CN107038236A - A kind of air quality data visualization system - Google Patents
A kind of air quality data visualization system Download PDFInfo
- Publication number
- CN107038236A CN107038236A CN201710253019.0A CN201710253019A CN107038236A CN 107038236 A CN107038236 A CN 107038236A CN 201710253019 A CN201710253019 A CN 201710253019A CN 107038236 A CN107038236 A CN 107038236A
- Authority
- CN
- China
- Prior art keywords
- air quality
- city
- data
- quality data
- visualization system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/248—Presentation of query results
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/25—Integrating or interfacing systems involving database management systems
- G06F16/252—Integrating or interfacing systems involving database management systems between a Database Management System and a front-end application
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/29—Geographical information databases
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/20—Drawing from basic elements, e.g. lines or circles
- G06T11/203—Drawing of straight lines or curves
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/20—Drawing from basic elements, e.g. lines or circles
- G06T11/206—Drawing of charts or graphs
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Computational Linguistics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种空气质量系统,特别涉及一种空气质量数据可视化系统。The invention relates to an air quality system, in particular to an air quality data visualization system.
背景技术Background technique
随着人们生活水平的不断提高,空气污染问题日益受到重视并急需解决。如何对繁杂而庞大的空气质量数据进行有效的分析和处理已经成为一个重要的问题。从每次空气质量报告中,可以看到我国有些地区的空气污染情况不容忽视,同时,从手机APP市场,我们可以看到关于环境监测的APP日益增多,人们对空气质量问题的关注也显著提高。但是,目前的空气质量管理系统没有很好的关注数据可视化,不能够直观的展示对用户有益的数据,也是当前急待解决的问题。With the continuous improvement of people's living standards, the problem of air pollution has been paid more and more attention and needs to be solved urgently. How to effectively analyze and process the complex and huge air quality data has become an important issue. From each air quality report, we can see that the air pollution in some areas of our country cannot be ignored. At the same time, from the mobile APP market, we can see that there are more and more APPs about environmental monitoring, and people's attention to air quality issues has also increased significantly. . However, the current air quality management system does not pay much attention to data visualization, and cannot intuitively display data that is beneficial to users, which is also an urgent problem to be solved.
发明内容Contents of the invention
针对上述现有技术存在的问题,提供了一种空气质量数据可视化系统,基于平行坐标、日历图、时间序列图和GIS百度地图信息技术处理的可视化技术设计,较好地对空气质量数据进行分类、分析处理。Aiming at the problems existing in the above-mentioned prior art, an air quality data visualization system is provided, based on the visualization technology design of parallel coordinates, calendar graph, time series graph and GIS Baidu map information technology processing, it can better classify air quality data , Analysis and processing.
为了实现上述目的,一种空气质量数据可视化系统,包括数据采集模块,根据站点和城市实时获取其对应的空气质量污染程度的颗粒物(PM2.5)、可吸入颗粒物(PM10)、SO2、NO2、O3和CO;In order to achieve the above purpose, an air quality data visualization system, including a data acquisition module, obtains the corresponding air quality pollution levels of particulate matter (PM2.5), inhalable particulate matter (PM10), SO2, NO2, O3 and CO;
数据处理模块,根据城市主键计算其对应的空气质量指数(AQI)、PM25_24h、PM10_24h、SO2_24h、NO2_24h、CO_24h、O3_8h和O3_24h,其中,The data processing module calculates its corresponding air quality index (AQI), PM25_24h, PM10_24h, SO2_24h, NO2_24h, CO_24h, O3_8h and O3_24h according to the city primary key, wherein,
其中:I为分空气质量指数,即AQI,输出值;C为污染物浓度,输入值;Clow小于或等于C的浓度限值,常量;Chigh大于或等于C的浓度限值,常量;Ilow对应于Clow的指数限值,常量;Ihigh对应于Chigh的指数限值,常量;在获得各个分空气质量指数后,然后根据公式(2)计算获得空气质量指数:Among them: I is the sub-air quality index, that is, AQI, the output value; C is the pollutant concentration, the input value; Clow is less than or equal to the concentration limit of C, a constant; Chigh is greater than or equal to the concentration limit of C, a constant; Ilow corresponds to Clow index limit value, constant; Ihigh corresponding to Chigh index limit value, constant; After obtaining each sub-air quality index, then calculate and obtain the air quality index according to formula (2):
AQI=max{IAQI1,IAQI2,……,IAQIn} (2)AQI=max{IAQI1,IAQI2,...,IAQIn} (2)
数据存储模块,将数据采集模块和数据存储模块获取的数据进行存储备用,其中数据存储模块设有城市信息数据表、站点信息数据表、城市空气质量数据表和站点空气质量数据表;The data storage module stores the data obtained by the data acquisition module and the data storage module for backup, wherein the data storage module is provided with a city information data table, a station information data table, a city air quality data table and a station air quality data table;
城市的空气质量数据线条展示模块,根据城市名称、开始时间和结束时间获取对应的城市的空气质量数据展示图,使用平行坐标的方式,对比每种污染物在一个星期内,每小时的变化趋势走向,然后通过求取平均值的方式,通过城市的空气质量数据展示模块展示,得到各污染物之间的关联关系;The city's air quality data line display module obtains the corresponding city's air quality data display graph according to the city name, start time and end time, and uses parallel coordinates to compare the hourly change trend of each pollutant within a week direction, and then through the way of calculating the average value, through the city's air quality data display module to display the relationship between various pollutants;
城市的空气质量数据地图展示模块,通过AQI着色和PUL两种着色标准进行可视化图形的着色,通过内置的GIS地图数据,在地图上通过不同着色显示对应的城市的空气质量数据信息;The air quality data map display module of the city uses AQI coloring and PUL coloring standards to color the visual graphics, and uses the built-in GIS map data to display the corresponding city's air quality data information on the map through different coloring;
城市的空气质量数据日历展示模块,获得数据后,根据AQI着色标准设置相应的颜色,对日历图下方的单选按钮进行JS事件监听,选择不同监测项,将对应监测项的值渲染到日历图中。The city's air quality data calendar display module, after obtaining the data, sets the corresponding color according to the AQI coloring standard, monitors the radio buttons below the calendar map with JS events, selects different monitoring items, and renders the values of the corresponding monitoring items to the calendar map middle.
作为上述方案的进一步优化,所述的城市信息数据表包括数据项:号码(主键)、城市名称、经度和维度,所述号码(主键)逐增1排序;所述的站点信息数据表包括数据项:号码(主键)、站点名称和城市名称,所述号码(主键)逐增1排序,且通过城市名称与所述的城市信息数据表进行数据联络。As a further optimization of the above scheme, the city information data table includes data items: number (primary key), city name, longitude and latitude, and the number (primary key) is sorted by increasing 1; the station information data table includes data Items: number (primary key), site name and city name, the number (primary key) is sorted by increasing 1, and data connection is performed with the city information data table through the city name.
作为上述方案的进一步优化,所述的城市信息数据表中初始化356条信息,涉及356个城市名称及其对应的经度和维度数据。As a further optimization of the above solution, 356 pieces of information are initialized in the city information data table, involving 356 city names and their corresponding longitude and latitude data.
作为上述方案的进一步优化,所述的站点信息数据表中初始化1437条信息,涉及1437个站点及其对应的城市名称。As a further optimization of the above solution, 1437 pieces of information are initialized in the station information data table, involving 1437 stations and their corresponding city names.
作为上述方案的进一步优化,所述的城市空气质量数据表包括数据项:城市名称、AQI、PM2.5、PM25_24h、PM10、PM10_24h、SO2、SO2_24h、NO2、NO2_24h、CO、CO_24h、O3、O3_8h和O3_24h。As a further optimization of the above scheme, the urban air quality data table includes data items: city name, AQI, PM2.5, PM25_24h, PM10, PM10_24h, SO2, SO2_24h, NO2, NO2_24h, CO, CO_24h, O3, O3_8h and O3_24h.
作为上述方案的进一步优化,所述的站点空气质量数据表包括数据项:站点名称、AQI、PM2.5、PM25_24h、PM10、PM10_24h、SO2、SO2_24h、NO2、NO2_24h、CO、CO_24h、O3、O3_8h和O3_24h。As a further optimization of the above scheme, the station air quality data table includes data items: station name, AQI, PM2.5, PM25_24h, PM10, PM10_24h, SO2, SO2_24h, NO2, NO2_24h, CO, CO_24h, O3, O3_8h and O3_24h.
作为上述方案的进一步优化,PUL着色标准中浅灰代表CO,浅绿代表O3,深蓝代表NO2,棕色代表SO2,黑色代表PM10,深灰代表PM2.5。As a further optimization of the above scheme, in the PUL coloring standard, light gray represents CO, light green represents O3, dark blue represents NO2, brown represents SO2, black represents PM10, and dark gray represents PM2.5.
作为上述方案的进一步优化,城市的空气质量数据地图展示模块,利用百度地图接口来实现的,调用后端API接口获得站点和城市空气质量数据,在程序中通过回调方法进行取得每个监测点的经纬度,将每个具体点在网页上显示。As a further optimization of the above scheme, the urban air quality data map display module is realized by using the Baidu map interface, calling the back-end API interface to obtain the site and urban air quality data, and obtaining the data of each monitoring point through the callback method in the program Latitude and longitude, each specific point is displayed on the web page.
与现有技术相比,本发明的一种空气质量数据可视化系统的有益效果如下:Compared with the prior art, the beneficial effects of a kind of air quality data visualization system of the present invention are as follows:
1、本发明的一种空气质量数据可视化系统,基于平行坐标、日历图、时间序列图和GIS百度地图信息可视化技术手段处理,较好地对空气质量数据进行分类、分析处理,可以为管理部门提供决策支持。1. An air quality data visualization system of the present invention is based on parallel coordinates, calendar graphs, time series graphs and GIS Baidu map information visualization technology, and can better classify, analyze and process air quality data, which can be used by management departments Provide decision support.
2、本发明的一种空气质量数据可视化系统实现高维数据可视化,通过使用平行坐标的方式将高维数据展现出来;让人们可以非常清楚看到可视化的效果,便于更快速,更准确的分析原始数据。2. An air quality data visualization system of the present invention realizes high-dimensional data visualization, and displays high-dimensional data by using parallel coordinates; people can see the visualization effect very clearly, which facilitates faster and more accurate analysis Raw data.
3、本发明的一种空气质量数据可视化系统实现空间信息可视化,利用GIS百度地图,将全国城市某一时刻空气质量数据显示出来;让这些数据更直观的为科研或决策者服务。3. An air quality data visualization system of the present invention realizes spatial information visualization, and uses GIS Baidu map to display the air quality data of cities across the country at a certain time; making these data more intuitive for scientific research or decision makers.
4、本发明的一种空气质量数据可视化系统实现时序信息可视化,通过使用时间序列图,将某个城市在一段时间的监测项变化显现出来。4. An air quality data visualization system of the present invention realizes time-series information visualization, and displays changes in monitoring items in a certain city over a period of time by using a time-series diagram.
5、基于本发明的一种空气质量数据可视化系统可以进行超标污染物分析:通过对比日历图,可以获得主要和超标污染物情况;基于本发明的一种空气质量数据可视化系统还可以进行多地域空气情况对比分析,通过在某一城市的相同时刻查看所有的监测点情况,分析获得结论。5. A kind of air quality data visualization system based on the present invention can carry out the analysis of excessive pollutants: by comparing the calendar chart, the situation of main and excessive pollutants can be obtained; a kind of air quality data visualization system based on the present invention can also carry out multi-region Comparative analysis of air conditions, by viewing the conditions of all monitoring points at the same time in a certain city, analysis and conclusions are obtained.
附图说明Description of drawings
图1为本发明的一种空气质量数据可视化系统的结构模块框图。Fig. 1 is a structural block diagram of an air quality data visualization system of the present invention.
图2使用本发明的一种空气质量数据可视化系统的对2016年1月1日-7日的Pm10变化趋势监测图。Fig. 2 uses a kind of air quality data visualization system of the present invention to the Pm10 change trend monitoring figure on January 1, 2016-7 days.
图3使用本发明的一种空气质量数据可视化系统的对2016年1月1日-7日的Pm2.5变化趋势监测图。Fig. 3 uses a kind of air quality data visualization system of the present invention to monitor the trend of Pm2.5 from January 1st to 7th, 2016.
具体实施方式detailed description
为使本发明的目的、技术方案和优点更加清楚明了,下面通过附图及实施例,对本发明进行进一步详细说明。但是应该理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限制本发明的范围。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. However, it should be understood that the specific embodiments described here are only used to explain the present invention, and are not intended to limit the scope of the present invention.
参见图1,本发明公开了一种空气质量数据可视化系统,包括数据采集模块、数据处理模块、数据存储模块、城市的空气质量数据线条展示模块,城市的空气质量数据地图展示模块和城市的空气质量数据日历展示模块。Referring to Fig. 1, the present invention discloses an air quality data visualization system, including a data collection module, a data processing module, a data storage module, a city air quality data line display module, a city air quality data map display module and a city air quality data display module. Quality data calendar display module.
其中,数据采集模块,根据站点和城市实时获取其对应的空气质量污染程度的颗粒物(PM2.5)、可吸入颗粒物(PM10)、SO2、NO2、O3和CO;具体参见表1,Among them, the data acquisition module obtains the corresponding air quality pollution levels of particulate matter (PM2.5), inhalable particulate matter (PM10), SO2, NO2, O3 and CO in real time according to the site and city; see Table 1 for details.
表1监测污染物Table 1 Monitored Pollutants
数据处理模块,根据城市主键计算其对应的空气质量指数(AQI),PM25_24h、PM10_24h、SO2_24h、NO2_24h、CO_24h、O3_8h和O3_24h,其中,The data processing module calculates its corresponding air quality index (AQI) according to the city primary key, PM25_24h, PM10_24h, SO2_24h, NO2_24h, CO_24h, O3_8h and O3_24h, wherein,
其中:I为分空气质量指数,即AQI,输出值;C为污染物浓度,输入值;Clow小于或等于C的浓度限值,常量;Chigh大于或等于C的浓度限值,常量;Ilow对应于Clow的指数限值,常量;Ihigh对应于Chigh的指数限值,常量;在获得各个分空气质量指数后,然后根据公式(2)计算获得空气质量指数:Among them: I is the sub-air quality index, that is, AQI, the output value; C is the pollutant concentration, the input value; Clow is less than or equal to the concentration limit of C, a constant; Chigh is greater than or equal to the concentration limit of C, a constant; Ilow corresponds to Clow index limit value, constant; Ihigh corresponding to Chigh index limit value, constant; After obtaining each sub-air quality index, then calculate and obtain the air quality index according to formula (2):
AQI=max{IAQI1,IAQI2,……,IAQIn} (2)AQI=max{IAQI1,IAQI2,...,IAQIn} (2)
数据存储模块,将数据采集模块和数据存储模块获取的数据进行存储备用,其中数据存储模块设有城市信息数据表、站点信息数据表、城市空气质量数据表和站点空气质量数据表。城市信息数据表包括数据项:号码(主键)、城市名称、经度和维度,所述号码(主键)逐增1排序;所述的站点信息数据表包括数据项:号码(主键)、站点名称和城市名称,所述号码(主键)逐增1排序,且通过城市名称与所述的城市信息数据表进行数据联络。本发明的优先实施例中,城市信息数据表中初始化356条信息,涉及356个城市名称及其对应的经度和维度数据。站点信息数据表中初始化1437条信息,涉及1437个站点及其对应的城市名称。城市空气质量数据表包括数据项:城市名称、AQI、PM2.5、PM25_24h、PM10、PM10_24h、SO2、SO2_24h、NO2、NO2_24h、CO、CO_24h、O3、O3_8h和O3_24h。其中,PM25_24h、PM10、PM10_24h、SO2、SO2_24h、 NO2、NO2_24h、CO、CO_24h、O3和O3_24h表示对应污染物24小时的平均值,O3_8h表示O3的8小时平均值。站点空气质量数据表包括数据项:站点名称、AQI、PM2.5、PM25_24h、PM10、PM10_24h、SO2、SO2_24h、NO2、NO2_24h、CO、CO_24h、O3、O3_8h和O3_24h。The data storage module stores the data obtained by the data acquisition module and the data storage module for backup, wherein the data storage module is provided with a city information data table, a station information data table, a city air quality data table and a station air quality data table. The city information data table includes data items: number (primary key), city title, longitude and latitude, and described number (primary key) is sorted by increasing 1; Described site information data table includes data items: number (primary key), site name and City name, the number (primary key) is sorted by increasing 1, and the data connection is carried out with the city information data table through the city name. In the preferred embodiment of the present invention, 356 pieces of information are initialized in the city information data table, involving 356 city names and their corresponding longitude and latitude data. 1437 pieces of information are initialized in the station information data table, involving 1437 stations and their corresponding city names. The urban air quality data table includes data items: city name, AQI, PM2.5, PM25_24h, PM10, PM10_24h, SO2, SO2_24h, NO2, NO2_24h, CO, CO_24h, O3, O3_8h and O3_24h. Among them, PM25_24h, PM10, PM10_24h, SO2, SO2_24h, NO2, NO2_24h, CO, CO_24h, O3 and O3_24h represent the 24-hour average value of the corresponding pollutants, and O3_8h represents the 8-hour average value of O3. The station air quality data table includes data items: station name, AQI, PM2.5, PM25_24h, PM10, PM10_24h, SO2, SO2_24h, NO2, NO2_24h, CO, CO_24h, O3, O3_8h and O3_24h.
城市的空气质量数据线条展示模块,根据城市名称、开始时间和结束时间获取对应的城市的空气质量数据展示图,使用平行坐标的方式,对比每种污染物在一个星期内,每小时的变化趋势走向,然后通过求取平均值的方式,通过城市的空气质量数据展示模块展示,得到各污染物之间的关联关系。The city's air quality data line display module obtains the corresponding city's air quality data display graph according to the city name, start time and end time, and uses parallel coordinates to compare the hourly change trend of each pollutant within a week direction, and then through the way of calculating the average value, through the city's air quality data display module display, to get the relationship between various pollutants.
城市的空气质量数据地图展示模块,通过AQI着色和PUL两种着色标准进行可视化图形的着色,通过内置的GIS地图数据,在地图上通过不同着色显示对应的城市的空气质量数据信息。其中,PUL着色标准中浅灰代表CO,浅绿代表O3,深蓝代表NO2,棕色代表SO2,黑色代表PM10,深灰代表PM2.5。本发明的优先实施例中,城市的空气质量数据地图展示模块,利用百度地图接口来实现的,调用后端API接口获得站点和城市空气质量数据,在程序中通过回调方法进行取得每个监测点的经纬度,将每个具体点在网页上显示。The air quality data map display module of the city uses AQI coloring and PUL coloring standards to color the visual graphics, and uses the built-in GIS map data to display the corresponding city's air quality data information on the map through different coloring. Among them, in the PUL coloring standard, light gray represents CO, light green represents O3, dark blue represents NO2, brown represents SO2, black represents PM10, and dark gray represents PM2.5. In the preferred embodiment of the present invention, the air quality data map display module of the city is realized by using the Baidu map interface, and the back-end API interface is called to obtain the site and the city air quality data, and each monitoring point is obtained by a callback method in the program The latitude and longitude of each specific point will be displayed on the web page.
城市的空气质量数据日历展示模块,获得数据后,根据AQI着色标准设置相应的颜色,对日历图下方的单选按钮进行JS事件监听,选择不同监测项,将对应监测项的值渲染到日历图中。The city's air quality data calendar display module, after obtaining the data, sets the corresponding color according to the AQI coloring standard, monitors the radio buttons below the calendar map with JS events, selects different monitoring items, and renders the values of the corresponding monitoring items to the calendar map middle.
使用本发明的一种空气质量数据可视化系统,基于2016年01月01日到2016年01月31日每小时的空气质量数据,进行分析处理得到:Using an air quality data visualization system of the present invention, based on the hourly air quality data from January 01, 2016 to January 31, 2016, analysis and processing are performed to obtain:
(1)使用本发明系统一种空气质量数据可视化系统中的城市的空气质量数据线条展示模块分得出的PM2.5、PM10、SO2、NO2、O3和CO一周的变化趋势图,容易推到出:NO2和O3以及SO2和O3之间,存在着明显的X型分布,所以它们之间是存在着负相关关系,这也是与化学原理符合的,强氧化剂O3与SO2和NO2是会发生氧化还原反应的。PM2.5和PM10之间是存在强线性关系,这是因为PM2.5指的是空气中颗粒物小于直径2.5um,而PM10指直径小于10um的不可吸入颗粒物,所以PM10是包含PM2.5的。参见图2和图3,图2使用本发明的一种空气质量数据可视化系统的对2016年1月1日-7日的Pm10变化趋势监测图。图3使用本发明的一种空气质量数据可视化系统的对2016年1月1日-7日的Pm2.5变化趋势监测图。(1) use the PM2.5, PM10, SO2, NO2, O3 and CO one week's changing trend figure that the air quality data line display module of the city in a kind of air quality data visualization system of the present invention system points out, pushes easily Out: There is an obvious X-type distribution between NO 2 and O 3 and SO 2 and O 3 , so there is a negative correlation between them, which is also consistent with the chemical principle. The strong oxidant O 3 and SO 2 And NO2 will undergo redox reaction. There is a strong linear relationship between PM2.5 and PM10. This is because PM2.5 refers to particles in the air with a diameter of less than 2.5um, while PM10 refers to non-respirable particles with a diameter of less than 10um, so PM10 includes PM2.5. Referring to Fig. 2 and Fig. 3, Fig. 2 uses a kind of air quality data visualization system of the present invention to monitor the trend of Pm10 from January 1st to 7th, 2016. Fig. 3 uses a kind of air quality data visualization system of the present invention to monitor the trend of Pm2.5 from January 1st to 7th, 2016.
(2)使用本发明系统一种空气质量数据可视化系统中,为了能够分析出不同地区和时间段的首要污染物和超标污染物,根据需要选择不同城市和时间段。从日历图中,可以清楚地看到每个监测项的分布情况,只需要依次和AQI的分布情况进行对比,当其和AQI分布最为相似时,则为首要污染物,当其大部分颜色不为黄或绿时,则为超标污染物。(2) In an air quality data visualization system using the system of the present invention, in order to analyze primary pollutants and excessive pollutants in different regions and time periods, different cities and time periods are selected as required. From the calendar chart, you can clearly see the distribution of each monitoring item. You only need to compare it with the distribution of AQI in turn. When it is most similar to the distribution of AQI, it is the primary pollutant. When it is yellow or green, it is excessive pollutant.
(3)使用本发明系统一种空气质量数据可视化系统中,通过选择不同时间段和地域的空气质量情况,在GIS百度地图中显示出具体城市的每个具体站点信息,进行多地域空气质量对比分析。(3) In a kind of air quality data visualization system using the system of the present invention, by selecting the air quality situation in different time periods and regions, each specific station information of a specific city is shown in the GIS Baidu map, and multi-regional air quality comparisons are carried out analyze.
本发明的一种空气质量数据可视化系统实现高维数据可视化[,通过使用平行坐标的方式将高维数据展现出来;让人们可以非常清楚看到可视化的效果,便于更快速,更准确的分析原始数据。本发明的一种空气质量数据可视化系统实现空间信息可视化,利用GIS百度地图,将全国城市某一时刻空气质量数据显示出来;让这些数据更直观的为科研或决策者服务。An air quality data visualization system of the present invention realizes high-dimensional data visualization[, and displays high-dimensional data by using parallel coordinates; it allows people to see the visualization effect very clearly, which facilitates faster and more accurate analysis of the original data. The air quality data visualization system of the present invention realizes the visualization of spatial information, and uses the GIS Baidu map to display the air quality data of cities across the country at a certain time; making these data more intuitive for scientific research or decision makers.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention, and is not intended to limit the present invention. Any modification, equivalent replacement or improvement made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710253019.0A CN107038236A (en) | 2017-04-19 | 2017-04-19 | A kind of air quality data visualization system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710253019.0A CN107038236A (en) | 2017-04-19 | 2017-04-19 | A kind of air quality data visualization system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107038236A true CN107038236A (en) | 2017-08-11 |
Family
ID=59534924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710253019.0A Pending CN107038236A (en) | 2017-04-19 | 2017-04-19 | A kind of air quality data visualization system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107038236A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107677777A (en) * | 2017-10-13 | 2018-02-09 | 深圳市博安达信息技术股份有限公司 | A kind of air heavy air pollution process intelligent analysis system |
CN108318630A (en) * | 2018-02-06 | 2018-07-24 | 济宁中科云天环保科技有限公司 | A kind of urban air-quality real-time monitoring system and method for early warning |
CN108490131A (en) * | 2018-03-27 | 2018-09-04 | 四川斐讯信息技术有限公司 | A kind of display methods and system of the environmental quality data based on intelligent terminal |
CN110389982A (en) * | 2019-07-25 | 2019-10-29 | 东北师范大学 | A system and method for visual analysis of spatio-temporal patterns based on air quality data |
CN110427533A (en) * | 2019-07-25 | 2019-11-08 | 东北师范大学 | Pollution spread mode visible analysis method and system based on timing Particle tracking |
CN110910480A (en) * | 2019-09-29 | 2020-03-24 | 谢国宇 | A Rendering Method of Environmental Monitoring Image Based on Color Mode Mapping |
CN112486993A (en) * | 2020-11-30 | 2021-03-12 | 中科三清科技有限公司 | Air quality visual display method and air quality visual display system |
CN112783385A (en) * | 2021-01-04 | 2021-05-11 | 河北志晟信息技术股份有限公司 | Dynamic generation method of environment-friendly monitoring map point location identification |
WO2021174752A1 (en) * | 2020-03-02 | 2021-09-10 | 平安国际智慧城市科技股份有限公司 | Method and apparatus for visualizing ambient air quality data, device, and storage medium |
CN113567636A (en) * | 2021-08-25 | 2021-10-29 | 中科三清科技有限公司 | Air quality display method, system and device |
CN115827810A (en) * | 2022-12-08 | 2023-03-21 | 成都大数据产业技术研究院有限公司 | Visualization method and system for displaying distribution state of atmospheric pollution information |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7031838B1 (en) * | 2003-03-25 | 2006-04-18 | Integrated Environmental Services. Inc. | System and method for a cradle-to-grave solution for investigation and cleanup of hazardous waste impacted property and environmental media |
CN102254330A (en) * | 2010-07-29 | 2011-11-23 | 山东大学 | Image processing-based method for visualization of air pollution data |
CN104237457A (en) * | 2014-05-27 | 2014-12-24 | 李岩 | Air quality monitoring method and system |
-
2017
- 2017-04-19 CN CN201710253019.0A patent/CN107038236A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7031838B1 (en) * | 2003-03-25 | 2006-04-18 | Integrated Environmental Services. Inc. | System and method for a cradle-to-grave solution for investigation and cleanup of hazardous waste impacted property and environmental media |
CN102254330A (en) * | 2010-07-29 | 2011-11-23 | 山东大学 | Image processing-based method for visualization of air pollution data |
CN104237457A (en) * | 2014-05-27 | 2014-12-24 | 李岩 | Air quality monitoring method and system |
Non-Patent Citations (1)
Title |
---|
廖志芳 等: "AirVis:一个基于Web的空气质量数据可视分析系统", 《计算机工程与应用》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107677777A (en) * | 2017-10-13 | 2018-02-09 | 深圳市博安达信息技术股份有限公司 | A kind of air heavy air pollution process intelligent analysis system |
CN108318630A (en) * | 2018-02-06 | 2018-07-24 | 济宁中科云天环保科技有限公司 | A kind of urban air-quality real-time monitoring system and method for early warning |
CN108490131A (en) * | 2018-03-27 | 2018-09-04 | 四川斐讯信息技术有限公司 | A kind of display methods and system of the environmental quality data based on intelligent terminal |
CN110389982A (en) * | 2019-07-25 | 2019-10-29 | 东北师范大学 | A system and method for visual analysis of spatio-temporal patterns based on air quality data |
CN110427533A (en) * | 2019-07-25 | 2019-11-08 | 东北师范大学 | Pollution spread mode visible analysis method and system based on timing Particle tracking |
CN110427533B (en) * | 2019-07-25 | 2023-04-18 | 东北师范大学 | Pollution propagation mode visual analysis method and system based on time sequence particle tracking |
CN110910480A (en) * | 2019-09-29 | 2020-03-24 | 谢国宇 | A Rendering Method of Environmental Monitoring Image Based on Color Mode Mapping |
WO2021174752A1 (en) * | 2020-03-02 | 2021-09-10 | 平安国际智慧城市科技股份有限公司 | Method and apparatus for visualizing ambient air quality data, device, and storage medium |
CN112486993A (en) * | 2020-11-30 | 2021-03-12 | 中科三清科技有限公司 | Air quality visual display method and air quality visual display system |
CN112783385A (en) * | 2021-01-04 | 2021-05-11 | 河北志晟信息技术股份有限公司 | Dynamic generation method of environment-friendly monitoring map point location identification |
CN113567636A (en) * | 2021-08-25 | 2021-10-29 | 中科三清科技有限公司 | Air quality display method, system and device |
CN115827810A (en) * | 2022-12-08 | 2023-03-21 | 成都大数据产业技术研究院有限公司 | Visualization method and system for displaying distribution state of atmospheric pollution information |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107038236A (en) | A kind of air quality data visualization system | |
CN112085241B (en) | Environmental big data analysis and decision platform based on machine learning | |
Song et al. | Dynamic assessment of PM2. 5 exposure and health risk using remote sensing and geo-spatial big data | |
Joly et al. | Objective classification of air quality monitoring sites over Europe | |
CN101692309B (en) | Traffic travel calculation method based on mobile phone information | |
CN107609731A (en) | A kind of Evaluation of Atmospheric Environmental Quality method | |
CN102184490A (en) | System and system for real-time monitoring and managing urban water resources | |
CN104237457A (en) | Air quality monitoring method and system | |
CN107368894A (en) | The prevention and control of air pollution electricity consumption data analysis platform shared based on big data | |
CN108489875B (en) | A pollutant traceability system and method based on time period statistical analysis | |
Zhao et al. | A network distance and graph-partitioning-based clustering method for improving the accuracy of urban hotspot detection | |
CN118445740B (en) | Intelligent sewage treatment monitoring system and method based on digital twinning | |
CN206294207U (en) | Grid power blackout proposed figures for the plan Optimization Platform based on " big operation " multi-constraint condition | |
Lei et al. | Analysis of the dynamic characteristics of the coupling relationship between urbanization and environment in Kunming city, southwest China | |
Tang et al. | Spatial variations of PM2. 5 during the Pittsburgh air quality study | |
CN116933934A (en) | County carbon emission prediction and analysis method and system integrating VIIRS and statistical data | |
Chen et al. | Source identification, spatial distribution pattern, risk assessment and influencing factors for soil heavy metal pollution in a high-tech industrial development zone in Central China | |
Xia et al. | Emerging carbon dioxide hotspots in East Asia identified by a top-down inventory | |
Qiu et al. | Solidarity or self-interest? Carbon footprint pressure measurement and spatial correlation in the Yangtze River Delta region | |
CN102522044B (en) | Method for judging dispersion degree of team and application thereof in tour guide field | |
Theunis et al. | Participatory air quality monitoring in urban environments: reconciling technological challenges and participation | |
CN114235653A (en) | Atmospheric particulate pollutant space-time prediction cloud platform based on end cloud cooperation | |
Jia et al. | Exploring the scaling relations between urban spatial form and infrastructure | |
Racz et al. | Exposure monitoring toward environmental justice | |
CN107291766A (en) | A power grid panoramic information display system with horizontal professional integration and vertical provinces, prefectures and counties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170811 |
|
RJ01 | Rejection of invention patent application after publication |