,特定视觉元素可以与动作和/或任务相关联,并且至少部分地基于标识特定视觉元素,分析模块218可以使得与特定视觉元素相关联的动作和/或任务在视觉上下文中被执行。
图5示出了用于至少部分地基于词汇特征和注视特征来确定在用户话语中引用的特定视觉元素的示例性过程500。
框502示出标识用于接收视觉上下文中的用户交互的视觉元素。如上所述,视觉上下文可以包括web浏览器、应用界面或用于显示视觉元素的一些其他视觉上下文。提取模块216可以标识视觉上下文中的视觉元素,并且如上所述,可以确定视觉元素周围的距离和/或区域(例如,边界框)。
框504示出了接收引用视觉上下文中的一个或多个视觉元素中的第一视觉元素的用户话语。接收模块214可以接收诸如语音输入302的用户输入,并且可以将语音输入302转录为用户话语以供提取模块216处理。在至少一个示例中,用户话语可以引用视觉上下文中的一个或多个视觉元素的特定视觉元素。如上所述,用户话语可以明确地引用特定视觉元素和/或隐含地引用特定视觉元素。用户话语可以不受可以构成用户话语的词汇、语法和/或意图选择的约束。
框506示出了接收与视觉上下文中的一个或多个视觉元素中的至少第二视觉元素相关联的注视输入304。接收模块214可以接收用户输入,诸如注视输入304(例如,眼睛注视、头部姿态等)。在至少一个示例中,注视输入304可以由跟踪组件106收集,如上所述。
框508示出了至少部分地基于用户话语和视觉元素来提取词汇特征。提取模块216可以提取词汇特征。提取词汇特征可以包括计算和视觉上下文中的视觉元素的各个视觉元素相关联的文本与用户话语之间的词汇相似性,如上所述。
框510示出了至少部分地基于注视输入304和视觉元素来提取注视特征。提取模块216可以提取注视特征。如上所述,提取注视特征可以包括计算在预定时间处与各个视觉元素相关联的边界框和与注视输入304相关联的固定点之间的距离。
框512示出了确定在用户话语中被引用的视觉元素的特定视觉元素。如上所述,该确定可以至少部分地基于词汇特征和注视特征。在一些示例中,除了词汇特征和注视特征之外,该确定可以基于热图特征。分析模块218可以利用分类器来计算与视觉元素相关联的概率。如上所述,分析模块218可以至少部分地基于所计算的概率来对视觉元素进行进一步的过滤和/或排序。分析模块218可以至少基于所计算的概率来确定预期的视觉元素。在至少一些示例中,预期的视觉元素可以与动作和/或任务相关联,并且至少部分地基于标识预期的视觉元素,分析模块218可以使得计算机化会话系统执行与预期视觉元素相关联的动作和/或任务。
图6示出了用于过滤和标识视觉上下文中的特定视觉元素的过程600。
框602示出至少部分地基于所计算的概率来对视觉元素进行过滤。如上所述,分析模块218可以利用分类器,其被配置为至少部分地基于由提取模块216提取的特征集合308来确定特定视觉元素是否可能是用户话语110的主题。分析模块218可以输出预期引用的概率(例如,P(被引用的项目|项目,f_lexical,f_gaze),其中f_lexical是指词汇特征,并且f_gaze是指注视特征),如上所述。分析模块218可以包括用于至少部分地基于概率来对视觉元素进行过滤的过滤模块。在一些示例中,分析模块218可以附加地或替代地包括:排序模块,用于至少部分地基于由分析模块218确定的概率来对视觉元素进行排序。
框604示出至少部分地基于视觉元素集合中具有高于预定阈值的概率的各个视觉元素来标识视觉元素集合。在至少一个示例中,分析模块218可以标识具有被确定为高于预定阈值的概率的视觉元素集合,如上所述。
框606示出从视觉元素集合中标识特定视觉元素。分析模块218可以从视觉元素集合中标识具有被确定为高于预定阈值的概率的特定视觉元素。在一些示例中,特定视觉元素可以是具有最高概率或高于预定阈值的概率的视觉元素。
A.一种计算机实现的方法,包括:标识视觉上下文中可用于用户交互的视觉元素;接收与所述视觉上下文中的所述视觉元素中的一个或多个视觉元素相关联的用户输入,所述用户输入包括:从引用所述一个或多个视觉元素中的特定视觉元素的语音输入中得到的话语;以及与所述一个或多个视觉元素中的至少一些视觉元素相关联的注视输入,所述一个或多个视觉元素中的所述至少一些视觉元素包括所述特定视觉元素;至少部分地基于所述视觉元素和所述用户输入来提取词汇特征和注视特征;以及至少部分地基于所述词汇特征和注视特征来确定所述特定视觉元素。
B.根据段落A所述的计算机实现的方法,其中所述视觉上下文是自由形式的web浏览器或者应用界面。
C.根据段落A或B中任一段落所述的计算机实现的方法,其中所述注视输入包括至少与所述预期视觉元素相关联的眼睛注视输入或者至少与所述预期元素相关联的头部姿态输入,其中所述用户头部姿态输入用作眼睛注视输入的代理。
D.根据段落A-C中任一段落所述的计算机实现的方法,还包括:计算与所述视觉元素的各个视觉元素相关联的概率以确定所述特定视觉元素,所述概率至少部分地基于所述词汇特征和所述注视特征。
E.根据段落A-D中任一段落所述的计算机实现的方法,还包括:至少部分地基于计算的概率来过滤所述各个视觉元素;至少部分地基于视觉元素集合中具有高于预定阈值的概率的所述各个视觉元素来标识所述视觉元素集合;以及从所述视觉元素集合中标识所述特定视觉元素。
F.根据段落A-E中任一段落所述的计算机实现的方法,其中提取注视特征包括:标识与所述注视输入相关联的多个固定点;将预定数量的所述多个固定点一起分组在一个群集中;以及将所述群集的质心标识为用于提取所述注视特征的特定固定点。
G.根据权利要求A-F中任一项所述的计算机实现的方法,其中提取所述注视特征包括:计算所述语音输入的起始时间和结束时间;以及至少部分地基于以下项来提取所述注视特征:特定固定点和与所述视觉元素的各个视觉元素相关联的区域之间的距离;所述语音输入的所述起始时间;和所述语音输入的所述结束时间。
H.根据权利要求A-G中任一项所述的计算机实现的方法,其中所述特定视觉元素与动作相关联,并且所述方法还包括:至少部分地基于标识所述特定视觉元素,使得与所述预期视觉元素相关联的所述动作在视觉上下文中被执行。
I.一个或多个计算机可读介质,所述计算机可读介质使用指令进行编码,所述指令当由处理器执行时将计算机配置成执行根据段落A-H中任一段落所述的方法。
J.一种设备,包括一个或多个处理器以及用指令编码的一个或多个计算机可读介质,所述指令当由所述一个或多个处理器执行时将计算机配置成执行根据段落A-H中任一段落所述的计算机实现的方法。
K.一种系统,包括:用于标识视觉上下文中可用于用户交互的视觉元素的部件;用于接收与所述视觉上下文中的一个或多个视觉元素相关联的用户输入的部件,所述用户输入包括:从引用所述一个或多个视觉元素的特定视觉元素的语音输入得到的话语;以及与所述一个或多个视觉元素中的至少一些视觉元素相关联的注视输入,所述一个或多个视觉元素中的所述至少一些视觉元素包括所述特定视觉元素;用于至少部分地基于所述视觉元素和所述用户输入来提取词汇特征和注视特征的部件;以及用于至少部分地基于所述词汇特征和注视特征来确定所述特定视觉元素的部件。
L.根据段落K所述的系统,其中所述视觉上下文是自由形式的web浏览器或者应用界面。
M.根据段落K或L中任一段落所述的系统,其中所述注视输入包括至少与所述预期元素相关联的眼睛注视输入或至少与所述预期元素相关联的头部姿态输入,其中所述用户头部姿态输入用作眼睛注视输入的代理。
N.根据段落K-M中任一段落的系统,还包括用于计算与所述视觉元素的各个视觉元素相关联的概率以确定所述特定视觉元素的部件,所述概率至少部分地基于所述词汇特征和所述注视特征。
O.根据段落K-N中任一段落所述的系统,还包括用于至少部分地基于所计算的概率来对各个视觉元素进行过滤的部件;用于至少部分地基于所述视觉元素集合中具有高于预定阈值的概率的所述各个视觉元素来标识所述视觉元素集合的部件;以及用于从所述视觉元素集合中标识所述特定视觉元素的部件。
P.根据段落K-O任一段落所述的系统,其中提取注视特征包括:标识与所述注视输入相关联的多个固定点;将预定数量的所述多个固定点一起分组在一个群集中;以及将所述群集的质心标识为用于提取所述注视特征的特定固定点。
Q.根据段落K-P中任一段落所述的系统,其中提取所述注视特征包括:计算所述语音输入的起始时间和结束时间;以及至少部分地基于以下项来提取所述注视特征:特定固定点和与所述视觉元素的各个视觉元素相关联的区域之间的距离;所述语音输入的起始时间;和所述语音输入的结束时间。
R.根据段落K-Q中任一段落所述的系统,其中所述特定视觉元素与动作相关联,并且所述方法还包括用于至少部分地基于标识所述特定视觉元素来使得与所述预期视觉元素相关联的所述动作在视觉上下文中被执行的部件。
S.一个或多个计算机可读介质,所述计算机可读介质用指令进行编码,所述指令当由处理器执行时将计算机配置成执行包括以下项的动作:标识用于在视觉上下文中接收用户交互的视觉元素;接收从引用所述视觉上下文中的所述视觉元素中的第一视觉元素的语音输入来转录的用户话语;接收至少与所述视觉上下文中的所述视觉元素中的第二视觉元素相关联的注视输入;至少部分地基于所述用户话语和所述视觉元素来提取词汇特征;至少部分地基于所述注视输入和所述视觉元素来提取注视特征;以及至少部分地基于所述词汇特征和注视特征来确定所述第一视觉元素。
T.根据段落S所述的一个或多个计算机可读介质,其中所述动作还包括:至少部分地基于所述注视输入和所述视觉元素来提取热图特征。
U.根据段落S或T中任一段落所述的一个或多个计算机可读介质,其中所述动作还包括:确定针对所述视觉元素的各个视觉元素的边界框,所述边界框包括与所述各个视觉元素相关联的区域。
V.根据段落S-U中任一段落所述的一个或多个计算机可读介质,其中提取注视特征包括:计算在预定时间处各个视觉元素的边界框与所述注视输入相关联的固定点之间的距离,所述边界框包括与所述各个视觉元素相关联的区域。
W.根据段落S-V中任一段落所述的一个或多个计算机可读介质,其中提取词汇特征包括:计算与所述视觉元素的各个视觉元素相关联的文本与所述用户话语之间的词汇相似性。
X.根据段落S-W中任一段落所述的一个或多个计算机可读介质,其中确定所述特定视觉元素包括:至少部分地基于将二元分类器应用于所述词汇特征和所述注视特征中的至少一个来对所述视觉元素进行分类。
Y.一种设备,包括一个或多个处理器和根据段落S-X中任一段落所述的一个或多个计算机可读介质。
Z.一种系统,包括:计算机可读介质;一个或多个处理器;以及在所述计算机可读介质上并且能够由所述一个或多个处理器执行的一个或多个模块,所述一个或多个模块包括:接收模块,被配置为接收:从引用呈现在与视觉上下文相关联的用户界面上的多个视觉元素中的特定视觉元素的语音输入来转录的用户话语;以及指向呈现在与所述视觉上下文相关联的所述用户界面上的所述多个视觉元素中的一个或多个视觉元素的注视输入;提取模块,被配置为至少部分地基于所述多个视觉元素、所述用户话语和所述注视输入来提取特征集合;以及分析模块,被配置为至少部分地基于所述特征集合来标识所述特定视觉元素。
AA.根据段落Z所述的系统,还包括:显示模块,被配置为在所述用户界面上显示所述多个视觉元素。
AB.根据段落Z或AA中任一段落所述的系统,其中所述特征集合至少包括:词汇特征,其中词汇特征代表和所述多个视觉元素中的各个视觉元素相关联的文本与所述用户话语之间的词汇相似性;和注视特征,其中注视特征代表在预定时间处在和所述各个视觉元素相关联的边界框与和所述注视输入相关联的固定点之间的距离。
AC.根据段落Z-AB中任一段落所述的系统,其中所述提取模块还被配置为:至少部分地基于所述注视输入和所述多个视觉元素来提取热图特征。
AD.根据段落Z-AC中任一段落的系统,其中所述分析模块还被配置为:计算与所述多个视觉元素中的各个视觉元素相关联的概率以标识所述特定视觉元素,所述概率至少部分地基于词汇特征和注视功能。
AE.根据段落AD所述的系统,其中所述分析模块还被配置为:至少部分地基于所述特定元素具有与所述多个视觉元素相关联的所有所计算的概率中的最高概率来标识所述特定视觉元素。
AF.根据段落AD所述的系统,其中所述分析模块还被配置为:在第一过程中对所述词汇特征进行分类;在第二过程中对所述注视特征进行分类,所述第二过程在在与所述第一过程不同的时间处;以及至少部分地基于对所述词汇特征进行分类以及对所述注视特征进行分类:计算与所述多个视觉元素中的各个视觉元素相关联的概率,以标识所述特定视觉元素;以及至少部分地基于所计算的概率来标识所述特定视觉元素。
结论
总而言之,尽管已经用对结构特征和/或方法动作而特定的语言描述了各种示例,但是应当理解,在所附表示中定义的主题不一定限于所描述的具体特征或动作。相反,特定特征和动作被公开为实现所要求保护的主题的示例形式。

Claims (15)

1.一种计算机实现的方法,所述方法用于理解和解析对会话计算系统的视觉上下文中的视觉元素的引用,所述方法包括:
标识所述视觉上下文中可用于用户交互的所述视觉元素;
从耦合到所述会话计算系统的一个或多个输入设备接收与所述视觉上下文中的所述视觉元素中的一个或多个视觉元素相关联的用户输入,所述用户输入包括:
从引用所述一个或多个视觉元素中的特定视觉元素的语音输入得到的话语;以及
与所述一个或多个视觉元素中的至少一些视觉元素相关联的注视输入,所述一个或多个视觉元素中的所述至少一些视觉元素包括所述特定视觉元素;
至少部分地基于所述视觉元素和所述用户输入来提取词汇特征和注视特征;以及
至少部分地基于所述词汇特征和注视特征来确定所述特定视觉元素。
2.根据权利要求1所述的计算机实现的方法,其中所述视觉上下文是自由形式的web浏览器或者应用界面。
3.根据权利要求1所述的计算机实现的方法,其中所述注视输入包括至少与所述预期视觉元素相关联的眼睛注视输入或者至少与所述预期元素相关联的头部姿态输入,其中所述用户头部姿态输入用作眼睛注视输入的代理。
4.根据权利要求1所述的计算机实现的方法,还包括:计算与所述视觉元素的各个视觉元素相关联的概率以确定所述特定视觉元素,所述概率至少部分地基于所述词汇特征和所述注视特征。
5.根据权利要求1所述的计算机实现的方法,其中提取注视特征包括:
标识与所述注视输入相关联的多个固定点;
将预定数量的所述多个固定点一起分组在一个群集中;以及
将所述群集的质心标识为用于提取所述注视特征的特定固定点。
6.根据权利要求1所述的计算机实现的方法,其中所述特定视觉元素与动作相关联,并且所述方法还包括:至少部分地基于标识所述特定视觉元素,使得与所述预期视觉元素相关联的所述动作在所述视觉上下文中被执行。
7.一种计算机可读介质,所述计算机可读介质具有在其上的计算机可执行指令,所述计算机可执行指令当被执行时将计算机配置成执行根据权利要求1至6中任一项所述的方法。
8.一种设备,包括:
一个或多个处理器;以及
计算机可读介质,所述计算机可读介质具有在其上的计算机可执行指令,所述计算机可执行指令当由所述一个或多个处理器执行时将所述设备配置成执行根据权利要求1-6中任一项所述的方法。
9.一种会话计算系统,所述会话计算系统用于理解和解析对视觉上下文中的视觉元素的引用,所述会话计算系统包括:
语音输入设备;
跟踪设备;
计算机可读介质;
一个或多个处理器;以及
一个或多个模块,所述一个或多个模块在所述计算机可读介质上并且能够由所述一个或多个处理器执行,所述一个或多个模块包括:
接收模块,被配置为接收:
从语音输入转录的用户话语,所述语音输入从所述语音输入设备接收,所述语音输入引用在与视觉上下文相关联的用户界面上呈现的多个视觉元素中的特定视觉元素;以及
从所述跟踪设备接收的注视输入,所述注视输入被指向与所述视觉上下文相关联的所述用户界面上呈现的所述多个视觉元素中的一个或多个视觉元素;
提取模块,被配置为至少部分地基于所述多个视觉元素、所述用户话语和所述注视输入来提取特征集合;以及
分析模块,被配置为至少部分地基于所述特征集合来标识所述特定视觉元素。
10.根据权利要求9所述的会话计算系统,还包括:显示模块,被配置为在所述用户界面上显示所述多个视觉元素。
11.根据权利要求9所述的会话计算系统,其中所述提取模块还被配置为:至少部分地基于所述注视输入和所述多个视觉元素来提取热图特征。
12.根据权利要求9-11中任一项所述的会话计算系统,其中所述特征集合至少包括:
词汇特征,其中词汇特征代表和所述多个视觉元素中的各个视觉元素相关联的文本与所述用户话语之间的词汇相似性;以及
注视特征,其中所述注视特征代表在预定时间处在和所述各个视觉元素相关联的边界框与和所述注视输入相关联的固定点之间的距离。
13.根据权利要求12所述的会话计算系统,其中所述分析模块还被配置为:计算与所述多个视觉元素中的各个视觉元素相关联的概率以标识所述特定视觉元素,所述概率至少部分地基于所述词汇特征和所述注视特征。
14.根据权利要求13所述的会话计算系统,其中所述分析模块还被配置为:至少部分地基于所述特定元素具有与所述多个视觉元素相关联的所有所计算的概率中的最高概率来标识所述特定视觉元素。
15.根据权利要求13所述的会话计算系统,其中所述分析模块还被配置为:
在第一过程中对所述词汇特征进行分类;
在第二过程中对所述注视特征进行分类,所述第二过程在与所述第一过程不同的时间处;以及
至少部分地基于对所述词汇特征进行分类以及对所述注视特征进行分类:
计算与所述多个视觉元素中的各个视觉元素相关联的概率,以标识所述特定视觉元素;以及
至少部分地基于所计算的概率来标识所述特定视觉元素。
CN201580050763.XA 2014-09-25 2015-09-25 用于多模式会话交互中的口头语言理解的眼睛注视 Active CN107077201B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/496,538 US10317992B2 (en) 2014-09-25 2014-09-25 Eye gaze for spoken language understanding in multi-modal conversational interactions
US14/496,538 2014-09-25
PCT/US2015/052194 WO2016049439A1 (en) 2014-09-25 2015-09-25 Eye gaze for spoken language understanding in multi-modal conversational interactions

Publications (2)

Publication Number Publication Date
CN107077201A true CN107077201A (zh) 2017-08-18
CN107077201B CN107077201B (zh) 2020-06-23

Family

ID=54291650

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580050763.XA Active CN107077201B (zh) 2014-09-25 2015-09-25 用于多模式会话交互中的口头语言理解的眼睛注视

Country Status (11)

Country Link
US (2) US10317992B2 (zh)
EP (1) EP3198328B1 (zh)
JP (1) JP2017536600A (zh)
KR (2) KR102491846B1 (zh)
CN (1) CN107077201B (zh)
AU (1) AU2015320442A1 (zh)
BR (1) BR112017003636A2 (zh)
CA (1) CA2961279A1 (zh)
MX (1) MX2017003754A (zh)
RU (1) RU2017108533A (zh)
WO (1) WO2016049439A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109474761A (zh) * 2017-08-21 2019-03-15 阿瓦亚公司 监控代理对联络中心中的人工智能内容的监督
TWI716885B (zh) * 2019-05-27 2021-01-21 陳筱涵 即時外語溝通系統
CN112868060A (zh) * 2018-05-07 2021-05-28 谷歌有限责任公司 用户、自动化助理和其它计算服务之间的多模态交互
US11107469B2 (en) 2017-01-18 2021-08-31 Sony Corporation Information processing apparatus and information processing method
CN114616598A (zh) * 2020-10-09 2022-06-10 谷歌有限责任公司 使用眼睛注视数据的文本布局解释
WO2022206184A1 (en) * 2021-03-29 2022-10-06 International Business Machines Corporation Graphical adjustment recommendations for vocalization
CN116312528A (zh) * 2018-03-26 2023-06-23 苹果公司 自然助理交互
US12125486B2 (en) 2018-05-07 2024-10-22 Google Llc Multi-modal interaction between users, automated assistants, and other computing services
CN119550212A (zh) * 2024-11-12 2025-03-04 上海交通大学 机器人自动打磨方法、机器人设备、计算机设备及介质
WO2025051271A1 (en) * 2023-09-08 2025-03-13 Huawei Technologies Co., Ltd. Gaze assisted input for electronic device

Families Citing this family (213)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8677377B2 (en) 2005-09-08 2014-03-18 Apple Inc. Method and apparatus for building an intelligent automated assistant
US9318108B2 (en) 2010-01-18 2016-04-19 Apple Inc. Intelligent automated assistant
US8977255B2 (en) 2007-04-03 2015-03-10 Apple Inc. Method and system for operating a multi-function portable electronic device using voice-activation
US10002189B2 (en) 2007-12-20 2018-06-19 Apple Inc. Method and apparatus for searching using an active ontology
US9330720B2 (en) 2008-01-03 2016-05-03 Apple Inc. Methods and apparatus for altering audio output signals
US8600120B2 (en) 2008-01-03 2013-12-03 Apple Inc. Personal computing device control using face detection and recognition
US8996376B2 (en) 2008-04-05 2015-03-31 Apple Inc. Intelligent text-to-speech conversion
US20100030549A1 (en) 2008-07-31 2010-02-04 Lee Michael M Mobile device having human language translation capability with positional feedback
US8676904B2 (en) 2008-10-02 2014-03-18 Apple Inc. Electronic devices with voice command and contextual data processing capabilities
US10241752B2 (en) 2011-09-30 2019-03-26 Apple Inc. Interface for a virtual digital assistant
US10241644B2 (en) 2011-06-03 2019-03-26 Apple Inc. Actionable reminder entries
US10255566B2 (en) 2011-06-03 2019-04-09 Apple Inc. Generating and processing task items that represent tasks to perform
US10276170B2 (en) 2010-01-18 2019-04-30 Apple Inc. Intelligent automated assistant
US8682667B2 (en) 2010-02-25 2014-03-25 Apple Inc. User profiling for selecting user specific voice input processing information
US9262612B2 (en) 2011-03-21 2016-02-16 Apple Inc. Device access using voice authentication
US10057736B2 (en) 2011-06-03 2018-08-21 Apple Inc. Active transport based notifications
US8638385B2 (en) 2011-06-05 2014-01-28 Apple Inc. Device, method, and graphical user interface for accessing an application in a locked device
US10134385B2 (en) 2012-03-02 2018-11-20 Apple Inc. Systems and methods for name pronunciation
US10417037B2 (en) 2012-05-15 2019-09-17 Apple Inc. Systems and methods for integrating third party services with a digital assistant
US9721563B2 (en) 2012-06-08 2017-08-01 Apple Inc. Name recognition system
US9547647B2 (en) 2012-09-19 2017-01-17 Apple Inc. Voice-based media searching
BR112015018905B1 (pt) 2013-02-07 2022-02-22 Apple Inc Método de operação de recurso de ativação por voz, mídia de armazenamento legível por computador e dispositivo eletrônico
US10652394B2 (en) 2013-03-14 2020-05-12 Apple Inc. System and method for processing voicemail
US10748529B1 (en) 2013-03-15 2020-08-18 Apple Inc. Voice activated device for use with a voice-based digital assistant
WO2014197334A2 (en) 2013-06-07 2014-12-11 Apple Inc. System and method for user-specified pronunciation of words for speech synthesis and recognition
WO2014197335A1 (en) 2013-06-08 2014-12-11 Apple Inc. Interpreting and acting upon commands that involve sharing information with remote devices
US10176167B2 (en) 2013-06-09 2019-01-08 Apple Inc. System and method for inferring user intent from speech inputs
AU2014278592B2 (en) 2013-06-09 2017-09-07 Apple Inc. Device, method, and graphical user interface for enabling conversation persistence across two or more instances of a digital assistant
CN105453026A (zh) 2013-08-06 2016-03-30 苹果公司 基于来自远程设备的活动自动激活智能响应
US9898642B2 (en) 2013-09-09 2018-02-20 Apple Inc. Device, method, and graphical user interface for manipulating user interfaces based on fingerprint sensor inputs
US10296160B2 (en) 2013-12-06 2019-05-21 Apple Inc. Method for extracting salient dialog usage from live data
US9412363B2 (en) 2014-03-03 2016-08-09 Microsoft Technology Licensing, Llc Model based approach for on-screen item selection and disambiguation
US9633004B2 (en) 2014-05-30 2017-04-25 Apple Inc. Better resolution when referencing to concepts
US10170123B2 (en) 2014-05-30 2019-01-01 Apple Inc. Intelligent assistant for home automation
US9430463B2 (en) 2014-05-30 2016-08-30 Apple Inc. Exemplar-based natural language processing
EP3149728B1 (en) 2014-05-30 2019-01-16 Apple Inc. Multi-command single utterance input method
US9715875B2 (en) 2014-05-30 2017-07-25 Apple Inc. Reducing the need for manual start/end-pointing and trigger phrases
US9338493B2 (en) 2014-06-30 2016-05-10 Apple Inc. Intelligent automated assistant for TV user interactions
US9818400B2 (en) 2014-09-11 2017-11-14 Apple Inc. Method and apparatus for discovering trending terms in speech requests
US10317992B2 (en) * 2014-09-25 2019-06-11 Microsoft Technology Licensing, Llc Eye gaze for spoken language understanding in multi-modal conversational interactions
US9668121B2 (en) 2014-09-30 2017-05-30 Apple Inc. Social reminders
US10127911B2 (en) 2014-09-30 2018-11-13 Apple Inc. Speaker identification and unsupervised speaker adaptation techniques
US10074360B2 (en) 2014-09-30 2018-09-11 Apple Inc. Providing an indication of the suitability of speech recognition
US10152299B2 (en) 2015-03-06 2018-12-11 Apple Inc. Reducing response latency of intelligent automated assistants
US10567477B2 (en) 2015-03-08 2020-02-18 Apple Inc. Virtual assistant continuity
US9721566B2 (en) 2015-03-08 2017-08-01 Apple Inc. Competing devices responding to voice triggers
US9886953B2 (en) 2015-03-08 2018-02-06 Apple Inc. Virtual assistant activation
US10460227B2 (en) 2015-05-15 2019-10-29 Apple Inc. Virtual assistant in a communication session
US10200824B2 (en) 2015-05-27 2019-02-05 Apple Inc. Systems and methods for proactively identifying and surfacing relevant content on a touch-sensitive device
US10083688B2 (en) 2015-05-27 2018-09-25 Apple Inc. Device voice control for selecting a displayed affordance
US9578173B2 (en) 2015-06-05 2017-02-21 Apple Inc. Virtual assistant aided communication with 3rd party service in a communication session
US11025565B2 (en) 2015-06-07 2021-06-01 Apple Inc. Personalized prediction of responses for instant messaging
US20160378747A1 (en) 2015-06-29 2016-12-29 Apple Inc. Virtual assistant for media playback
US10671428B2 (en) 2015-09-08 2020-06-02 Apple Inc. Distributed personal assistant
US10740384B2 (en) 2015-09-08 2020-08-11 Apple Inc. Intelligent automated assistant for media search and playback
US10331312B2 (en) 2015-09-08 2019-06-25 Apple Inc. Intelligent automated assistant in a media environment
US10747498B2 (en) 2015-09-08 2020-08-18 Apple Inc. Zero latency digital assistant
US10366158B2 (en) 2015-09-29 2019-07-30 Apple Inc. Efficient word encoding for recurrent neural network language models
US11010550B2 (en) 2015-09-29 2021-05-18 Apple Inc. Unified language modeling framework for word prediction, auto-completion and auto-correction
US11587559B2 (en) 2015-09-30 2023-02-21 Apple Inc. Intelligent device identification
US10691473B2 (en) 2015-11-06 2020-06-23 Apple Inc. Intelligent automated assistant in a messaging environment
US10956666B2 (en) 2015-11-09 2021-03-23 Apple Inc. Unconventional virtual assistant interactions
US10049668B2 (en) 2015-12-02 2018-08-14 Apple Inc. Applying neural network language models to weighted finite state transducers for automatic speech recognition
US9886958B2 (en) 2015-12-11 2018-02-06 Microsoft Technology Licensing, Llc Language and domain independent model based approach for on-screen item selection
US10223066B2 (en) 2015-12-23 2019-03-05 Apple Inc. Proactive assistance based on dialog communication between devices
US10446143B2 (en) 2016-03-14 2019-10-15 Apple Inc. Identification of voice inputs providing credentials
US9978367B2 (en) * 2016-03-16 2018-05-22 Google Llc Determining dialog states for language models
CN109074364A (zh) * 2016-05-12 2018-12-21 索尼公司 信息处理装置、信息处理方法和程序
US9934775B2 (en) 2016-05-26 2018-04-03 Apple Inc. Unit-selection text-to-speech synthesis based on predicted concatenation parameters
US9972304B2 (en) 2016-06-03 2018-05-15 Apple Inc. Privacy preserving distributed evaluation framework for embedded personalized systems
US10249300B2 (en) 2016-06-06 2019-04-02 Apple Inc. Intelligent list reading
US11227589B2 (en) 2016-06-06 2022-01-18 Apple Inc. Intelligent list reading
US10049663B2 (en) 2016-06-08 2018-08-14 Apple, Inc. Intelligent automated assistant for media exploration
DK179309B1 (en) 2016-06-09 2018-04-23 Apple Inc Intelligent automated assistant in a home environment
US12223282B2 (en) 2016-06-09 2025-02-11 Apple Inc. Intelligent automated assistant in a home environment
US10067938B2 (en) 2016-06-10 2018-09-04 Apple Inc. Multilingual word prediction
US10192552B2 (en) 2016-06-10 2019-01-29 Apple Inc. Digital assistant providing whispered speech
US10490187B2 (en) 2016-06-10 2019-11-26 Apple Inc. Digital assistant providing automated status report
US10509862B2 (en) 2016-06-10 2019-12-17 Apple Inc. Dynamic phrase expansion of language input
US10586535B2 (en) 2016-06-10 2020-03-10 Apple Inc. Intelligent digital assistant in a multi-tasking environment
DK201670540A1 (en) 2016-06-11 2018-01-08 Apple Inc Application integration with a digital assistant
DK179415B1 (en) 2016-06-11 2018-06-14 Apple Inc Intelligent device arbitration and control
US12197817B2 (en) 2016-06-11 2025-01-14 Apple Inc. Intelligent device arbitration and control
DK179049B1 (en) 2016-06-11 2017-09-18 Apple Inc Data driven natural language event detection and classification
DK179343B1 (en) 2016-06-11 2018-05-14 Apple Inc Intelligent task discovery
US10854190B1 (en) 2016-06-13 2020-12-01 United Services Automobile Association (Usaa) Transcription analysis platform
US10474753B2 (en) 2016-09-07 2019-11-12 Apple Inc. Language identification using recurrent neural networks
US10976998B2 (en) 2016-09-23 2021-04-13 Sony Corporation Information processing apparatus and information processing method for controlling a response to speech
US10043516B2 (en) 2016-09-23 2018-08-07 Apple Inc. Intelligent automated assistant
DK179978B1 (en) 2016-09-23 2019-11-27 Apple Inc. Image data for enhanced user interactions
US11281993B2 (en) 2016-12-05 2022-03-22 Apple Inc. Model and ensemble compression for metric learning
KR102848268B1 (ko) 2016-12-19 2025-08-27 삼성전자주식회사 사용자의 시선 및 입력에 기반하여 제어되는 전자 장치, 모바일 전자 장치 및 디스플레이 장치
US10593346B2 (en) 2016-12-22 2020-03-17 Apple Inc. Rank-reduced token representation for automatic speech recognition
US10229680B1 (en) * 2016-12-29 2019-03-12 Amazon Technologies, Inc. Contextual entity resolution
US11204787B2 (en) 2017-01-09 2021-12-21 Apple Inc. Application integration with a digital assistant
DE102017108194A1 (de) * 2017-04-18 2018-10-18 Vorwerk & Co. Interholding Gmbh Verfahren zum Betrieb eines sich selbsttätig fortbewegenden Fahrzeugs
CN108235745B (zh) * 2017-05-08 2021-01-08 深圳前海达闼云端智能科技有限公司 机器人唤醒方法、装置和机器人
US10417266B2 (en) 2017-05-09 2019-09-17 Apple Inc. Context-aware ranking of intelligent response suggestions
DK201770383A1 (en) 2017-05-09 2018-12-14 Apple Inc. USER INTERFACE FOR CORRECTING RECOGNITION ERRORS
DK201770439A1 (en) 2017-05-11 2018-12-13 Apple Inc. Offline personal assistant
DK180048B1 (en) 2017-05-11 2020-02-04 Apple Inc. MAINTAINING THE DATA PROTECTION OF PERSONAL INFORMATION
US10395654B2 (en) 2017-05-11 2019-08-27 Apple Inc. Text normalization based on a data-driven learning network
US10726832B2 (en) 2017-05-11 2020-07-28 Apple Inc. Maintaining privacy of personal information
US11301477B2 (en) 2017-05-12 2022-04-12 Apple Inc. Feedback analysis of a digital assistant
DK179745B1 (en) 2017-05-12 2019-05-01 Apple Inc. SYNCHRONIZATION AND TASK DELEGATION OF A DIGITAL ASSISTANT
DK179496B1 (en) 2017-05-12 2019-01-15 Apple Inc. USER-SPECIFIC Acoustic Models
DK201770428A1 (en) 2017-05-12 2019-02-18 Apple Inc. LOW-LATENCY INTELLIGENT AUTOMATED ASSISTANT
DK201770432A1 (en) 2017-05-15 2018-12-21 Apple Inc. Hierarchical belief states for digital assistants
DK201770411A1 (en) 2017-05-15 2018-12-20 Apple Inc. Multi-modal interfaces
DK201770431A1 (en) 2017-05-15 2018-12-20 Apple Inc. Optimizing dialogue policy decisions for digital assistants using implicit feedback
US20180336275A1 (en) 2017-05-16 2018-11-22 Apple Inc. Intelligent automated assistant for media exploration
KR102439054B1 (ko) 2017-05-16 2022-09-02 애플 인크. 이모지 레코딩 및 전송
KR20190141701A (ko) * 2017-05-16 2019-12-24 애플 인크. 향상된 사용자 상호작용들을 위한 이미지 데이터
US10311144B2 (en) 2017-05-16 2019-06-04 Apple Inc. Emoji word sense disambiguation
US10403278B2 (en) 2017-05-16 2019-09-03 Apple Inc. Methods and systems for phonetic matching in digital assistant services
DK179560B1 (en) 2017-05-16 2019-02-18 Apple Inc. FAR-FIELD EXTENSION FOR DIGITAL ASSISTANT SERVICES
US20180336892A1 (en) 2017-05-16 2018-11-22 Apple Inc. Detecting a trigger of a digital assistant
US11221823B2 (en) 2017-05-22 2022-01-11 Samsung Electronics Co., Ltd. System and method for context-based interaction for electronic devices
US10657328B2 (en) 2017-06-02 2020-05-19 Apple Inc. Multi-task recurrent neural network architecture for efficient morphology handling in neural language modeling
US10366691B2 (en) 2017-07-11 2019-07-30 Samsung Electronics Co., Ltd. System and method for voice command context
US10515625B1 (en) 2017-08-31 2019-12-24 Amazon Technologies, Inc. Multi-modal natural language processing
US10537244B1 (en) * 2017-09-05 2020-01-21 Amazon Technologies, Inc. Using eye tracking to label computer vision datasets
KR102185854B1 (ko) 2017-09-09 2020-12-02 애플 인크. 생체측정 인증의 구현
US10445429B2 (en) 2017-09-21 2019-10-15 Apple Inc. Natural language understanding using vocabularies with compressed serialized tries
US10755051B2 (en) 2017-09-29 2020-08-25 Apple Inc. Rule-based natural language processing
US10636424B2 (en) 2017-11-30 2020-04-28 Apple Inc. Multi-turn canned dialog
US10733982B2 (en) 2018-01-08 2020-08-04 Apple Inc. Multi-directional dialog
US10733375B2 (en) 2018-01-31 2020-08-04 Apple Inc. Knowledge-based framework for improving natural language understanding
US10789959B2 (en) 2018-03-02 2020-09-29 Apple Inc. Training speaker recognition models for digital assistants
US10592604B2 (en) 2018-03-12 2020-03-17 Apple Inc. Inverse text normalization for automatic speech recognition
US10909331B2 (en) 2018-03-30 2021-02-02 Apple Inc. Implicit identification of translation payload with neural machine translation
US11145294B2 (en) 2018-05-07 2021-10-12 Apple Inc. Intelligent automated assistant for delivering content from user experiences
US12033296B2 (en) 2018-05-07 2024-07-09 Apple Inc. Avatar creation user interface
US10928918B2 (en) 2018-05-07 2021-02-23 Apple Inc. Raise to speak
US10984780B2 (en) 2018-05-21 2021-04-20 Apple Inc. Global semantic word embeddings using bi-directional recurrent neural networks
US10892996B2 (en) 2018-06-01 2021-01-12 Apple Inc. Variable latency device coordination
DK180639B1 (en) 2018-06-01 2021-11-04 Apple Inc DISABILITY OF ATTENTION-ATTENTIVE VIRTUAL ASSISTANT
DK201870355A1 (en) 2018-06-01 2019-12-16 Apple Inc. VIRTUAL ASSISTANT OPERATION IN MULTI-DEVICE ENVIRONMENTS
US11386266B2 (en) 2018-06-01 2022-07-12 Apple Inc. Text correction
DK179822B1 (da) 2018-06-01 2019-07-12 Apple Inc. Voice interaction at a primary device to access call functionality of a companion device
US11170085B2 (en) 2018-06-03 2021-11-09 Apple Inc. Implementation of biometric authentication
US10504518B1 (en) 2018-06-03 2019-12-10 Apple Inc. Accelerated task performance
US20190386840A1 (en) * 2018-06-18 2019-12-19 Cisco Technology, Inc. Collaboration systems with automatic command implementation capabilities
US11010561B2 (en) 2018-09-27 2021-05-18 Apple Inc. Sentiment prediction from textual data
KR101996039B1 (ko) * 2018-09-27 2019-07-03 국립공주병원 얼굴 표정 인식을 위한 훈련 템플릿 구축 장치 및 그 방법
US11703939B2 (en) 2018-09-28 2023-07-18 Shanghai Cambricon Information Technology Co., Ltd Signal processing device and related products
US11170166B2 (en) 2018-09-28 2021-11-09 Apple Inc. Neural typographical error modeling via generative adversarial networks
US10839159B2 (en) 2018-09-28 2020-11-17 Apple Inc. Named entity normalization in a spoken dialog system
US11100349B2 (en) 2018-09-28 2021-08-24 Apple Inc. Audio assisted enrollment
US11462215B2 (en) 2018-09-28 2022-10-04 Apple Inc. Multi-modal inputs for voice commands
US10860096B2 (en) * 2018-09-28 2020-12-08 Apple Inc. Device control using gaze information
US11475898B2 (en) 2018-10-26 2022-10-18 Apple Inc. Low-latency multi-speaker speech recognition
KR102669100B1 (ko) * 2018-11-02 2024-05-27 삼성전자주식회사 전자 장치 및 그 제어 방법
US11900931B2 (en) 2018-11-20 2024-02-13 Sony Group Corporation Information processing apparatus and information processing method
US11417236B2 (en) * 2018-12-28 2022-08-16 Intel Corporation Real-time language learning within a smart space
US11638059B2 (en) 2019-01-04 2023-04-25 Apple Inc. Content playback on multiple devices
US11455982B2 (en) 2019-01-07 2022-09-27 Cerence Operating Company Contextual utterance resolution in multimodal systems
US11322136B2 (en) * 2019-01-09 2022-05-03 Samsung Electronics Co., Ltd. System and method for multi-spoken language detection
US11183185B2 (en) * 2019-01-09 2021-11-23 Microsoft Technology Licensing, Llc Time-based visual targeting for voice commands
US11107261B2 (en) 2019-01-18 2021-08-31 Apple Inc. Virtual avatar animation based on facial feature movement
US11348573B2 (en) 2019-03-18 2022-05-31 Apple Inc. Multimodality in digital assistant systems
DK201970509A1 (en) 2019-05-06 2021-01-15 Apple Inc Spoken notifications
US11423908B2 (en) 2019-05-06 2022-08-23 Apple Inc. Interpreting spoken requests
DK201970531A1 (en) 2019-05-06 2021-07-09 Apple Inc Avatar integration with multiple applications
US11307752B2 (en) 2019-05-06 2022-04-19 Apple Inc. User configurable task triggers
US11475884B2 (en) 2019-05-06 2022-10-18 Apple Inc. Reducing digital assistant latency when a language is incorrectly determined
US10969863B2 (en) * 2019-05-08 2021-04-06 International Business Machines Corporation Configurable sensor array for a multi-target environment
US11140099B2 (en) 2019-05-21 2021-10-05 Apple Inc. Providing message response suggestions
DK201970511A1 (en) 2019-05-31 2021-02-15 Apple Inc Voice identification in digital assistant systems
DK180129B1 (en) 2019-05-31 2020-06-02 Apple Inc. User activity shortcut suggestions
US11496600B2 (en) 2019-05-31 2022-11-08 Apple Inc. Remote execution of machine-learned models
US11289073B2 (en) 2019-05-31 2022-03-29 Apple Inc. Device text to speech
US11360641B2 (en) 2019-06-01 2022-06-14 Apple Inc. Increasing the relevance of new available information
US11227599B2 (en) 2019-06-01 2022-01-18 Apple Inc. Methods and user interfaces for voice-based control of electronic devices
JP7346135B2 (ja) * 2019-07-30 2023-09-19 キヤノン株式会社 電子機器、電子機器の制御方法、プログラムおよび記憶媒体
JP2021033746A (ja) * 2019-08-27 2021-03-01 アルパイン株式会社 サービス提供装置、サービス提供システム、及びサービス提供方法
US11848000B2 (en) * 2019-09-06 2023-12-19 Microsoft Technology Licensing, Llc Transcription revision interface for speech recognition system
WO2021056255A1 (en) 2019-09-25 2021-04-01 Apple Inc. Text detection using global geometry estimators
CN113298843B (zh) 2020-02-24 2024-05-14 中科寒武纪科技股份有限公司 数据量化处理方法、装置、电子设备和存储介质
KR102375508B1 (ko) * 2020-03-16 2022-03-17 주식회사 한글과컴퓨터 문서 작성 프로그램에서 자주 사용되는 편집 명령에 대한 음성 인식을 가능하게 하는 전자 장치 및 그 동작 방법
KR102909001B1 (ko) * 2020-04-29 2026-01-08 현대자동차주식회사 차량 음성 인식 방법 및 장치
US11038934B1 (en) 2020-05-11 2021-06-15 Apple Inc. Digital assistant hardware abstraction
US12301635B2 (en) 2020-05-11 2025-05-13 Apple Inc. Digital assistant hardware abstraction
US11061543B1 (en) 2020-05-11 2021-07-13 Apple Inc. Providing relevant data items based on context
US11490204B2 (en) 2020-07-20 2022-11-01 Apple Inc. Multi-device audio adjustment coordination
US11438683B2 (en) 2020-07-21 2022-09-06 Apple Inc. User identification using headphones
US11996095B2 (en) 2020-08-12 2024-05-28 Kyndryl, Inc. Augmented reality enabled command management
EP4264460B1 (en) 2021-01-25 2025-12-24 Apple Inc. Implementation of biometric authentication
CN116888574A (zh) 2021-02-23 2023-10-13 苹果公司 共存会话中的数字助理交互
US12210603B2 (en) 2021-03-04 2025-01-28 Apple Inc. User interface for enrolling a biometric feature
KR20230142775A (ko) 2021-03-11 2023-10-11 애플 인크. 지속적인 다이얼로그를 위한 다중 상태 디지털 어시스턴트
US11955137B2 (en) 2021-03-11 2024-04-09 Apple Inc. Continuous dialog with a digital assistant
US11756574B2 (en) * 2021-03-11 2023-09-12 Apple Inc. Multiple state digital assistant for continuous dialog
US12216754B2 (en) 2021-05-10 2025-02-04 Apple Inc. User interfaces for authenticating to perform secure operations
US20220374109A1 (en) * 2021-05-14 2022-11-24 Apple Inc. User input interpretation using display representations
US11960790B2 (en) 2021-05-27 2024-04-16 Microsoft Technology Licensing, Llc Spatial attention model enhanced voice engagement system
US11681364B1 (en) * 2021-06-29 2023-06-20 Amazon Technologies, Inc. Gaze prediction
US12266354B2 (en) 2021-07-15 2025-04-01 Apple Inc. Speech interpretation based on environmental context
US12406664B2 (en) 2021-08-06 2025-09-02 Apple Inc. Multimodal assistant understanding using on-screen and device context
EP4377784A1 (en) 2021-08-31 2024-06-05 Apple Inc. Digital assistant for providing graphical overlays of video events
US11967335B2 (en) 2021-09-03 2024-04-23 Google Llc Foveated beamforming for augmented reality devices and wearables
US20230081605A1 (en) * 2021-09-16 2023-03-16 Apple Inc. Digital assistant for moving and copying graphical elements
WO2023043877A1 (en) * 2021-09-16 2023-03-23 Apple Inc. Digital assistant for moving and copying graphical elements
GB2616288B (en) * 2022-03-03 2024-10-30 Sony Interactive Entertainment Inc Gaze tracking system and method
US12423917B2 (en) 2022-06-10 2025-09-23 Apple Inc. Extended reality based digital assistant interactions
US12400649B2 (en) 2022-07-21 2025-08-26 Sony Interactive Entertainment LLC Customized dialogue support
US12183340B2 (en) * 2022-07-21 2024-12-31 Sony Interactive Entertainment LLC Intent identification for dialogue support
US12417596B2 (en) 2022-09-23 2025-09-16 Apple Inc. User interfaces for managing live communication sessions
KR20240111137A (ko) * 2023-01-09 2024-07-16 삼성전자주식회사 멀티 윈도우 모드에서 포커싱 윈도우를 변경하기 위한 장치 및 방법
WO2024215857A1 (en) 2023-04-14 2024-10-17 Apple Inc. Digital assistant for providing and modifying an output of an electronic document
US12236938B2 (en) 2023-04-14 2025-02-25 Apple Inc. Digital assistant for providing and modifying an output of an electronic document
WO2025014062A1 (ko) * 2023-07-10 2025-01-16 삼성전자주식회사 전자 장치 및 전자 장치의 사용자 발화 처리 방법
WO2025049649A2 (en) * 2023-08-28 2025-03-06 Telefonaktiebolaget Lm Ericsson (Publ) Perceptually optimized immersive video encoding

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030040914A1 (en) * 2000-01-27 2003-02-27 Siemens Ag System and method for eye tracking controlled speech processing
US20100033333A1 (en) * 2006-06-11 2010-02-11 Volva Technology Corp Method and apparatus for determining and analyzing a location of visual interest
CN102541438A (zh) * 2010-11-01 2012-07-04 微软公司 集成话音命令模态的用户界面
CN102567718A (zh) * 2010-12-24 2012-07-11 佳能株式会社 共享共同属性的视频对象的概要示图
US20120295708A1 (en) * 2006-03-06 2012-11-22 Sony Computer Entertainment Inc. Interface with Gaze Detection and Voice Input
US20130304479A1 (en) * 2012-05-08 2013-11-14 Google Inc. Sustained Eye Gaze for Determining Intent to Interact
US20130346085A1 (en) * 2012-06-23 2013-12-26 Zoltan Stekkelpak Mouth click sound based computer-human interaction method, system and apparatus
US20140184550A1 (en) * 2011-09-07 2014-07-03 Tandemlaunch Technologies Inc. System and Method for Using Eye Gaze Information to Enhance Interactions

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3361980B2 (ja) * 1997-12-12 2003-01-07 株式会社東芝 視線検出装置及びその方法
US6757718B1 (en) 1999-01-05 2004-06-29 Sri International Mobile navigation of network-based electronic information using spoken input
US6795806B1 (en) 2000-09-20 2004-09-21 International Business Machines Corporation Method for enhancing dictation and command discrimination
US6964023B2 (en) 2001-02-05 2005-11-08 International Business Machines Corporation System and method for multi-modal focus detection, referential ambiguity resolution and mood classification using multi-modal input
US7398209B2 (en) 2002-06-03 2008-07-08 Voicebox Technologies, Inc. Systems and methods for responding to natural language speech utterance
US7881493B1 (en) 2003-04-11 2011-02-01 Eyetools, Inc. Methods and apparatuses for use of eye interpretation information
US20120253823A1 (en) * 2004-09-10 2012-10-04 Thomas Barton Schalk Hybrid Dialog Speech Recognition for In-Vehicle Automated Interaction and In-Vehicle Interfaces Requiring Minimal Driver Processing
US8467672B2 (en) 2005-10-17 2013-06-18 Jeffrey C. Konicek Voice recognition and gaze-tracking for a camera
US7697827B2 (en) 2005-10-17 2010-04-13 Konicek Jeffrey C User-friendlier interfaces for a camera
US8793620B2 (en) 2011-04-21 2014-07-29 Sony Computer Entertainment Inc. Gaze-assisted computer interface
US7770136B2 (en) 2007-01-24 2010-08-03 Microsoft Corporation Gesture recognition interactive feedback
US8676904B2 (en) 2008-10-02 2014-03-18 Apple Inc. Electronic devices with voice command and contextual data processing capabilities
US10540976B2 (en) 2009-06-05 2020-01-21 Apple Inc. Contextual voice commands
KR101597289B1 (ko) 2009-07-31 2016-03-08 삼성전자주식회사 동적 화면에 따라 음성을 인식하는 장치 및 방법
US8487959B1 (en) * 2010-08-06 2013-07-16 Google Inc. Generating simulated eye movement traces for visual displays
US8700392B1 (en) 2010-09-10 2014-04-15 Amazon Technologies, Inc. Speech-inclusive device interfaces
US8560321B1 (en) 2011-01-05 2013-10-15 Interactions Corportion Automated speech recognition system for natural language understanding
US20140099623A1 (en) * 2012-10-04 2014-04-10 Karmarkar V. Amit Social graphs based on user bioresponse data
US9760566B2 (en) 2011-03-31 2017-09-12 Microsoft Technology Licensing, Llc Augmented conversational understanding agent to identify conversation context between two humans and taking an agent action thereof
US10642934B2 (en) 2011-03-31 2020-05-05 Microsoft Technology Licensing, Llc Augmented conversational understanding architecture
US20120259638A1 (en) 2011-04-08 2012-10-11 Sony Computer Entertainment Inc. Apparatus and method for determining relevance of input speech
US20130030811A1 (en) * 2011-07-29 2013-01-31 Panasonic Corporation Natural query interface for connected car
US9024844B2 (en) 2012-01-25 2015-05-05 Microsoft Technology Licensing, Llc Recognition of image on external display
US9823742B2 (en) * 2012-05-18 2017-11-21 Microsoft Technology Licensing, Llc Interaction and management of devices using gaze detection
CN103885743A (zh) 2012-12-24 2014-06-25 大陆汽车投资(上海)有限公司 结合注视跟踪技术的语音文本输入方法和系统
US8571851B1 (en) 2012-12-31 2013-10-29 Google Inc. Semantic interpretation using user gaze order
KR20140132246A (ko) * 2013-05-07 2014-11-17 삼성전자주식회사 오브젝트 선택 방법 및 오브젝트 선택 장치
CN103605208B (zh) 2013-08-30 2016-09-28 北京智谷睿拓技术服务有限公司 内容投射系统及方法
US10317992B2 (en) * 2014-09-25 2019-06-11 Microsoft Technology Licensing, Llc Eye gaze for spoken language understanding in multi-modal conversational interactions

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030040914A1 (en) * 2000-01-27 2003-02-27 Siemens Ag System and method for eye tracking controlled speech processing
US20120295708A1 (en) * 2006-03-06 2012-11-22 Sony Computer Entertainment Inc. Interface with Gaze Detection and Voice Input
US20100033333A1 (en) * 2006-06-11 2010-02-11 Volva Technology Corp Method and apparatus for determining and analyzing a location of visual interest
CN102541438A (zh) * 2010-11-01 2012-07-04 微软公司 集成话音命令模态的用户界面
CN102567718A (zh) * 2010-12-24 2012-07-11 佳能株式会社 共享共同属性的视频对象的概要示图
US20140184550A1 (en) * 2011-09-07 2014-07-03 Tandemlaunch Technologies Inc. System and Method for Using Eye Gaze Information to Enhance Interactions
US20130304479A1 (en) * 2012-05-08 2013-11-14 Google Inc. Sustained Eye Gaze for Determining Intent to Interact
US20130346085A1 (en) * 2012-06-23 2013-12-26 Zoltan Stekkelpak Mouth click sound based computer-human interaction method, system and apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11107469B2 (en) 2017-01-18 2021-08-31 Sony Corporation Information processing apparatus and information processing method
CN109474761B (zh) * 2017-08-21 2020-08-14 阿瓦亚公司 监控代理对联络中心中的人工智能内容的监督
CN109474761A (zh) * 2017-08-21 2019-03-15 阿瓦亚公司 监控代理对联络中心中的人工智能内容的监督
CN116312528A (zh) * 2018-03-26 2023-06-23 苹果公司 自然助理交互
CN112868060A (zh) * 2018-05-07 2021-05-28 谷歌有限责任公司 用户、自动化助理和其它计算服务之间的多模态交互
US12125486B2 (en) 2018-05-07 2024-10-22 Google Llc Multi-modal interaction between users, automated assistants, and other computing services
TWI716885B (zh) * 2019-05-27 2021-01-21 陳筱涵 即時外語溝通系統
CN114616598B (zh) * 2020-10-09 2023-08-04 谷歌有限责任公司 使用眼睛注视数据的文本布局解释
US11941342B2 (en) 2020-10-09 2024-03-26 Google Llc Text layout interpretation using eye gaze data
CN114616598A (zh) * 2020-10-09 2022-06-10 谷歌有限责任公司 使用眼睛注视数据的文本布局解释
US11688106B2 (en) 2021-03-29 2023-06-27 International Business Machines Corporation Graphical adjustment recommendations for vocalization
WO2022206184A1 (en) * 2021-03-29 2022-10-06 International Business Machines Corporation Graphical adjustment recommendations for vocalization
WO2025051271A1 (en) * 2023-09-08 2025-03-13 Huawei Technologies Co., Ltd. Gaze assisted input for electronic device
CN119550212A (zh) * 2024-11-12 2025-03-04 上海交通大学 机器人自动打磨方法、机器人设备、计算机设备及介质

Also Published As

Publication number Publication date
EP3198328B1 (en) 2019-11-06
CA2961279A1 (en) 2016-03-31
KR20170065563A (ko) 2017-06-13
MX2017003754A (es) 2017-06-29
US10317992B2 (en) 2019-06-11
WO2016049439A1 (en) 2016-03-31
CN107077201B (zh) 2020-06-23
US20190391640A1 (en) 2019-12-26
JP2017536600A (ja) 2017-12-07
KR20220137810A (ko) 2022-10-12
BR112017003636A2 (pt) 2017-11-28
US10901500B2 (en) 2021-01-26
KR102451660B1 (ko) 2022-10-05
AU2015320442A1 (en) 2017-03-16
RU2017108533A (ru) 2018-09-17
KR102491846B1 (ko) 2023-01-26
US20160091967A1 (en) 2016-03-31
EP3198328A1 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
CN107077201A (zh) 用于多模式会话交互中的口头语言理解的眼睛注视
US11727677B2 (en) Personalized gesture recognition for user interaction with assistant systems
Yang et al. Benchmarking commercial emotion detection systems using realistic distortions of facial image datasets
Sultan et al. Sign language identification and recognition: A comparative study
US9875445B2 (en) Dynamic hybrid models for multimodal analysis
Arora et al. AutoFER: PCA and PSO based automatic facial emotion recognition
US12437517B2 (en) Video domain adaptation via contrastive learning for decision making
Rafiq et al. Wearable sensors-based human locomotion and indoor localization with smartphone
Dagher et al. Facial expression recognition using three-stage support vector machines
Ding et al. Designs of human–robot interaction using depth sensor-based hand gesture communication for smart material-handling robot operations
Xia et al. Audiovisual speech recognition: A review and forecast
Kaur et al. Facial emotion recognition: A comprehensive review
Abbas et al. Automatic face recognition system using deep convolutional mixer architecture and AdaBoost classifier
CN112365957A (zh) 一种基于虚拟现实的心理治疗系统
JP2024535731A (ja) ポインタトランスフォーマネットワークによる読み順
Khan et al. Advanced sequence learning approaches for emotion recognition using speech signals
Levonevskii et al. Methods for determination of psychophysiological condition of user within smart environment based on complex analysis of heterogeneous data
Castillo et al. The Influence of Speed and Position in Dynamic Gesture Recognition for Human‐Robot Interaction
Xiong et al. Parallel tracking and detection for long-term object tracking
Wyrembelski Detection of the Selected, Basic Emotion Based on Face Expression Using Kinect
Zhu English pronunciation standards based on multimodal acoustic sensors
Şencan Intention mining: surfacing and reshaping deep intentions by proactive human computer interaction
Algarni Smart Glasses Assisting Visually-Impaired People
Srinivas et al. A Framework for Detection of Overall Emotional Score of an Event from the Images Captured by a Drone
Kaushal et al. Mood Detection Using Face Recognition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant