CN107015193B - A binocular CCD visual mine moving target positioning method and system - Google Patents
A binocular CCD visual mine moving target positioning method and system Download PDFInfo
- Publication number
- CN107015193B CN107015193B CN201710252567.1A CN201710252567A CN107015193B CN 107015193 B CN107015193 B CN 107015193B CN 201710252567 A CN201710252567 A CN 201710252567A CN 107015193 B CN107015193 B CN 107015193B
- Authority
- CN
- China
- Prior art keywords
- moving target
- mine
- binocular ccd
- positioning
- base station
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/0009—Transmission of position information to remote stations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/005—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
本发明公开了一种双目CCD视觉矿井移动目标定位方法及系统,实现该方法的系统包括井上设备和井下装置,井上设备包括基站控制器、定位服务器、以太网交换机和监控终端,井下装置包括矿井本安型基站、无线射频识别标签。实施该系统的方法步骤为:(1)采用RSSI算法估算移动目标的位置;(2)对移动目标的无线射频识别标签进行匹配特征提取训练;(3)对采样后的图像进行ORB算法特征匹配;(4)利用双目CCD视觉传感器对移动目标左右图像进行立体标定;(5)获取双目CCD视觉传感器的内外参矩阵,标定移动目标的世界坐标;(6)对移动目标的世界坐标信息进行位置校正,获取矿井下移动目标的准确位置信息。本发明解决了矿井NLOS环境下移动目标的精确定位问题,提高了系统的可靠性和鲁棒性。
The invention discloses a binocular CCD visual mine moving target positioning method and system. The system for realizing the method includes above-hole equipment and down-hole equipment. The above-hole equipment includes a base station controller, a positioning server, an Ethernet switch and a monitoring terminal. The down-hole equipment includes Mine intrinsically safe base stations, radio frequency identification tags. The method steps for implementing the system are: (1) using the RSSI algorithm to estimate the position of the moving target; (2) performing matching feature extraction training on the radio frequency identification tags of the moving target; (3) performing ORB algorithm feature matching on the sampled image (4) Use the binocular CCD visual sensor to carry out stereo calibration to the left and right images of the moving target; (5) Obtain the internal and external parameter matrix of the binocular CCD visual sensor, and calibrate the world coordinates of the moving target; (6) The world coordinate information of the moving target Perform position correction to obtain accurate position information of moving targets in the mine. The invention solves the problem of precise positioning of the moving target in the mine NLOS environment, and improves the reliability and robustness of the system.
Description
技术领域technical field
本发明涉及无线通信技术和计算机视觉技术,特别是涉及一种双目CCD视觉矿井移动目标定位方法及系统。The invention relates to wireless communication technology and computer vision technology, in particular to a binocular CCD vision mine moving target positioning method and system.
背景技术Background technique
煤炭是我国重要的基础能源,以煤为主的能源结构在相当长时间内不会改变,随着国民经济的发展和煤炭的需求量越来越大,伴随的煤矿安全生产事故也在不断增多。因此,矿井安全的要求也越来越高,这对于矿井作业人员、作业设备等移动目标定位的准确性和可靠性也提出了更高的要求。Coal is an important basic energy in our country, and the energy structure dominated by coal will not change for a long time. With the development of the national economy and the increasing demand for coal, the accompanying coal mine safety production accidents are also increasing . Therefore, the requirements for mine safety are getting higher and higher, which also puts forward higher requirements for the accuracy and reliability of the positioning of moving targets such as mine operators and operating equipment.
目前,已经有一些基于RFID、WIFI、Zigbee等定位技术,以及三角形质心定位、TOA、AOA等定位算法在井下人员定位方面得到应用,但上述定位技术和定位方法,在井下移动目标定位精准度上存在问题:一方面由于井下NLOS环境电磁波非直视传播和多径干扰,WIFI、Zigbee等定位技术的实时性、准确性易受影响,而且由于矿井巷道无线电磁波传输损耗大、信号衰减较为严重,采用三角形质心定位、TOA、AOA等定位算法存在较大误差,无法实现矿井移动目标的精确定位。另一方面,RFID定位技术只能进行井下移动目标的进出识别,无法实现移动目标的二维定位,尤其是,当井下出入口及工作面同一地点同时出现多个移动目标时,RFID识别会造成漏检或识别不准问题,也难以进行准确定位。At present, some positioning technologies based on RFID, WIFI, and Zigbee, as well as positioning algorithms such as triangle centroid positioning, TOA, and AOA, have been applied in underground personnel positioning. Existing problems: On the one hand, due to the non-direct line-of-sight propagation and multipath interference of electromagnetic waves in the underground NLOS environment, the real-time performance and accuracy of positioning technologies such as WIFI and Zigbee are easily affected, and due to the large transmission loss of wireless electromagnetic waves in mine roadways and serious signal attenuation, There are large errors in positioning algorithms such as triangle centroid positioning, TOA, and AOA, and it is impossible to achieve accurate positioning of mine moving targets. On the other hand, RFID positioning technology can only identify the entry and exit of moving targets underground, and cannot realize the two-dimensional positioning of moving targets. It is also difficult to accurately locate the problem of inaccurate inspection or identification.
CCD视觉定位技术广泛应用于工业非接触测量中,具有定位精度高、抗干扰能力强、可远距离获取目标图像等特点,而且,随着CCD视觉传感器及其测量技术在工业应用成果的不断推广,其在煤矿井下移动目标定位的应用也得到越来越多的重视。CCD visual positioning technology is widely used in industrial non-contact measurement. It has the characteristics of high positioning accuracy, strong anti-interference ability, and long-distance acquisition of target images. Moreover, with the continuous promotion of CCD visual sensor and its measurement technology in industrial application results , and its application in underground coal mine mobile target positioning has also received more and more attention.
发明内容Contents of the invention
本发明所要解决的技术问题是:针对上述存在的问题,提出一种双目CCD视觉矿井移动目标定位方法及系统,实现矿井移动目标实时、精确定位。The technical problem to be solved by the present invention is to propose a binocular CCD visual mine moving target positioning method and system to realize real-time and precise positioning of the mine moving target in view of the above existing problems.
本发明的技术方案是:提出一种双目CCD视觉矿井移动目标定位方法及系统,实现该方法的系统包括井上设备和井下装置,井上设备包括基站控制器、以太网交换机、定位服务器和监控终端,井下装置包括矿井本安型基站、无线射频识别标签。井上设备通过光链路与所述井下装置进行通信。The technical solution of the present invention is: to propose a binocular CCD visual mine moving target positioning method and system, the system for realizing the method includes the above-ground equipment and the down-hole device, and the above-ground equipment includes a base station controller, an Ethernet switch, a positioning server and a monitoring terminal , Underground devices include mine intrinsically safe base stations and radio frequency identification tags. Uphole equipment communicates with the downhole device via an optical link.
所述矿井本安型基站具有LTE、WIFI、UWB等无线接口,用于井下移动目标的无线射频识别;The mine intrinsically safe base station has wireless interfaces such as LTE, WIFI, and UWB, and is used for radio frequency identification of underground moving targets;
所述矿井本安型基站内置双目CCD视觉传感器,用于采集井下移动目标的左右立体图像信息,并对其进行ORB特征匹配和立体标定;The mine intrinsically safe base station has a built-in binocular CCD vision sensor, which is used to collect the left and right stereo image information of the moving target in the mine, and perform ORB feature matching and stereo calibration on it;
所述矿井本安型基站通过LTE无线网络和光链路将双目CCD视觉传感器标定的位置信息发送至井上所述定位服务器;The intrinsically safe base station of the mine sends the position information calibrated by the binocular CCD visual sensor to the positioning server on the mine through the LTE wireless network and the optical link;
所述无线射频识别标签,作为识别标志安装或固定在井下移动目标上,用于移动目标的RSSI无线射频识别、特征提取与匹配;The radio frequency identification tag is installed or fixed on the underground mobile target as an identification mark, and is used for RSSI radio frequency identification, feature extraction and matching of the mobile target;
所述双目CCD视觉矿井移动目标定位方法及系统,其实现步骤包括:The binocular CCD visual mine moving target positioning method and system, its implementation steps include:
步骤1、所述矿井本安型基站通过接收安装或固定在移动目标上的无线射频识别标签信号,采用RSSI算法估算移动目标的位置。Step 1. The mine intrinsically safe base station estimates the position of the moving target by using the RSSI algorithm by receiving the radio frequency identification tag signal installed or fixed on the moving target.
步骤2、定义双目CCD视觉识别的判决阈值Thr为双目CCD视觉传感器的图像信息采样最远距离。Step 2. Define the judgment threshold Thr of the binocular CCD visual recognition as the farthest sampling distance of the image information of the binocular CCD visual sensor.
步骤3、当矿井本安型基站监测到移动目标距该基站的距离小于等于判决阈值,即dRssi≤Thr时,双目CCD视觉传感器对移动目标进行图像信息采样与距离计算,否则,返回步骤1重新估算移动目标的位置。Step 3. When the mine intrinsically safe base station detects that the distance between the moving target and the base station is less than or equal to the decision threshold, that is, d Rssi ≤ Thr, the binocular CCD vision sensor performs image information sampling and distance calculation on the moving target, otherwise, return to step 1 Re-estimate the position of the moving target.
步骤4、双目CCD视觉传感器采用ORB算法对无线射频识别标签进行特征提取训练,并根据提取特征和双目CCD视觉传感器采集到的移动目标识别标志特征进行匹配。Step 4: The binocular CCD vision sensor uses the ORB algorithm to perform feature extraction training on the radio frequency identification tag, and performs matching according to the extracted features and the characteristics of the moving target identification signs collected by the binocular CCD vision sensor.
步骤5、当移动目标特征匹配成功,双目CCD视觉传感器对移动目标图像进行左右立体标定,获取双目CCD视觉传感器的内外参数矩阵及视差均值,并采用双目CCD视觉传感器融合计算出移动目标的世界坐标信息,否则返回步骤1重新估算移动目标的位置。Step 5. When the feature matching of the moving target is successful, the binocular CCD vision sensor performs left and right stereo calibration on the moving target image, obtains the internal and external parameter matrix and the mean value of the parallax of the binocular CCD vision sensor, and calculates the moving target by fusion of the binocular CCD vision sensor world coordinate information, otherwise return to step 1 to re-estimate the position of the moving target.
步骤6、根据所述矿井本安型基站所处位置,对移动目标的世界坐标信息进行校正,获取移动目标的最终位置坐标信息。Step 6: Correct the world coordinate information of the moving target according to the location of the mine intrinsically safe base station, and obtain the final position coordinate information of the moving target.
所述矿井本安型基站,采用RSSI算法监测井下移动目标的接收信号强度并对井下移动目标定位,根据传播损耗理论模型计算双目CCD视觉传感器对移动目标的图像信息采样分析距离Thr,其中,Pr(dRssi)为井下环境中信号传输距离为dRssi时的信号强度,Pr(d0)为理想空间状态中信号传输距离为d0时的信号强度,k为信号强度衰减系数,i=1,...,NLoss,为实测NLoss次井下信号强度衰减系数。The mine intrinsically safe base station uses the RSSI algorithm to monitor the received signal strength of the underground mobile target and locate the underground mobile target. According to the propagation loss theoretical model Calculate the sampling and analysis distance Thr of the image information of the moving target by the binocular CCD vision sensor, where P r (d Rssi ) is the signal strength when the signal transmission distance in the downhole environment is d Rssi , and P r (d 0 ) is the ideal space state The signal strength when the signal transmission distance is d 0 , k is the signal strength attenuation coefficient, i=1, . . . , N Loss , which is the attenuation coefficient of the downhole signal strength of the measured N Loss times.
所述双目CCD视觉矿井移动目标定位方法及系统,实现对井下移动目标进行ORB特征匹配的步骤进一步包括:The binocular CCD visual mine moving target positioning method and system, the step of realizing the ORB feature matching of the underground moving target further includes:
步骤1、利用ORB算法检测特征点,采用FAST算子检测井下移动目标特征点。Step 1. Use the ORB algorithm to detect the feature points, and use the FAST operator to detect the feature points of the downhole moving target.
步骤2、对检测到的井下移动目标特征点添加方向信息,构成oFAST。Step 2. Add direction information to the detected feature points of the downhole moving target to form oFAST.
步骤3、采用灰度质心法对检测到的井下移动目标角点添加方向信息。ORB采取灰度质心法给检测到的角点添加方向信息。Rosin定义邻域矩:mpq=∑x,yxpyqI(x,y),质心为:特征点与质心夹角定义为FAST特征点的方向:θ=atan2(m01,m10)。Step 3: Add direction information to the detected corner points of the downhole moving target by using the gray scale centroid method. ORB adopts the gray-scale centroid method to add direction information to the detected corner points. Rosin defines neighborhood moments: m pq = ∑ x, y x p y q I(x, y), and the centroid is: The angle between the feature point and the centroid is defined as the direction of the FAST feature point: θ=atan2(m 01 , m 10 ).
步骤4、采用BRIEF描述子对检测到的井下移动目标进行特征点描述。Step 4, use the BRIEF descriptor to describe the feature points of the detected downhole moving target.
步骤5、对检测到的井下移动目标特征点描述子添加旋转不变性,构成SteerBRIEF,不仅利用BRIEF的计算简单、快速的优点,而且解决了BRIEF本身不具有旋转不变性的特点。定义S×S大小图像,算法提取到特征点描述符其中p(x)是平滑之后图像邻域P在x=(u,v)T处的灰度值。对于(xi,yi)的n个位置对,Steer BRIEF在(xi,yi)处,对于任意n个位置对的特征集利用旋转矩阵Rθ旋转匹配点,得到带有方向的特征集Sθ=RθS。Step 5. Add rotation invariance to the detected feature point descriptor of the downhole moving target to form SteerBRIEF, which not only utilizes the simple and fast calculation advantages of BRIEF, but also solves the fact that BRIEF itself does not have rotation invariance. Define the S×S size image, and the algorithm extracts the feature point descriptor where p(x) is the gray value of the image neighborhood P at x=(u,v) T after smoothing. For n position pairs of ( xi , y i ), Steer BRIEF is at ( xi , y i ), for any feature set of n position pairs Use the rotation matrix R θ to rotate the matching point, and get the feature set S θ = R θ S with direction.
步骤6、计算两个匹配点对的描述子Hamming距离Ham,进行特征匹配判决。旋转后的二进制准则描述子gn(p,θ):=fn(p)|(xi,yi)∈Sθ,在匹配时只需计算两个特征点描述子的Hamming距离Ham,进行特征匹配判决。Step 6. Calculate the descriptor Hamming distance Ham of two matching point pairs, and perform feature matching judgment. The rotated binary criterion descriptor g n (p, θ): = f n (p)|( xi , y i )∈S θ , only need to calculate the Hamming distance Ham of the two feature point descriptors when matching, Make a feature matching decision.
步骤7、利用贪婪算法从所有可能的像素块对中搜索已设定的n个相关性最低的像素块对,检索并匹配移动目标特征,判决特征匹配结果。Step 7. Search for the set n least correlated pixel block pairs from all possible pixel block pairs by using a greedy algorithm, retrieve and match the features of the moving target, and determine the feature matching result.
所述双目CCD视觉矿井移动目标定位方法及系统,对井下移动目标进行立体标定的步骤进一步包括:The binocular CCD vision mine moving target positioning method and system, the step of carrying out stereo calibration to the underground moving target further includes:
双目CCD视觉传感器通过ORB算法特征匹配井下移动目标成功后,利用双目CCD视觉传感器对采集到的移动目标进行定位,图像像素坐标系其中,(XW,YW,ZW)为世界坐标,u,v是图像像素坐标系坐标,图像物理坐标系的x,y轴平行于像素坐标系u,v轴,dx,dy分别是水平和竖直方向的像元间距,ZC为双目CCD视觉传感器的光轴,f为焦距;After the binocular CCD vision sensor successfully matches the underground moving target through the ORB algorithm feature, the binocular CCD vision sensor is used to locate the collected moving target, and the image pixel coordinate system Among them, (X W , Y W , Z W ) are the world coordinates, u, v are the coordinates of the image pixel coordinate system, the x, y axes of the image physical coordinate system are parallel to the u, v axes of the pixel coordinate system, d x , d y Respectively, the pixel spacing in the horizontal and vertical directions, Z C is the optical axis of the binocular CCD vision sensor, and f is the focal length;
步骤1、双目CCD视觉传感器对采集到的移动目标图像进行左右立体标定,获取双目CCD视觉传感器的内外参数矩阵。即通过相机坐标系和世界坐标系标定估算双目CCD视觉传感器的外参矩阵其中R是3×3旋转矩阵,0T是1×3平移矩阵,通过对所述双目CCD视觉传感器内部参数和移动目标图像左右立体标定求解双目CCD视觉传感器的内参矩阵其中fx,fy为有效焦距。Step 1. The binocular CCD vision sensor performs left and right stereo calibration on the collected image of the moving target, and obtains the internal and external parameter matrix of the binocular CCD vision sensor. That is, the external parameter matrix of the binocular CCD vision sensor is estimated by calibration of the camera coordinate system and the world coordinate system Where R is a 3×3 rotation matrix, 0 T is a 1×3 translation matrix, and the internal reference matrix of the binocular CCD vision sensor is solved by the internal parameters of the binocular CCD vision sensor and the left and right stereo calibration of the moving target image Where f x , f y are effective focal lengths.
步骤2、获取双目CCD视觉传感器的视差均值,根据立体匹配得到的匹配点对求视差di,i=1,2,…,NVer,并求视差di的均值 Step 2. Obtain the mean value of parallax of the binocular CCD visual sensor, calculate the parallax d i according to the pair of matching points obtained by stereo matching, i=1, 2, ..., N Ver , and calculate the mean value of the parallax d i
步骤3、通过图像像素坐标系方程求移动目标的世界坐标,根据内外参数矩阵和双目CCD视觉传感器视差dVer,求解移动目标的世界坐标系中坐标(XW,YW,ZW),其中,ZW为空间定位移动目标到双目CCD视觉传感器的垂直距离,即为深度信息。Step 3. Find the world coordinates of the moving target through the image pixel coordinate system equation, and solve the coordinates (X W , Y W , Z W ) of the moving target in the world coordinate system according to the internal and external parameter matrix and the binocular CCD vision sensor parallax d Ver , Among them, Z W is the vertical distance from the spatial positioning moving target to the binocular CCD vision sensor, which is the depth information.
步骤4、通过基站坐标校正移动目标的世界坐标系坐标,内置双目CCD视觉传感器的矿井本安型基站在世界坐标系中坐标(0,0,0),定位移动目标的世界坐标系中坐标(XW,YW,ZW),并结合基站所处矿井巷道实际位置对移动目标的世界坐标信息进行坐标位置校正,获取矿井移动目标的最终位置信息,实现对移动目标的精确定位。Step 4. Correct the world coordinate system coordinates of the moving target through the coordinates of the base station. The mine intrinsically safe base station with a built-in binocular CCD vision sensor has the coordinates (0, 0, 0) in the world coordinate system, and locates the coordinates in the world coordinate system of the moving target. (X W , Y W , Z W ), and combined with the actual position of the mine roadway where the base station is located, the world coordinate information of the moving target is corrected to obtain the final position information of the moving target in the mine, and the precise positioning of the moving target is realized.
本发明的有益效果在于:The beneficial effects of the present invention are:
该发明基于RSSI与ORB算法,通过对井下移动目标的RSSI无线射频识别和双目CCD视觉标定相融合,提供了一种双目CCD视觉矿井移动目标定位方法及系统。本发明解决了现有定位技术存在漏检和识别不准以及定位精度较低等问题,尤其是克服了井下NLOS环境下目标遮挡导致无法对移动目标识别与精准定位问题,提高了井下移动目标定位的实时性与准确性和系统鲁棒性。系统定位精度高,抗干扰能力强,适宜于各种复杂环境及限定空间的移动目标实时跟踪与精确定位。Based on the RSSI and ORB algorithm, the invention provides a binocular CCD vision mine moving target positioning method and system through the fusion of RSSI radio frequency identification and binocular CCD vision calibration of underground moving targets. The invention solves the problems of missed detection, inaccurate identification and low positioning accuracy in the existing positioning technology, especially overcomes the problem that the moving target cannot be identified and accurately positioned due to target occlusion in the underground NLOS environment, and improves the positioning of the underground moving target Real-time performance, accuracy and system robustness. The system has high positioning accuracy and strong anti-interference ability, and is suitable for real-time tracking and precise positioning of moving targets in various complex environments and limited spaces.
附图说明Description of drawings
图1为一种双目CCD视觉矿井移动目标定位方法及系统的系统组成示意图。Figure 1 is a schematic diagram of the system composition of a binocular CCD vision mine moving target positioning method and system.
图2为一种双目CCD视觉矿井移动目标定位方法及系统的定位流程图。Fig. 2 is a positioning flowchart of a binocular CCD vision mine moving target positioning method and system.
图3为一种双目CCD视觉矿井移动目标定位方法及系统采取的ORB算法流程图。Fig. 3 is a kind of binocular CCD visual mine moving target location method and the ORB algorithm flow chart adopted by the system.
图4为一种双目CCD视觉矿井移动目标定位方法及系统采取的双目CCD定位算法流程图。FIG. 4 is a flow chart of a binocular CCD visual mine moving target positioning method and a binocular CCD positioning algorithm adopted by the system.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,下面结合附图对本发明的具体实施方式进行详细描述。In order to make the object, technical solution and advantages of the present invention clearer, the specific implementation manners of the present invention will be described in detail below in conjunction with the accompanying drawings.
图1为双目CCD矿井移动目标定位方法及系统的系统组成。参照图1所示,实现上述矿井定位方法的系统主要包括:无线射频识别标签(101)、内置双目CCD本安型定位基站(102)、以太网交换机(103)、基站控制器(104)、定位服务器(105)、监控终端(106)。Figure 1 shows the system composition of binocular CCD mine moving target positioning method and system. With reference to shown in Figure 1, the system that realizes above-mentioned mine positioning method mainly comprises: radio frequency identification tag (101), built-in binocular CCD intrinsically safe positioning base station (102), Ethernet switchboard (103), base station controller (104) , a positioning server (105), a monitoring terminal (106).
其中,无线射频识别标签(101)发射无线射频信号可被本安型定位基站识别,用于粗略定位,对该标签进行特征匹配的识别提取训练,用于双目CCD视觉传感器ORB算法特征匹配。双目CCD本安型定位基站(102),本安型定位基站基于传播损耗理论模型,利用RSSI算法识别移动目标上的无线射频识别标签并获取矿井移动目标的射频信息,内置于本安型定位基站的双目CCD视觉传感器在被触发后采集移动目标图像并进行特征匹配和立体标定进而实现对移动目标的精确定位。以太网交换机(103),用于定位系统网络的汇聚节点,实现定位系统与地面通信网络的互联。基站控制器(104),用于井下无线网络管理、无线资源管理及矿井本安基站的管理、控制和监测,以及井下移动目标的越区切换控制等。定位服务器(105),用于处理、存储矿井移动目标实时位置信息,为井下移动目标提供移动定位服务,实现对井下移动目标的定位和监测功能,并且提供监控终端的历史信息查阅和调取服务。监控终端(106),用于接收来自于定位服务器的图像和实时定位信息,将图像和实时定位信息进行可视化显示。Among them, the radio frequency signal emitted by the radio frequency identification tag (101) can be recognized by the intrinsically safe positioning base station for rough positioning, and the identification and extraction training of feature matching is performed on the tag, which is used for feature matching of binocular CCD visual sensor ORB algorithm. Binocular CCD intrinsically safe positioning base station (102), the intrinsically safe positioning base station is based on the theoretical model of propagation loss, uses the RSSI algorithm to identify the radio frequency identification tag on the moving target and obtains the radio frequency information of the moving target in the mine, built in the intrinsically safe positioning After being triggered, the binocular CCD vision sensor of the base station collects the image of the moving target and performs feature matching and stereo calibration to achieve precise positioning of the moving target. The Ethernet switch (103) is used as a convergence node of the positioning system network to realize the interconnection between the positioning system and the ground communication network. The base station controller (104) is used for underground wireless network management, wireless resource management, management, control and monitoring of mine intrinsically safe base stations, and handover control of underground mobile targets. The positioning server (105) is used to process and store the real-time location information of the moving target in the mine, provide mobile positioning service for the moving target in the mine, realize the positioning and monitoring function of the moving target in the mine, and provide the historical information query and retrieval service of the monitoring terminal . The monitoring terminal (106) is used for receiving images and real-time positioning information from the positioning server, and visually displaying the images and real-time positioning information.
图2为双目CCD矿井移动目标定位方法及系统的定位流程图。参照图2所示,双目CCD矿井移动目标定位方法的定位流程步骤及功能描述如下:(1)信号衰减系数测量与标定(201),内置CCD视觉传感器的矿井本安型基站采取对数-常态的传播损耗理论模型 进行信号衰减系数测量与标定,由于矿井信号的衰减系数要明显高于井上环境,在矿井进行实测NLoss次求均值作为矿井信号衰减系数;(2)无线射频识别标签特征识别提取训练(202),对于安装在矿井移动目标的无线射频标签识别进行匹配特征的识别与提取训练,为目标的ORB算法匹配提供匹配特征;(3)RSSI算法粗略定位获取移动目标距基站距离(203),利用基站的RSSI算法,识别移动目标上的无线射频识别标签,采取对数-常态的传播损耗理论模型来粗略估算矿井移动目标的粗略位置;(4)判决移动目标距基站距离是否小于等于双目CCD采样距离Thr(203),通过判决移动目标距基站距离是否小于等于双目CCD采样距离Thr,当满足条件时触发双目CCD对移动目标图像采集,否则返回采取RSSI重新估算移动目标的位置;(5)触发双目CCD对移动目标图像采集(205),当基站采集到移动目标距离基站距离dRssi小于等于阈值双目CCD视觉传感器可进行图像信息采样分析距离Thr,可触发内置双目CCD视觉传感器的矿井本安型基站,通过双目CCD视觉传感器进行移动目标的图像信息采样;(6)ORB算法对移动目标特征匹配是否成功(206),当矿井本安型基站监测到移动目标距该基站的距离小于等于判决阈值,即dRssi≤Thr时,双目CCD视觉传感器对移动目标进行图像信息采样与距离计算,否则返回采取RSSI重新估算移动目标的位置;(7)移动目标坐标标定(207),根据图像像素坐标系坐标公式获取坐标标定所需要的内外参数矩阵、视差均值dVer,标定移动目标的世界坐标;(8)基站校正定位完成(208),内置双目CCD视觉传感器的矿井本安型基站在世界坐标系中坐标系坐标(0,0,0),定位移动目标的世界坐标系中坐标(XW,YW,ZW),并结合基站所处矿井巷道实际位置对矿井移动目标的世界坐标信息进行坐标位置校正,获取矿井移动目标的最终位置信息,实现对移动目标的精确定位。Fig. 2 is a positioning flow chart of the binocular CCD mine moving target positioning method and system. With reference to shown in Fig. 2, the positioning process steps and function description of the binocular CCD mine moving target positioning method are as follows: (1) signal attenuation coefficient measurement and calibration (201), the mine intrinsically safe base station with built-in CCD vision sensor adopts logarithmic- Normal Propagation Loss Theoretical Model Carry out signal attenuation coefficient measurement and calibration. Since the attenuation coefficient of the mine signal is significantly higher than that of the mine environment, the actual measurement N Loss times in the mine is used to calculate the average value As the mine signal attenuation coefficient; (2) radio frequency identification tag feature recognition extraction training (202), the identification and extraction training of matching features are carried out for the radio frequency tag identification installed in the moving target of the mine, and the matching features are provided for the ORB algorithm matching of the target (3) RSSI algorithm roughly locates and obtains the distance (203) between the mobile target and the base station, utilizes the RSSI algorithm of the base station to identify the radio frequency identification tag on the mobile target, and adopts the logarithmic-normal propagation loss theoretical model to roughly estimate the mine mobile target (4) Judging whether the distance between the moving target and the base station is less than or equal to the binocular CCD sampling distance Thr (203), by judging whether the distance between the moving target and the base station is less than or equal to the binocular CCD sampling distance Thr, triggering the binocular CCD collects moving target images, otherwise return to take RSSI to re-estimate the position of moving targets; (5) trigger binocular CCD to moving target image acquisition (205), when base station collects moving target distance base station distance d Rssi is less than or equal to threshold binocular The CCD vision sensor can perform image information sampling and analysis distance Thr, which can trigger the mine intrinsically safe base station with built-in binocular CCD vision sensor, and carry out image information sampling of moving targets through the binocular CCD vision sensor; (6) ORB algorithm for moving target characteristics Whether the matching is successful (206), when the mine intrinsically safe base station monitors that the distance between the mobile target and the base station is less than or equal to the decision threshold, that is, when d Rssi ≤ Thr, the binocular CCD vision sensor performs image information sampling and distance calculation on the mobile target, Otherwise, return and adopt RSSI to re-estimate the position of the moving target; (7) move target coordinate calibration (207), obtain the internal and external parameter matrix and parallax mean value d Ver required for coordinate calibration according to the coordinate formula of the image pixel coordinate system, and calibrate the world coordinates of the moving target (8) Base station calibration and positioning is completed (208), the mine intrinsically safe base station with built-in binocular CCD vision sensor coordinates (0,0,0) in the world coordinate system, coordinates (0,0,0) in the world coordinate system of the positioning moving target ( X W , Y W , Z W ), and combined with the actual position of the mine roadway where the base station is located, correct the coordinate position of the world coordinate information of the mine moving target, obtain the final position information of the mine moving target, and realize the precise positioning of the moving target.
图3为双目CCD矿井移动目标定位方法及系统采取的ORB算法流程图。如图3所示,双目CCD矿井移动目标定位方法采取的ORB算法流程步骤包括:(1)输入移动目标图像信息(301),将双目CCD视觉传感器的采集到的移动目标图像作为ORB算法特征匹配的输入;(2)利用oFAST算子进行特征点检测(302),采取对FAST算子添加旋转不变性形成oFAST算子,利用oFAST算子进行特征点检测,并且采用灰度质心法为检测到的特征点增加匹配局部不变性;(3)使用Steer BRIEF对特征点进行描述(303),Steer BRIEF算法利用BRIEF的计算简单、快速的优点对oFAST算法检测到的特征点进行特征描述,并且解决了BRIEF本身不具有旋转不变性的缺点;(4)构建特征集及二进制准则描述子(304),定义S×S大小图像,该区域内选取任意n个位置特征对(xi,yi)构成特征集并在S×S大小图像内,构建算法提取到特征点描述符Steer BRIEF在(xi,yi)处,对于任意n个位置对的特征集利用旋转矩阵Rθ旋转匹配点,得到带有方向的特征集Sθ=RθS,旋转后的二进制准则描述子gn(p,θ):=fn(p)|(xi,yi)∈Sθ;(5)设置特征匹配的阈值Haming距离(305),多次利用相同特征图像匹配训练得到相同特征图像匹配的阈值Haming距离并求均值,以获得最佳特征匹配的阈值Haming距离,设置该特征匹配的阈值Haming距离均值作为特征对是否配的判决标准;(6)贪婪检索符合特征匹配像素块(306),使用贪婪算法检出小于等于设定Haming距离阈值的像素块,检索出特征匹配的结果;(7)输出特征匹配检索结果(307),根据贪婪算法的检索出特征匹配的结果,判决特征匹配结果。Figure 3 is a flow chart of the binocular CCD mine moving target positioning method and the ORB algorithm adopted by the system. As shown in Figure 3, the ORB algorithm process steps that binocular CCD mine moving target localization method takes comprises: (1) input moving target image information (301), the moving target image that the binocular CCD visual sensor gathers is used as ORB algorithm The input of feature matching; (2) use the oFAST operator to perform feature point detection (302), take the FAST operator to add rotation invariance to form the oFAST operator, use the oFAST operator to perform feature point detection, and use the gray scale centroid method as The detected feature points increase the matching local invariance; (3) use Steer BRIEF to describe the feature points (303), the Steer BRIEF algorithm utilizes the simple and fast advantages of the calculation of BRIEF to carry out feature descriptions to the feature points detected by the oFAST algorithm, And it solves the shortcoming that BRIEF itself does not have rotation invariance; (4) Construct a feature set and a binary criterion descriptor (304), define an S×S size image, and select any n position feature pairs (x i , y i ) Constitute the feature set And in the S×S size image, the construction algorithm extracts the feature point descriptor Steer BRIEF at ( xi , y ) , for any feature set of n position pairs Using the rotation matrix R θ to rotate the matching point, the feature set S θ = R θ S with direction is obtained, and the rotated binary criterion descriptor g n (p, θ): = f n (p)|( xi , y i )∈S θ ; (5) Set the threshold Haming distance of feature matching (305), and use the same feature image matching training to obtain the threshold Haming distance of the same feature image matching and calculate the average value to obtain the threshold Haming distance of the best feature matching Distance, the threshold Haming distance mean value of this feature matching is set as the judgment standard of whether the feature is matched; (6) Greedy retrieval meets the feature matching pixel block (306), and the greedy algorithm is used to detect the pixel block less than or equal to the setting Haming distance threshold, Retrieve the result of feature matching; (7) Output the feature matching retrieval result (307), retrieve the result of feature matching according to the greedy algorithm, and judge the feature matching result.
图4为双目CCD矿井移动目标定位方法及系统采取的双目CCD定位算法流程。如图4所示,上述矿井定位方法采取的双目CCD定位算法流程主要包括:(1)双目CCD对移动目标采集左右图像(401),通过利用双目CCD视觉传感器对矿井下移动目标采集左右图像。(2)双目CCD对移动目标左右图像进行立体标定(402),通过双目CCD视觉传感器的内部参数以及双目CCD视觉传感器对采集到的移动目标图像进行左右立体标定,获取摄像头中心距、焦距f、视差di、内外参数矩阵,设世界坐标系坐标(XW,YW,ZW),相机坐标系坐标其中,(XC,YC,ZC)是相机坐标系坐标,R是3×3旋转矩阵,0T是1×3平移矩阵,可以通过双目CCD视觉传感器对采集到的移动目标图像进行左右立体标定,即对相机坐标系和世界坐标系标定估算外参矩阵图像物理坐标系其中,ZC为光轴,x,y是图像物理坐标系坐标,f为焦距,图像像素坐标系u,v是图像像素坐标系坐标,图像物理坐标系x,y轴平行于像素坐标系u,v轴,dx,dy分别是水平和竖直方向的像元间距,利用双目CCD视觉传感器内部参数以及双目CCD视觉传感器对采集到的移动目标图像进行左右立体标定求解内参矩阵其中fx,fy为有效焦距;(3)获取双目CCD的视差(403),根据双目CCD视觉传感器立体匹配得到的匹配点对求视差di,i=1,2,…,NVer,并求视差di的均值(4)图像像素坐标系方程求移动目标的世界坐标(404),根据图像像素坐标公式求得移动目标的世界坐标(XW,YW,ZW),其中ZW就是空间定位移动目标到双目CCD视觉传感器的垂直距离,也称为深度信息;(5)通过基站坐标校正移动目标的世界坐标系坐标(405),内置双目CCD视觉传感器的矿井本安型基站在世界坐标系中坐标(0,0,0),定位移动目标的世界坐标系中坐标(XW,YW,ZW),并结合基站所处矿井巷道实际位置对移动目标的世界坐标信息进行坐标位置校正,获取矿井移动目标的最终位置信息,实现对移动目标的精确定位。Figure 4 shows the binocular CCD mine moving target positioning method and the binocular CCD positioning algorithm flow adopted by the system. As shown in Figure 4, the binocular CCD positioning algorithm process adopted by the mine positioning method mainly includes: (1) the binocular CCD collects left and right images (401) of the moving target, and collects the moving target under the mine by using the binocular CCD visual sensor. left and right images. (2) The binocular CCD carries out stereo calibration (402) to the left and right images of the moving target, and the left and right stereo calibration is carried out to the collected moving target images by the internal parameters of the binocular CCD visual sensor and the binocular CCD visual sensor, to obtain the camera center distance, Focal length f, parallax d i , internal and external parameter matrix, set world coordinate system coordinates (X W , Y W , Z W ), camera coordinate system coordinates Among them, (X C , Y C , Z C ) are the coordinates of the camera coordinate system, R is a 3×3 rotation matrix, and 0 T is a 1×3 translation matrix. Left and right stereo calibration, that is, to calibrate the camera coordinate system and the world coordinate system to estimate the extrinsic parameter matrix Image physical coordinate system Among them, Z C is the optical axis, x, y are the coordinates of the image physical coordinate system, f is the focal length, and the image pixel coordinate system u, v are the coordinates of the image pixel coordinate system, the image physical coordinate system x, y axis is parallel to the pixel coordinate system u, v axis, d x , d y are the pixel spacing in the horizontal and vertical directions respectively, using binocular CCD vision The internal parameters of the sensor and the binocular CCD vision sensor perform left and right stereo calibration on the collected moving target images to solve the internal parameter matrix Wherein f x , f y are effective focal lengths; (3) obtain the parallax of binocular CCD (403), according to the matching point pair that binocular CCD visual sensor stereo matching obtains, seek parallax d i , i=1, 2, ..., N Ver , and find the mean value of the disparity d i (4) The image pixel coordinate system equation seeks the world coordinates (404) of the moving target, and obtains the world coordinates (X W , Y W , Z W ) of the moving target according to the image pixel coordinate formula, wherein Z W is exactly the location of the moving target in space. The vertical distance of the binocular CCD vision sensor, also known as the depth information; (5) correct the world coordinate system coordinates (405) of the moving target through the base station coordinates, and the mine intrinsically safe base station with the built-in binocular CCD vision sensor is in the world coordinate system Coordinates (0, 0, 0), locate the coordinates (X W , Y W , Z W ) in the world coordinate system of the moving target, and perform coordinate position correction on the world coordinate information of the moving target in combination with the actual position of the mine roadway where the base station is located. Obtain the final position information of the moving target in the mine, and realize the precise positioning of the moving target.
显然,本领域的技术人员应该明白,本发明及上述实施例所涉及定位方法及系统各组成功能,除作为矿井移动目标定位应用于煤矿井下环境外,通过适当集成或改进后也适用于非金属和金属等非煤矿山的移动目标监控、跟踪与定位,以及井下智能工作面设备精确定位。这样本发明不限制除煤矿井下移动目标定位之外的非煤矿山、智能工作面移动监控和设备精确定位等通信技术领域。Apparently, those skilled in the art should understand that the positioning method and system functions involved in the present invention and the above-mentioned embodiments, in addition to being applied to the coal mine underground environment as a mine mobile target positioning, are also applicable to non-metallic mines after proper integration or improvement. Monitoring, tracking and positioning of moving targets in non-coal mines such as mines and metals, as well as precise positioning of underground intelligent working face equipment. In this way, the present invention does not limit communication technology fields such as non-coal mines, intelligent working surface mobile monitoring and equipment precise positioning except coal mine moving target positioning.
以上内容是结合具体的优选实施例方式对本发明所做的进一步详细说明,不能认定本发明的具体实施方式仅限于此,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明设计思路的前提下,还可进行若干简单的替换和更改,都应当视为属于本发明所提交的权利要求书所涉及的保护范围。The above content is a further detailed description of the present invention in conjunction with specific preferred embodiments. It cannot be determined that the specific embodiments of the present invention are limited thereto. Under the premise of the idea, some simple substitutions and changes can also be made, which should be regarded as belonging to the scope of protection involved in the claims submitted by the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710252567.1A CN107015193B (en) | 2017-04-18 | 2017-04-18 | A binocular CCD visual mine moving target positioning method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710252567.1A CN107015193B (en) | 2017-04-18 | 2017-04-18 | A binocular CCD visual mine moving target positioning method and system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107015193A CN107015193A (en) | 2017-08-04 |
CN107015193B true CN107015193B (en) | 2019-10-11 |
Family
ID=59446916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710252567.1A Active CN107015193B (en) | 2017-04-18 | 2017-04-18 | A binocular CCD visual mine moving target positioning method and system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107015193B (en) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107566981B (en) * | 2017-08-30 | 2020-02-04 | 山东大学 | Indoor high-precision positioning method, device and system based on optimal path |
CN108174440A (en) * | 2017-12-06 | 2018-06-15 | 山西宏安翔科技股份有限公司 | A kind of mine multifunction wireless communication base station |
CN107977022B (en) * | 2017-12-28 | 2020-11-13 | 国网福建省电力有限公司 | Automatic slot type facility inspection device and method based on angular point detection |
CN110008951B (en) * | 2019-03-14 | 2020-12-15 | 深兰科技(上海)有限公司 | Target detection method and device |
CN110058587B (en) * | 2019-03-18 | 2022-09-13 | 西安科技大学 | Coal mine fully-mechanized mining face inspection unmanned vehicle based on SLAM technology and autonomous inspection method |
CN110136172B (en) * | 2019-05-21 | 2023-04-07 | 中国矿业大学 | Detection method for wearing of underground protective equipment of miners |
CN110487262A (en) * | 2019-08-06 | 2019-11-22 | Oppo广东移动通信有限公司 | Indoor orientation method and system based on augmented reality equipment |
US12392860B2 (en) | 2019-09-02 | 2025-08-19 | Iq Works Limited | System and method for event recognition |
CN110415302A (en) * | 2019-09-02 | 2019-11-05 | 中国矿业大学(北京) | Mine Location System Based on Image Recognition |
CN110428419A (en) * | 2019-09-02 | 2019-11-08 | 中国矿业大学(北京) | Mine positioning system based on mobile image identification |
CN110619664B (en) * | 2019-09-17 | 2023-06-27 | 武汉理工大学 | Camera distance attitude calculation method and server based on laser pattern assistance |
CN111542115B (en) * | 2020-05-18 | 2022-03-08 | 南京荣飞科技股份有限公司 | 125 k-based simulated reference tag positioning system and method thereof |
CN111852456B (en) * | 2020-07-29 | 2023-04-07 | 中国矿业大学 | Robust UWB (ultra wide band) underground anchor rod drilling positioning method based on factor graph |
CN112135093A (en) * | 2020-09-03 | 2020-12-25 | 西安科技大学 | A positioning aid system in explosive gas environment |
CN112819770B (en) * | 2021-01-26 | 2022-11-22 | 中国人民解放军陆军军医大学第一附属医院 | Iodine contrast agent allergy monitoring method and system |
CN113175915B (en) * | 2021-04-16 | 2022-09-06 | 中国矿业大学 | Passive low-cost self-positioning device and positioning method for underground rescue robot |
CN113066134B (en) * | 2021-04-23 | 2024-11-22 | 深圳市商汤科技有限公司 | A visual sensor calibration method and device, electronic device and storage medium |
CN113129378A (en) * | 2021-04-28 | 2021-07-16 | 北京市商汤科技开发有限公司 | Positioning method, positioning device, electronic equipment and storage medium |
CN113030860A (en) * | 2021-05-27 | 2021-06-25 | 东智安通(北京)科技有限公司 | Positioning method, device, equipment and medium based on RFID positioning label |
CN113950144B (en) * | 2021-10-01 | 2024-03-22 | 南宁市安普康商贸有限公司 | Monitoring method, system, device and computer program product |
CN114353782B (en) * | 2022-01-11 | 2023-06-20 | 华北理工大学 | A downhole positioning method and downhole positioning device based on Baseline-RFMDR |
CN115930956B (en) * | 2022-11-18 | 2025-05-09 | 长安大学 | A positioning method for underground fully mechanized mining equipment based on synchronous positioning and mapping |
CN117528420B (en) * | 2023-11-14 | 2024-08-30 | 滕州郭庄矿业有限责任公司 | Mine personnel position detection system based on Internet of things |
CN118482770B (en) * | 2024-07-15 | 2024-11-08 | 临沂市政集团有限公司 | Cable-stayed bridge construction monitoring system and method based on machine vision |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8392065B2 (en) * | 2008-09-11 | 2013-03-05 | Deere & Company | Leader-follower semi-autonomous vehicle with operator on side |
CN101790179B (en) * | 2010-02-12 | 2012-07-11 | 中国矿业大学(北京) | Mine Mobile Communication System |
CN102848388A (en) * | 2012-04-05 | 2013-01-02 | 上海大学 | Multi-sensor based positioning and grasping method for service robot |
KR101343818B1 (en) * | 2012-10-15 | 2013-12-20 | 우리로광통신주식회사 | Monitoring camera system and method |
CN204168290U (en) * | 2014-04-09 | 2015-02-18 | 中国矿业大学(北京) | A kind of multi-mode mine mobile communication system |
CN105160321A (en) * | 2015-09-05 | 2015-12-16 | 深圳市飞思未来云媒体科技有限公司 | Vision-and-wireless-positioning-based mobile terminal identity verification method |
CN106408601B (en) * | 2016-09-26 | 2018-12-14 | 成都通甲优博科技有限责任公司 | A kind of binocular fusion localization method and device based on GPS |
-
2017
- 2017-04-18 CN CN201710252567.1A patent/CN107015193B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN107015193A (en) | 2017-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107015193B (en) | A binocular CCD visual mine moving target positioning method and system | |
CN107328406B (en) | Method and system for positioning mine moving target based on multi-source sensor | |
CN105526934B (en) | Indoor and outdoor integrated high-precision positioning navigation system and positioning method thereof | |
CN103561462B (en) | Indoor positioning system and method totally based on smart mobile terminal platform | |
CN107437044B (en) | Mine moving target tracking and positioning method | |
CN114333243A (en) | Landslide monitoring and early warning method, device, medium, electronic equipment and terminal | |
CN206524912U (en) | Recreation ground high precision wireless alignment system | |
CN115808170B (en) | Indoor real-time positioning method integrating Bluetooth and video analysis | |
CN202600134U (en) | Underground ultra wide band location system of coal mine | |
CN107402400A (en) | Taiwan area data generaI investigation mobile terminal and localization method based on GPS and UWB | |
CN103957508A (en) | Accurate underground wireless positioning system and method based on combination of WiFi and gyroscope | |
CN112929826A (en) | Indoor hybrid positioning method based on UWB triangulation positioning and fingerprint information | |
CN103383447A (en) | Displacement positioning system based on leaky communication cable signal attenuation differences and positioning method of displacement positioning system | |
CN114325573A (en) | A rapid detection method for the identity and location information of substation operation and maintenance personnel | |
CN106597419A (en) | Underground coal mine accurate positioning method without clock synchronization | |
CN103491627A (en) | Close range real-time accurate positioning method integrating multiple algorithms | |
CN208783112U (en) | A Positioning System Based on Combination of Compressive Sensing and Multilateral Measurement | |
Qu | A review of UWB indoor positioning | |
CN113905327A (en) | Power transmission line external damage prevention alarm method and system based on multiple positioning parameters | |
CN207036120U (en) | A kind of alignment system based on ultra wide band positioning and inertial navigation technology | |
CN109085534A (en) | Personnel in the pit's ranging localization monitoring method based on image | |
CN103698742A (en) | Underground positioning method based on signal relative field strength | |
CN115884370A (en) | Indoor base station communication blind area positioning system based on UWB | |
CN108709558B (en) | High-precision positioning method for large-size factory building | |
CN110516647A (en) | Method and system for moving target location based on image recognition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |