[go: up one dir, main page]

CN106997203A - 车辆自动化及操作者参与等级预测 - Google Patents

车辆自动化及操作者参与等级预测 Download PDF

Info

Publication number
CN106997203A
CN106997203A CN201710223456.8A CN201710223456A CN106997203A CN 106997203 A CN106997203 A CN 106997203A CN 201710223456 A CN201710223456 A CN 201710223456A CN 106997203 A CN106997203 A CN 106997203A
Authority
CN
China
Prior art keywords
vehicle
operator
route
grade
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710223456.8A
Other languages
English (en)
Other versions
CN106997203B (zh
Inventor
P·王
R·J·马蒂厄
J·F·什切尔巴
G·P·贝尔托利尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of CN106997203A publication Critical patent/CN106997203A/zh
Application granted granted Critical
Publication of CN106997203B publication Critical patent/CN106997203B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0234Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
    • G05D1/0236Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons in combination with a laser
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/10Interpretation of driver requests or demands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3484Personalized, e.g. from learned user behaviour or user-defined profiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3492Special cost functions, i.e. other than distance or default speed limit of road segments employing speed data or traffic data, e.g. real-time or historical
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3697Output of additional, non-guidance related information, e.g. low fuel level
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0242Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using non-visible light signals, e.g. IR or UV signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0257Control of position or course in two dimensions specially adapted to land vehicles using a radar
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W2040/0818Inactivity or incapacity of driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/10Historical data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Social Psychology (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Business, Economics & Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Acoustics & Sound (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明公开了车辆自动化及操作者参与等级预测。在一该实施例中,方法包括获得与为具有自主操作能力的车辆规划的路线的一种或多种状况有关的输入;利用该输入,经由处理器而预测车辆的操作者的未来的参与等级;以及为操作者提供与未来的参与等级有关的信息。

Description

车辆自动化及操作者参与等级预测
相关申请的交叉引用
本申请要求2016年1月26日递交的美国临时申请NO.62/287,423的优先权,其全部内容在此通过引用并入本文中。
技术领域
本发明一般涉及车辆,并且更特别地涉及用于预测自主车辆的操作者参与等级的方法和系统。
背景技术
自主车辆是能够在很少的用户输入或者没有用户输入的情况下感测其环境并且导航的车辆。自主车辆使用传感装置来感测其环境,诸如,雷达、激光雷达、图像传感器等。自主车辆系统进一步使用来自诸如全球定位系统(GPS)的系统的信息来导航。一些车辆具有不同等级的自主驾驶,要求车辆的驾驶者或其他操作者的不同的相应参与等级。然而,可能期望的是,例如通过提供关于可能的即将到来的操作者的参与等级的信息而改进操作者对于这样的车辆的体验。
因此,期望的是提供用于改进的车辆操作的技术,例如通过提供关于可能的即将到来的操作者的参与等级以及自主驾驶能力的信息。另外,通过下面的详细描述和所附的权利要求,结合附图和前述技术领域和背景技术,本发明的其他可期望的特征和特性将变得明显。
发明内容
根据示例性实施例,方法包括获得与为具有自主操作能力的车辆所规划的路线的一种或多种状况有关的输入;使用该输入经由处理器预测车辆的操作者的未来的参与等级;以及为操作者提供与未来的参与等级有关的信息。
同样在一个实施例中,获得输入包括获得与路线的多种状况有关的输入,其中,该多种状况与对于该路线所预期的自主驾驶等级相关。
同样在一个实施例中,获得输入包括用于该路线的众包(crowd-source)监测。
同样在一个实施例中,获得输入包括获得用于该路线的数据分析。
同样在一个实施例中,获得输入包括获得用于该路线的历史信息。
同样在一个实施例中,获得输入包括获得用于车辆的操作者关于操作者的偏好的用户历史。
同样在一个实施例中,获得输入包括获得用于该路线的道路状况。
同样在一个实施例中,该方法进一步包括至少部分地基于该多种状况而确定用于该路线的操作者所需的参与等级。
同样在一个实施例中,该方法进一步包括:基于该多种状况而确定用于多种可能路线(包括该路线和多个额外路线)的操作者所需的参与等级;获得与车辆的驾驶者有关的传感器数据;基于传感器数据,监测车辆的操作者的意识等级;以及基于用于每个相应路线的参与等级和操作者的意识等级而从多个可能路线中选择被选择的路线。
根据另一实施例,系统包括输入单元和处理器。输入单元被构造成至少有助于获得与为具有自主操作能力的车辆所规划的路线的一种或多种状况有关的输入。该处理器被构造成利用该输入至少有助于经由处理器而预测车辆的操作者的未来的参与等级;以及为操作者提供与未来的参与等级有关的信息。
同样在一个实施例中,该多种状况与对于该路线的预期的自主驾驶等级相关。
同样在一个实施例中,输入单元被构造成至少有助于用于该路线的众包监测。
同样在一个实施例中,输入单元被构造成至少有助于获得用于该路线的数据分析。
同样在一个实施例中,输入单元被构造成至少有助于获得用于该路线的历史信息。
同样在一个实施例中,输入单元被构造成至少有助于获得用于车辆的操作者关于操作者的偏好的用户历史。
同样在一个实施例中,输入单元被构造成至少有助于获得用于该路线的道路状况。
同样在一个实施例中,处理器被构造成至少部分地基于该多种状况而至少有助于确定用于该路线的操作者所需的参与等级。
同样在一个实施例中,该系统进一步包括传感器单元,该传感器单元被构造成至少有助于获得与车辆的操作者有关的传感器数据;以及该处理器被进一步构造成基于该多种状况而至少有助于确定用于多个可能路线(包括该路线和多个额外路线)的操作者所需的参与等级;基于传感器信息而监测车辆操作者的意识等级;以及基于用于每个相应路线的参与等级和操作者的意识等级而从多个可能路线中选择被选择的路线。
根据另一实施例,车辆包括推进系统,输入单元和处理器。推进系统具有自主操作能力。输入单元被构造成至少有助于获得与为该车辆所规划的路线的一种或多种状况有关的输入。处理器被构造成利用该输入至少有助于经由处理器而预测车辆的操作者的未来的参与等级;以及为操作者提供与未来的参与等级有关的信息。
同样在一个实施例中,车辆进一步包括传感器单元,该传感器单元被构造成至少有助于获得与车辆的操作者有关的传感器数据;以及该处理器被进一步构造成至少基于该多种状况而有助于确定用于多个可能路线(包括该路线和多个额外路线)的操作者所需的参与等级;基于传感器信息而监测车辆的操作者的意识等级;以及基于用于每个相应路线的参与等级和操作者的意识等级而从多个可能路线中选择被选择的路线。
方案1:一种方法,包括:
获得与为具有自主操作能力的车辆规划的路线的一种或多种状况有关的输入;
利用所述输入经由处理器来预测所述车辆的操作者的未来的参与等级;以及
为所述操作者提供与所述未来的参与等级有关的信息。
方案2:如方案1所述的方法,其中,获得输入包括获得与所述路线的多种状况有关的输入,其中,所述多种状况与对于所述路线预期的自主驾驶等级相关。
方案3:如方案2所述的方法,其中,获得输入包括用于所述路线的众包监测。
方案4:如方案2所述的方法,其中,获得输入包括获得用于所述路线的数据分析。
方案5:如方案2所述的方法,其中,获得输入包括获得用于所述路线的历史信息。
方案6:如方案2所述的方法,其中,获得输入包括获得所述车辆的所述操作者关于所述操作者的偏好的用户历史。
方案7:如方案2所述的方法,其中,获得输入包括获得用于所述路线的道路状况。
方案8:如方案2所述的方法,进一步包括:
至少部分地基于所述多种状况而确定用于所述路线的所述操作者所需的参与等级。
方案9:如方案2所述的方法,进一步包括:
基于所述多种状况而确定用于多个可能路线的所述操作者所需的参与等级,所述多个可能路线包括所述路线和多个额外路线;
获得与所述车辆的所述操作者有关的传感器信息;
基于传感器信息而监测所述车辆的所述操作者的意识等级;以及
基于用于每个相应路线的所述参与等级和所述操作者的所述意识等级而从所述多个可能路线中选择被选择的路线。
方案10:一种系统,包括:
输入单元,所述输入单元被构造成至少有助于:
获得与为具有自主操作能力的车辆规划的路线的一种或多种状况有关的输入;以及
处理器,所述处理器被构造成至少有助于:
利用所述输入经由处理器来预测所述车辆的操作者的未来的参与等级;
以及
为所述操作者提供与所述未来的参与等级有关的信息。
方案11:如方案10所述的系统,其中,所述多种状况与对于所述路线预期的自主驾驶等级相关。
方案12:如方案11所述的系统,其中,所述输入单元被构造成至少有助于用于所述路线的众包监测。
方案13:如方案11所述的系统,其中,所述输入单元被构造成至少有助于获得用于所述路线的数据分析。
方案14:如方案11所述的系统,其中,所述输入单元被构造成至少有助于获得用于所述路线的历史信息。
方案15:如方案11所述的系统,其中,所述输入单元被构造成至少有助于获得所述车辆的所述操作者关于所述操作者的偏好的用户历史。
方案16:如方案11所述的系统,其中,所述输入单元被构造成至少有助于获得用于所述路线的道路状况。
方案17:如方案11所述的系统,其中,所述处理器被构造成至少部分地基于所述多种状况而至少有助于确定用于所述路线的所述操作者所需的参与等级。
方案18:如方案11所述的系统,进一步包括:
传感器单元,所述传感器单元被构造成至少有助于获得与所述车辆的所述操作者有关的传感器数据;
其中,所述处理器被进一步构造成至少有助于:
基于所述多种状况而确定用于多个可能路线的所述操作者所需的参与等级,所述多个可能路线包括所述路线和多个额外路线;
基于传感器数据而监测所述车辆的所述操作者的意识等级;以及
基于用于每个相应路线的所述参与等级和所述操作者的所述意识等级而从所述多个可能路线中选择被选择的路线。
方案19:一种车辆,包括:
推进系统,所述推进系统具有自主操作能力;
输入单元,所述输入单元被构造成至少有助于获得与为所述车辆规划的路线的一种或多种状况有关的输入;以及
处理器,所述处理器被构造成至少有助于:
利用所述输入经由处理器来预测所述车辆的所述操作者的未来的参与等级;以及
为所述操作者提供与所述未来的参与等级有关的信息。
方案20:如方案19所述的车辆,进一步包括:
传感器单元,所述传感器单元被构造成至少有助于获得与所述车辆的所述操作者有关的传感器数据;
其中,所述处理器被进一步构造成至少有助于:
基于所述多种状况而确定用于多个可能路线的所述操作者所需的参与等级,所述多个可能路线包括所述路线和多个额外路线;
基于传感器数据而监测所述车辆的所述操作者的意识等级;以及
基于用于每个相应路线的所述参与等级和所述操作者的所述意识等级而从所述多个可能路线中选择被选择的路线。
附图说明
在下文中将结合以下附图来描述本发明,其中,相同的附图标记表示同样的元件,并且其中:
图1是根据示例性实施例的具有自主驾驶功能的车辆的功能框图,其包括用于向车辆的操作者提供关于操作者的参与等级的信息的系统;
图2是根据示例性实施例的能够使用车辆系统而提供的示例性显示物的展示,并且其能够结合图1的系统和车辆而被实施;
图3是根据示例性实施例的用于向车辆的操作者提供关于操作者的参与等级的信息的概念框架的流程图,并且其能够结合图1的系统和车辆以及图2的显示物而被实施;以及
图4是根据示例性实施例的用于向车辆的操作者提供关于操作者的参与等级的信息的流程图,并且其能够结合图1的系统和车辆、图2的显示物以及图3的概念框架而被实施。
具体实施方式
下列详细描述本质上仅是示例性的且不旨在限定本发明或其应用及用途。另外,没有旨在由前述背景内容或下列详细描述中展示的任何理论而界定本发明。
图1示出根据示例性实施例的车辆100(或汽车)。车辆100包括多个级别的自主功能,涉及代表车辆100的驾驶者或操作者的不同的相应参与等级。如下面进一步更详细地描述的,车辆100包括控制系统102,控制系统102用于向车辆100的操作者提供关于操作者的参与等级的信息。车辆100可以是多种不同类型的汽车中的任意一种,诸如例如,轿车,货车,卡车,运动型多用途车(SUV),并且可以是两轮驱动(2WD)(即后轮驱动或前轮驱动),四轮驱动(4WD)或全轮驱动(AWD)。在一个实施例中,操作者(在本文中称为)是坐在车辆100内的车辆100的驾驶者。在其他实施例中,操作者可以代替地是一个或多个其他类型的操作者,诸如,车辆内的副驾驶者或辅助驾驶者,车辆100外的远程操作者(例如,经由一些形式的远程控制而操作),等等。
在图1中描述的一个实施例中,除了上面提及的控制系统102,车辆100包括底盘112,车身114,四个车轮116,电子系统118,动力系129,转向系统150和制动系统160。车身114设置在底盘112上并且基本上围住车辆100的其他部件。车身114和底盘112可以共同地形成车架。车轮116的每一个在车身114的相应拐角附近旋转地连接至底盘112。如图1中描绘的,每个车轮116包括车轮组件,该车轮组件包括轮胎和车轮以及相关部件(为本发明的目的,这些部件总体地称为“车轮116”)。在各种实施例中,车辆100可以与图1中描绘的不同。
在图1示出的示例性实施例中,动力系129包括致动器组件120,致动器组件120包括发动机130。在各种其他实施例中,动力系129可以与图1中描绘的和/或下面描述的不同(例如,在一些实施例中,动力系可以包括气体燃烧发动机130,而在其他实施例中,例如对于电动车辆,混合动力车辆等,动力系129可以包括单独的或与一个或多个其他动力系129部件结合的电机)。在图1中描绘的一个实施例中,致动器组件120和动力系129安装在底盘112上以驱动车轮116。在一个实施例中,发动机130包括燃烧发动机。在各种其他实施例中,代替燃烧发动机或除燃烧发动机之外,发动机130可以包括电机和/或一个或多个其他传动系统部件(例如,用于电动车辆)。
仍然参考图1,在一个实施例中,发动机130通过一个或多个驱动轴134联接至车轮116中的至少一些。在某些实施例中,发动机130机械地联接至变速器。在其他实施例中,发动机130可以代替地联接至用于为电机供能的发电机,该发电机机械地联接至变速器。在一些其他实施例中(例如,电动车辆),发动机和/或变速器可以不是必要的。
转向系统150安装在底盘112上,并且控制车轮116的转向。在各种实施例中,当车辆100处于需要操作者转向输入的模式中时,车辆100使用来自操作者的输入以用于转向(例如,经由转向轮)。除此以外,当处于其他操作模式中时,车辆100可以自动地控制转向,在没有操作者输入的情况下自主地控制。
制动系统160安装在底盘112上,并且为车辆100提供制动。在各种实施例中,当车辆100处于需要操作者制动输入的模式中时,车辆100使用来自操作者的输入以用于制动(例如,经由制动踏板)。除此以外,当处于其他操作模式中时,车辆100可以自动地控制制动,在没有操作者输入的情况下自主地控制。同样在一个实施例中,当车辆100处于需要操作者输入的手动模式中时,车辆100的加速/减速可以经由操作者通过制动踏板以及加速器踏板的手动操作而手动地控制,并且当车辆100处于自主驾驶模式中时,车辆100的加速/减速可以代替地被自动地控制,在没有操作者输入的情况下自主地控制。
在一个实施例中,控制系统102安装在底盘112上。如上面提及并在下面更详细地讨论的(以及下面结合图2-4进一步讨论),控制系统102向车辆100的操作者提供关于操作者的参与等级的信息,包括对应于当前车辆驾驶至目的地的安排的路线的不同程度的自主驾驶的预测的驾驶者的参与等级。如在本文中提及的,不同等级的自主驾驶可以对应于以自主方式操作的不同功能,和/或执行这样的功能中的不同等级的自动化,例如,对于车辆的操作的各种参数,自主功能的操作和运行(例如,与其相关联的传感器),驾驶者的警觉性的度量,周围天气和路面状况,等等。在各种实施例中,不同等级的自主驾驶可以包括转向系统150的自动控制,制动系统160的自动控制,用于横向和/或纵向方向的适应性巡航控制,车辆100的完全自动操作和控制,以及车辆100的一个或多个系统的各种其他中级等级的自动控制。
如图1中描绘的,在一个实施例中,控制系统102包括传感器103,收发器104,用户接口105,控制器106以及显示单元108。传感器103包括各种传感器,其为车辆100提供自主驾驶功能和/或车辆100的乘坐者(例如,驾驶者)和/或车辆100周围的情况的监测。在各种实施例中,除其他的以外,传感器103可以包括超声传感器,激光雷达传感器,雷达传感器,摄像头,可见光传感器,非可见光传感器,和/或用于物体、道路和/或车辆100周围的情况的检测、识别和/或测量的各种其他传感器,用于车辆100,和/或与车辆100和/或车辆100的驾驶者有关的自主操作的各种其他传感器,例如,输入传感器,运动传感器,眼睛/头部监测传感器,转向轮传感器,加速度仪,等等。
收发器104与同车辆100的自主操作有关的一个或多个装置、系统和/或其他信息源通信。在一些实施例中,收发器104可以包括有线的和/或无线的收发器和/或其部件(例如,在一些实施例中,可以使用单独的接收器和发送器)。在一些实施例中,收发器经由与车辆100、自主功能的操作和/或车辆周围的状况有关的无线(例如,蓝牙或其他短距离无线方式)和/或有线连接(例如,车辆CAN总线)而从传感器103以及车辆100的其他系统接收数据,并且将这样的数据提供至控制器106以用于处理。在一些实施例中,收发器104还经由一个或多个无线和/或有线连接而从操作者的电子装置109(例如,可以设置在车辆上的操作者的智能电话、平板和/或电脑产品)接收这样的数据。在一些实施例中,收发器104还经由无线网络111(例如,蜂窝网络、全球定位系统(GPS)网络和/或其他无线网络)而从远程服务器110(例如,用于提供车辆100的位置信息的全球定位系统(GPS)服务器、天气服务器和/或其他服务器和/或用于提供关于天气状况、道路状况、道路施工、交通模式等信息的服务器)接收这样的数据。
用户接口105从车辆100的操作者接收输入。在各种实施例中,用户接口105可以接收输入,诸如(仅通过示例的方式),操作者的(多个)期望的行进路线,操作者的显示模式的偏好,操作者的在不同时间和/或位置处的自主驾驶相对非自主驾驶的偏好,和/或各种其他类型的操作者偏好和/或其他输入。用户接口105将这样的信息提供至控制器106以用于处理。
控制器106联接至传感器103,收发器104,用户接口105以及显示单元108。控制器106利用来自传感器103、收发器104和用户接口105的信息来确定操作者对于当前车辆驾驶所需的预测的参与等级。如下面进一步描述的,控制器106还经由显示单元108而向操作者提供预测的参与等级。在各种实施例中,控制器106通过分析车辆100的自主功能和相关联的系统执行的如何(例如,各种传感器103执行的如何)以及将要遇到的道路类型(例如,高速公路或是具有停止标志和路灯的公路,铺设好的道路或是未铺设好的道路,各种道路上的交通,各种道路上的施工,各种路面的状况[例如,坑洼、摩擦系数,等等],各种道路上的车道限制,各种道路上的事故或事件,可能影响自主驾驶的各种天气状况[例如,雪,冰,雨,风,雾,等等],和/或可能影响自主驾驶的各种其他因素)来确定所需的操作者的参与等级。在一个实施例中,如通常情况,自主驾驶可能变得潜在地越困难,驾驶者所需的参与等级越高。然而,这在其他实施例中可以不同(例如,在其中一队车辆100都具有自主驾驶能力的一些实施例中,可以在更困难的驾驶条件下鼓励自主驾驶以有助于避免用户错误等)。在各种实施例中,控制器106与传感器103、收发器104、用户接口105以及显示单元108一起提供根据下面结合图2-4进一步描述的步骤和功能的这些及其他功能。
如图1中所描绘的,控制器106包括计算机系统。在一些实施例中,控制器106还可以包括传感器103中的一个或多个传感器,一个或多个其他装置和/或系统,和/或其部件。此外,将意识到的是,控制器106可以以其他方式而与图1中描绘的实施例不同。例如,控制器106可以联接至或可以以其他方式利用一个或多个远程计算机系统和/或其他系统,诸如,车辆100的电子系统118,和/或车辆100的一个或多个其他系统。
在所描绘的实施例中,控制器106的计算机系统包括处理器172,存储器174,接口176,存储装置178以及总线180。处理器172执行控制器106的计算和控制功能,并且可以包括任意类型的一个或多个处理器,单个集成电路,诸如,微处理器,或配合工作以完成处理单元的功能的任意合适数量的集成电路装置和/或电路板。在操作期间,处理器172执行包含在存储器174中的一个或多个程序182,并且因此控制控制器106和控制器106的计算机系统通常在执行本文中描述的方法中的一般操作,诸如下面结合图2-4进一步描述的那些。
存储器174能够是任意类型的合适的存储器。例如,存储器174可以包括各种类型的动态随机存取存储器(DRAM)(诸如,SDRAM),各种类型的静态RAM(SRAM),以及各种类型的非易失性存储器(PROM,EPROM以及闪存)。在一些示例中,存储器174与处理器172位于和/或共同位于相同的计算机芯片上。在所描绘的实施例中,存储器174存储上面提及的程序182以及一个或多个存储值184。
总线180用于在控制器106的计算机系统的各种部件之间发送程序、数据、状态和其他信息或信号。接口176允许例如从系统驱动器和/或另一计算机系统通信至控制器106的计算机系统,并且能够使用任意合适的方法和设备而实施。在一个实施例中,接口176从传感器103中的传感器获得各种数据。接口176能够包括一个或多个网络接口以便与其他系统或部件通信。接口176还可以包括一个或多个网络接口以便与技术人员通信,和/或一个或多个存储接口以便连接至存储设备,诸如,存储装置178。
存储装置178能够是任意适合类型的存储设备,包括直接存取存储装置,诸如,硬盘驱动器,闪存系统,软盘驱动器和光盘驱动器。在一个示例性实施例中,存储装置178包括程序产品,存储器174能够从该程序产品接收程序182,程序182执行本发明的一个或多个方法中的一个或多个实施例,诸如下面结合图2-4进一步描述的步骤。在另一示例性实施例中,该程序产品可以直接存储在存储器174和/或磁盘(例如,磁盘186)中和/或由存储器174和/或磁盘存取,诸如下面提及的。
总线180能够是连接计算机系统和部件的任意合适的物理或逻辑机构。这包括,但不限于,直接的硬线连接,光纤,红外和无线总线技术。在操作期间,程序182存储在存储器174中且由处理器172运行。
将意识到的是,虽然在完全运行的计算机系统的背景下描述这个示例性实施例,但本领域技术人员将认识到的是本发明的机制能够被分发为具有一个或多个类型的非暂时性计算机可读信号的程序产品,该信号承载用于存储程序及其指令并且实施其分发的介质,诸如承载程序并且包含存储在该程序中的计算机指令的非暂时性计算机可读介质以用于使得计算机处理器(诸如,处理器172)实施并执行该程序。这样的程序产品可以采用各种形式,并且本发明同等地适用而不论承载用于执行分布的介质的计算机可读信号的特定类型。承载介质的信号的示例包括:可记录的介质,诸如,闪存盘,硬盘驱动器,存储卡和光盘以及传输介质,诸如,数字和模拟通信链。将意识到的是基于云的存储和/或其他技术也可以用在一些实施例中。类似地将意识到的是控制器106的计算机系统也可以以其他方式而与图1中描绘的实施例不同,例如,不同在于控制器106的计算机系统可以联接至或可以以其他方式使用一个或多个远程计算机系统和/或其他系统。
显示单元108联接至控制器106,并且提供关于操作者所需的参与等级的信息。在一个实施例中,显示单元108向操作者提供如经由处理器172确定的关于车辆行驶期间的(例如,在通向期望的目的地的当前行驶期间)操作者所需的参与等级的预测。如图1中描绘的,在一个实施例中,该显示器包括视觉部件191和听觉部件192。然而,这在其他实施例中可以不同。在一个实施例中,视觉部件191由车辆100的驾驶者可见(例如,在前仪表板、导航系统和/或车辆100的控制面板上)。此外,在一个实施例中,听觉部件192经由车辆100的一个或多个扬声器而被使用。
将意识到的是车辆100能够通过在车辆自身上“自己产生的”命令、指令和/或输入而以自动的方式操作。替代地或额外地,车辆100能够由车辆100外部的一个或多个部件或系统产生的命令、指令和/或输入控制,该一个或多个部件或系统包括但不限于:其他自主车辆;后端服务器系统;位于操作环境中的控制装置或系统;等等。因此,在一些实施例中,除了其他变型例以外(例如上面所讨论的,在一些模式中包括由驾驶者或其他操作者部分或完全控制)车辆100能够利用车辆到车辆的数据通信,车辆到基础设施的数据通信和/或基础设置到车辆的通信而被控制。
参考图2,两个示例性显示物200、202(分别被称为第一显示物200和第二显示物202)的展示被提供,这两个示例性显示物可以被展示在显示单元108上以用于可以经由显示单元108而提供的展示(例如,用于在车辆100内观察)。第一显示物200沿着与路线的地图一起嵌入的由车辆100采用的路线而提供预测的参与等级。第二显示物202代替地经由线性显示(关于时间)而提供预测的参与等级。在各种其他实施例中,不同类型的展示可以被使用(例如,关于距离的线性展示等)。
在所描绘的示例中,操作者的参与等级在相应的显示物200、202上以颜色编码。例如,根据一个实施例,第一颜色210(例如,绿色)用于描绘其中需要很少的驾驶者参与或不需要驾驶者参与的道路段和/或时间段(例如,其中车辆100正在以完全自主的等级五的操作模式或者接近完全自主的等级四的操作模式驾驶)。同样在一个实施例中,第二颜色212(例如,黄色)用于描绘其中需要稍微较高等级的驾驶者参与的道路段和/或时间段(例如,其中车辆100正在以自主的等级三的操作模式驾驶,其中驾驶者仍然应该在必要时能够接管车辆100的操作)。同样在一个实施例中,第三颜色214(例如,紫色)用于描绘其中需要仍更高等级的驾驶者参与的道路段和/或时间段(例如,其中车辆100正在以自主的等级二的操作模式驾驶,其中驾驶者需要保持警惕)。此外,在一个实施例中,第四颜色216(例如,红色)用于描绘其中需要仍更高等级的驾驶者参与的道路段和/或时间段(例如,其中车辆100正在以自主的等级零或一的操作模式驾驶,其中需要驾驶者全时段操作,例如完全的手动驾驶模式或限制的自主驾驶模式,如巡航控制的限制应用,其中仍然需要驾驶者全时段操作)。
同样在一个实施例中,上面提及的自主车辆操作等级对应于SAE国际标准,其包括下列内容:(a)等级零的自动化表示由驾驶者完全手动操作,由此需要驾驶者全时段操作;(b)等级一的自动化利用一些自动化(例如,在一实施例中,用于横向或者纵向移动之一而不是两者的适应性巡航控制,用于转向或加速/减速的自动控制的适应性巡航控制),但仍然需要驾驶者全时段操作(例如,驾驶者仍然在全时段的基础上执行一些驾驶任务,诸如,转向或者加速/减速);(c)等级二的自动化利用更高程度的自动化(例如,在一个实施例中,包括用于横向和纵向移动两者的适应性巡航控制,用于转向和加速/减速两者的自动控制的适应性巡航控制),但仍然需要一定程度的驾驶加入(但小于等级零和等级一)(例如,在一个实施例中,期望驾驶者检测驾驶环境以及响应任意干预请求);(d)与等级二相比,等级三的自动化使用更高程度的自动化(例如,在一个实施例中,包括用于横向和纵向移动两者的适应性巡航控制,用于转向和加速/减速两者的自动控制的的适应性巡航控制,以及行驶环境的自动监测),但仍然需要一定程度的驾驶加入(但小于等级二)(例如,在一实施例中,期望驾驶者响应任意干预请求);(e)等级四的自动化使用仍更高程度的自动化(例如,在一个实施例中,包括所有车辆系统的完全自动控制),以及限制的驾驶者加入或没有驾驶者加入(例如,在一个实施例中,驾驶者可以可选地响应干预请求,但如果驾驶者不响应干预请求车辆仍然能够在完全的自主的模式下操作);以及(f)等级五的自动化使用车辆驾驶的完全自动化,不需要驾驶者参与。然而,这在其他实施例中可以不同。
同样,与上面讨论的类似,在一个实施例中(i)当预测等级五或等级四的自动化时(即,很少的预测的驾驶者参与或没有预测的驾驶者参与)使用第一颜色210;(ii)当预测等级三的自动化时(即,与等级五或等级四的自动化相比需要更多的预测的驾驶者参与)使用第二颜色212;(iii)当预测等级二的自动化时(即,与等级三的自动化相比需要更多的预测的驾驶者参与)使用第三颜色214;以及(iv)当预测等级零或等级一的自动化时(即,需要比等级二的自动化更多的全时段的预测的驾驶者参与)使用第四颜色216。这在不同的实施例中可以不同。例如,在一些实施例中,对于每一个自动等级可以使用单独的颜色和/或可以使用不同的显示技术以便指示参与的等级(例如,代替不同的颜色或除不同颜色以外,使用虚线、点线、阴影和/或各种其他标记和/或指示,替换为或添加不同的颜色)。在任一情况中,该显示物向驾驶者提供沿着即将到来的路线预测的即将到来的参与等级的预期。
参考图3,根据示例性实施例,用于向车辆的操作者提供关于操作者的参与等级的信息的概念框架300被提供。根据示例性实施例,概念框图300能够结合图1的车辆100和控制系统102以及图2的显示物200、202而实施。
如图3中所示,在一个实施例中,各种系统输入302被用于利用一个或多个数据通信网络306(例如,包括一个或多个卫星、蜂窝和/或其他无线网络)而产生各种系统输出304。系统输入302可以包括车外输入308以及车载输入310(即,车辆100上的输入)。在所描绘的示例中,外部输入308可以包括来自车辆100的车外的基础设施传感器数据312和摄像头数据314(例如,来自沿道路的摄像头和其他传感器,或者作为交通灯的一部分,等等)。车外输入308包括与道路、道路状况、天气状况有关的信息,和/或在到达其目的地的途中的车辆100周围的参数的其他信息。例如,这样的车外输入可以经由图1的收发器104接收。
同样在图3中描绘的,在各种实施例中,车载输入310包括与车辆100、自主功能的操作、车辆的驾驶者和/或车辆100周围的状况有关的各种不同类型的参数数据。例如,这样的车载输入可以经由诸如下列内容的装置获得(除了其他可能装置以外):嵌入式摄像头316;诸如智能电话、平板或其他电子装置的个人装置318(例如,对应与图1的装置109)和/或与这样的个人装置相关联的传感器(例如,摄像头、加速度计等);用户输入装置320(例如,开关、姿势输入装置等等,例如,对应于图1的用户接口105);外部摄像头324(例如,面向道路的);内部摄像头326(例如,面向驾驶者的);追踪驾驶者的眼睛和/或头部和/或其他驾驶者特征(例如,检测驾驶者的心率,等等)的眼睛和/或头部传感器326;追踪驾驶者对方向盘的参与的方向盘传感器328;GPS传感器和装置330(例如,作为图1的收发器104的一部分);纵向加速度传感器332,轮速传感器326,和/或自主功能传感器338(例如,与用于车辆的自主驾驶的各种物体检测和/或其他传感器(诸如,摄像头,雷达,激光雷达等)的功能和/或健康有关)。
如图3中描绘的,额外输入340经由车辆与车辆100外的一个或多个结构和/或装置通信而获得,诸如,经由数据和通信网络306。通过示例的方式,额外输入340可以包括各种外部状况342,诸如,天气、交通状况、交通信号、道路状况、道路施工等等,以及数据服务器和商业逻辑344(例如,包括驾驶者、车辆和/或道路的过往历史,相关分析,等等)。在各种实施例中,这些和/或其他输入能够经由各种形式的通信而获得,诸如车辆到车辆的通信、车辆到基础设施的通信、在车辆100和一个或多个远程服务器和/或服务提供者之间的通信,等等。
此外,如图3中描绘的,在一个实施例中,系统输出304经由车载处理器346(例如,对应于图1的处理器172)而产生,并且包括显示物348(例如,对应于图2的显示物200、202),可能的显示物覆盖状态费用(override state charges)350(例如,如果操作者请求改变期望的行进路线,或改变自主驾驶等级,等等),自动化等级预览计算352(例如,在确定所需的操作者参与等级),系统命令值354(例如,用于车辆的自主操作),以及其他可能的系统部件356。如图3中描绘的,除了其他的以外,其他可能的系统部件356可以包括,各种显示物(例如,仪表组、DIC(驾驶者信息中心)、导航屏幕、HUD(抬头显示)、ISRV(内部后视)镜、OSRV(外后视镜)、音响声音和/或震动、扬声器和/或致动器)。
参考图4,根据示例性实施例,用于向车辆的操作者提供关于操作者的参与等级的信息的方法400的流程图被提供。根据示例性实施例,方法400能够结合图1的车辆100和控制系统102,图2的显示物200、202以及图3的概念框架300而实施。
如图4中所描绘的,目的地条目被接收(步骤402)。在一个实施例中,目的地表示对于车辆的当前车辆驾驶的选择的目的地,如由操作者经由参与图1的用户接口105而选择的。
与车辆驾驶有关的各种数据被获得(步骤404)。在一个实施例中,作为步骤404的一部分,众包监测和数据分析以及历史信息被获得。在各种实施例中,该数据包括与车辆操作者的偏好和/或历史有关的各种数据(例如,关于去工作或其他目的地的一般时间,优选的路线,优选的自主驾驶等级和/或在不同时间和/或地点的驾驶者参与要求,等等),以及与车辆100(包括自主驾驶功能的操作),其操作者(例如,驾驶者)和周围环境(例如,道路,路面状况,交通模式,设施,天气,等等)有关的各种数据,例如,对应于图3的各种输入302、308、310和340。同样在各种实施例中,数据还可以包括来自各种源(诸如,第三方应用/APP,车辆到基础设施的通信,等等)的实时交通和/或事故报道信息。在各种实施例中,数据经由图1的各种传感器103、收发器104、用户接口105和/或与图3的各种类型的输入302、308、310和340相关联的各种装置而被收集。
利用步骤404的各种数据,车辆自动化的等级(以及对应的所需操作者参与的等级)对于整个被选择的到目的地的(多个)路线的每个段被计算并预测(步骤406)。在各种实施例中,步骤406的确定由车辆100上的图1的处理器172做出。在一个实施例中,操作者参与的等级对应于结合图2的显示物200、202的上述不同颜色编码的等级。例如,在各种实施例中,如果天气和/或其他道路状况不够理想,或如果存在施工、交通拥堵、车辆倒车、道路堵塞、道路缓慢、停止和/或与特定路线有关的其他可能问题,那么这样的因素可能需要额外的和/或提高的由操作者参与的等级。在各种实施例中,例如,在外部道路环境和自动化等级之间可以使用不同的机制。在一些实施例中,确定自动化等级的一个基本因素包括在不同状况下的感测能力。例如,在一些实施例中,可以使用在下雪的天气状况下的激光雷达的感知能力。随着感知能力的发展,自动化等级将在一些道路状况中改变。
此外,在一些实施例中,在步骤408中使用驾驶者状态监测以便基于驾驶者状态和/或驾驶者偏好而建议一定等级的自动化。例如,在一些实施例中,驾驶者监测(例如,使用图3的运动传感器322,内部摄像头326,眼睛/头部传感器327,方向盘传感器328,和/或图1的其他传感器103)可以被用于监测驾驶者的当前警觉等级。例如,在一些实施例中,如果操作者闭上他或她的眼睛,将他或她的头部放置在睡眠式的位置,和/或眼睛没有当前地和/或主动地关注在道路上,然后这可以表示驾驶者没有特别警觉。反之,在一些实施例中,如果操作者睁开他或她的眼睛并且显示出眼睛和身体的运动主动地关注在道路上,那么这将表示驾驶者相对更加警觉,等等。在一些其他实施例中,各种其他传感器数据(例如,心率传感器,其他睡眠探测传感器,等等,例如,来自智能手表或其他计算机装置)可以类似地被用于监测驾驶者的警觉性。此外,步骤404的历史和/或偏好也可以用于分析在车辆行驶的各个段期间驾驶者对于自主驾驶的等级的预期偏好(以及相关联的所需的驾驶者参与等级)。在一些实施例中,来自其他传感器和/或源的数据也可被使用,诸如,通过示例的方式,驾驶者的座位上的压力传感器以便监测驾驶者的就坐位置和移动频率,(例如,这可以包括驾驶者的困倦的指示器),等等。
为操作者提供了统一视图(步骤410)。在一个实施例中,步骤410的统一视图包括沿路线预期的不同的参与等级的显示物(根据步骤406的确定)。在一些实施例中,该统一视图也包括步骤408的驾驶者状态和/或偏好。
例如,通过可以更好地符合驾驶者的状态或偏好的建议的替代路线(步骤412)。通过示例的方式,在一个实施例中,如果驾驶者当前看起来困倦或相对没反应,那么可以提出和/或选择替代的路线,在该路线中对于至少期望的时间段需要很少的驾驶者参与或没有驾驶者参与。通过额外示例的方式,如果在行驶的特定部分(例如,在开始)期间,特定的驾驶者通常偏向具有相对低或高等级的参与,那么可以因此调整路线以满足驾驶者的偏好,等等。
在一个实施例中,这样的替代路线被显示为驾驶者的选项,并且驾驶者可以因此选择这样的替代路线(步骤414)。该方法随后返回上述步骤404和406,如在图4中描绘并且在上面讨论的。在一些实施例中,路线推荐是通过车内信息娱乐系统主动地提出给驾驶者的,并且作出请求要求驾驶者的确认。
在一个实施例中,对可能路线的分析确定对于驾驶者的状态最有利的扩展的自动驾驶段的最适当路线。向驾驶者呈现沿路线的即将到来的自动事件的驾驶预览。这种预报消除了转换“惊喜”,并且导致提高安全和更好的人/车驾驶转换的自动驾驶体验。
同样在一个实施例中,对于自动化的车辆,驾驶者被提供有在沿着导航路线(或者当不在路线中的任何时间)的每个路段上的自动化等级的预览以及驾驶者的责任的预览。这个方法考虑下述因素:诸如,路面状况(例如,车道标记可视性,车道,其他车辆的存在),天气状况(例如,下雪)和已记录的其他车辆的自动化系统性能数据。同样在一个实施例中,驾驶者被提供有选择优选的自动化的安排的方法。此外,在一个实施例中,可以使用对各种环境和驾驶者状态信息的适应以及要求驾驶者的确认来向用户提供最相关的选项。
此外,在一些实施例中,可以提供在目的地(例如,在驾驶末期)处的自动化的预报。更具体地,在一个实施例中,这可能需要对自动泊车可用性和位置的预报。在一个实施例中,自动泊车在接近零速时进行,并且这样的自动泊车预报可以作为驾驶者选择到达的预报要素而提供给驾驶者;这可能进而影响在较早的自动化预览期间的驾驶员的动作/选择。
此外,在一些实施例中,在到达目的地以后(例如,在泊车以后),数据可以被提供给操作者。在一些实施例中,在车辆驾驶的末期或之后,关于自动化等级的历史(以及对应的所需的操作者参与等级)可以被提供给操作者,例如,用以为下一次车辆驾驶建议可能的替代方案(例如,可能更早或更晚的离开,或采取不同路线,这可能影响操作者的参与等级并且更具体地根据操作者的偏好来定制路线)。
因此,用于为具有自主驾驶功能的车辆的操作者参与提供信息的方法、系统和车辆被提供。在各种实施例中,各种参数被用于沿到目的地的路径而预测未来的操作者的参与等级,并且信息被提供给驾驶者或车辆的其他操作者。
根据各种实施例,所公开的方法、系统和车辆向操作者(例如,驾驶员)提供预期的即将到来的车辆自动化等级和他/她在特定路段上的参与等级的预览。此外,在各种实施例中,考虑到道路状况、天气状况和来自其他车辆的自动化系统性能数据的性能数据,所公开的方法,系统和车辆向驾驶员提供他们对于整个行程的“工作”安排的指示器。此外,在各种实施例中,所公开的方法、系统和车辆向驾驶者提供选择优选的自动化的安排的方法。而且,在各种实施例中,所公开的方法、系统和车辆提供对各种环境和驾驶者状态的适应以便向车辆的用户(例如,驾驶者)展现最相关的选项。
所公开的系统和方法在下述方面可以是有利的,例如,改进驾驶者和自动化系统之间的配合,并且由此提高安全性;给驾驶者提供他们对于整个旅途的责任和“工作”安排的指示器;通过展示未来的车辆控制转换而提供更渐进的方式以便使驾驶者进入循环;为了诸如路线选择的其他目的而潜在地使用自动化等级信息;允许驾驶者基于当前状况(例如最快,最短,最便宜等等)而选择具有更多或更少自动化的安排/路线;监测在车辆驾驶或驾驶期间变得可用的可用自动化安排;以及在帮助管理驾驶者和/或乘客的预期方面。
将意识到的是,所公开的方法、系统和车辆可以与附图中描绘的和本文中描述的那些不同。例如,车辆100,控制系统102和/或其各种部件可以与图1中描绘的以及与其结合描述的不同。同样地将意识到的是,显示物200、202可以与图2中描绘的不同。此外,将意识到的是,概念框架300和方法400可以分别地与图3和4中描绘的那些不同。
虽然在上述详细描述中已经展示了至少一个示例性实施例,但应该意识到的是存在大量的变型例。还应该意识到的是,一个或多个示例性实施例仅是示例,并且不旨在以任意方式限定本发明的范围、可用性或构造。相反地,前述详细描述将为本领域技术人员提供方便的指南以用于实施该一个或多个示例性实施例。应该理解的是,在不脱离所附权利要求及其法律等同物的范围的情况下能够在元件的功能和设置上进行各种改变。

Claims (10)

1.一种方法,包括:
获得与为具有自主操作能力的车辆规划的路线的一种或多种状况有关的输入;
利用所述输入经由处理器来预测所述车辆的操作者的未来的参与等级;以及
为所述操作者提供与所述未来的参与等级有关的信息。
2.如权利要求1所述的方法,其中,获得输入包括获得与所述路线的多种状况有关的输入,其中,所述多种状况与对于所述路线预期的自主驾驶等级相关。
3.如权利要求2所述的方法,其中,获得输入包括用于所述路线的众包监测。
4.如权利要求2所述的方法,其中,获得输入包括获得所述车辆的所述操作者关于所述操作者的偏好的用户历史。
5.如权利要求2所述的方法,其中,获得输入包括获得用于所述路线的道路状况。
6.如权利要求2所述的方法,进一步包括:
至少部分地基于所述多种状况而确定用于所述路线的所述操作者所需的参与等级。
7.如权利要求2所述的方法,进一步包括:
基于所述多种状况而确定用于多个可能路线的所述操作者所需的参与等级,所述多个可能路线包括所述路线和多个额外路线;
获得与所述车辆的所述操作者有关的传感器信息;
基于传感器信息而监测所述车辆的所述操作者的意识等级;以及
基于用于每个相应路线的所述参与等级和所述操作者的所述意识等级而从所述多个可能路线中选择被选择的路线。
8.一种系统,包括:
输入单元,所述输入单元被构造成至少有助于:
获得与为具有自主操作能力的车辆规划的路线的一种或多种状况有关的输入;以及
处理器,所述处理器被构造成至少有助于:
利用所述输入经由处理器而预测所述车辆的操作者的未来的参与等级;以及
为所述操作者提供与所述未来的参与等级有关的信息。
9.一种车辆,包括:
推进系统,所述推进系统具有自主操作能力;
输入单元,所述输入单元被构造成至少有助于获得与为所述车辆规划的路线的一种或多种状况有关的输入;以及
处理器,所述处理器被构造成至少有助于:
利用所述输入经由处理器而预测所述车辆的所述操作者的未来的参与等级;以及
为所述操作者提供与所述未来的参与等级有关的信息。
10.如权利要求9所述的车辆,进一步包括:
传感器单元,所述传感器单元被构造成至少有助于获得与所述车辆的所述操作者有关的传感器数据;
其中,所述处理器被进一步构造成至少有助于:
基于所述多种状况而确定用于多个可能路线的所述操作者所需的参与等级,所述多个可能路线包括所述路线和多个额外路线;
基于传感器数据而监测所述车辆的所述操作者的意识等级;以及
基于用于每个相应路线的所述参与等级和所述操作者的所述意识等级而从所述多个可能路线中选择被选择的路线。
CN201710223456.8A 2016-01-26 2017-01-26 车辆自动化及操作者参与等级预测 Active CN106997203B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662287423P 2016-01-26 2016-01-26
US62/287423 2016-01-26
US15/406,301 US10198009B2 (en) 2016-01-26 2017-01-13 Vehicle automation and operator engagment level prediction
US15/406301 2017-01-13

Publications (2)

Publication Number Publication Date
CN106997203A true CN106997203A (zh) 2017-08-01
CN106997203B CN106997203B (zh) 2020-09-15

Family

ID=59360429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710223456.8A Active CN106997203B (zh) 2016-01-26 2017-01-26 车辆自动化及操作者参与等级预测

Country Status (2)

Country Link
US (1) US10198009B2 (zh)
CN (1) CN106997203B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109388130A (zh) * 2017-08-08 2019-02-26 波音公司 联网的自动车辆的安全控制
CN111186446A (zh) * 2018-10-29 2020-05-22 中国电信股份有限公司 自动驾驶的控制方法、装置和计算机可读存储介质
WO2024140326A1 (zh) * 2022-12-28 2024-07-04 华为技术有限公司 监控方法、装置以及运载工具

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017187622A1 (ja) * 2016-04-28 2017-11-02 本田技研工業株式会社 車両制御システム、車両制御方法、および車両制御プログラム
US10065651B2 (en) * 2016-05-10 2018-09-04 Samsung Electronics Co., Ltd Electronic device and method for determining a state of a driver
US11182709B2 (en) 2016-08-16 2021-11-23 Teleport Mobility, Inc. Interactive real time system and real time method of use thereof in conveyance industry segments
US11176500B2 (en) 2016-08-16 2021-11-16 Teleport Mobility, Inc. Interactive real time system and real time method of use thereof in conveyance industry segments
US11087252B2 (en) 2016-08-16 2021-08-10 Teleport Mobility, Inc. Interactive real time system and real time method of use thereof in conveyance industry segments
KR101891612B1 (ko) * 2016-09-30 2018-08-24 엘지전자 주식회사 자율 주행 차량
GB2558919A (en) * 2017-01-18 2018-07-25 Bae Systems Plc Unmanned aerial systems
JP6631577B2 (ja) * 2017-04-05 2020-01-15 株式会社デンソー 運転交代制御システム、運転交代制御プログラム、及び運転交代制御方法
KR102064222B1 (ko) * 2017-09-22 2020-03-02 엘지전자 주식회사 차량의 운행 시스템을 제어하는 방법
US10895465B2 (en) * 2017-10-12 2021-01-19 Toyota Jidosha Kabushiki Kaisha Optimizing a route selection for a highly autonomous vehicle
SE1751654A1 (en) 2017-12-27 2019-06-28 Scania Cv Ab Method and control unit for updating at least one functionality of a vehicle
DE102018207301A1 (de) * 2018-05-09 2019-11-14 Bayerische Motoren Werke Aktiengesellschaft Fahrerassistenzsystem und Verfahren zum automatisierten Fahren mit automatisierter Längsführung
US10909866B2 (en) * 2018-07-20 2021-02-02 Cybernet Systems Corp. Autonomous transportation system and methods
JP6833120B2 (ja) * 2018-08-10 2021-02-24 三菱電機株式会社 運転計画作成装置、遠隔運転サーバおよび運転計画作成方法
DE102018214894A1 (de) * 2018-09-03 2020-03-05 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines automatisierten Fahrzeugs
KR102677702B1 (ko) * 2018-09-11 2024-06-25 현대자동차주식회사 차량 및 그 제어방법
JP7124784B2 (ja) * 2019-04-04 2022-08-24 トヨタ自動車株式会社 車両制御装置
WO2021153382A1 (ja) * 2020-01-28 2021-08-05 パナソニックIpマネジメント株式会社 情報処理方法、及び、情報処理システム
KR20210134128A (ko) * 2020-04-29 2021-11-09 현대자동차주식회사 자율 주행 제어 방법 및 장치
JP7593755B2 (ja) * 2020-07-30 2024-12-03 株式会社Subaru 運転交代制御装置
US20220063639A1 (en) * 2020-08-27 2022-03-03 Here Global B.V. Method, apparatus, and computer program product for predicting autonomous transition regions using historical information
US11691643B2 (en) 2020-08-27 2023-07-04 Here Global B.V. Method and apparatus to improve interaction models and user experience for autonomous driving in transition regions
US20220067813A1 (en) * 2020-08-27 2022-03-03 Here Global B.V. Automated autonomous vehicle recommendations based on personalized transition tolerance
US11713979B2 (en) 2020-08-27 2023-08-01 Here Global B.V. Method, apparatus, and computer program product for generating a transition variability index related to autonomous driving
US11687094B2 (en) 2020-08-27 2023-06-27 Here Global B.V. Method, apparatus, and computer program product for organizing autonomous vehicles in an autonomous transition region
JP7567296B2 (ja) * 2020-08-31 2024-10-16 トヨタ自動車株式会社 車両用表示制御装置、方法、プログラムおよび車両用表示システム
DE102020133937A1 (de) * 2020-12-17 2022-06-23 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zur Ermittlung einer Fahrroute für ein automatisiert fahrendes Fahrzeug
US20220206497A1 (en) * 2020-12-24 2022-06-30 Hyundai Mobis Co., Ltd. Vehicle driving guidance system and operation method thereof
CN115071747B (zh) * 2021-03-12 2025-05-02 沃尔沃汽车公司 用于车辆的驾驶辅助设备、系统和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150006014A1 (en) * 2012-02-06 2015-01-01 Audi Ag Motor vehicle having a driver assistance device and method for operating a motor vehicle
CN104417547A (zh) * 2013-09-05 2015-03-18 福特全球技术公司 针对受损驾驶员的自主车辆控制
CN104590250A (zh) * 2013-10-31 2015-05-06 财团法人车辆研究测试中心 车辆自主辅助驾驶系统与方法
CN105229422A (zh) * 2013-03-15 2016-01-06 大众汽车有限公司 自动驾驶路线规划应用
CN106335513A (zh) * 2015-07-10 2017-01-18 沃尔沃汽车公司 具有先进驾驶员辅助和自主驾驶的车上时间智能使用的方法和系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10037689B2 (en) * 2015-03-24 2018-07-31 Donald Warren Taylor Apparatus and system to manage monitored vehicular flow rate
US20160282132A1 (en) * 2015-03-27 2016-09-29 International Business Machines Corporation Predictive navigation
US9796388B2 (en) * 2015-12-17 2017-10-24 Ford Global Technologies, Llc Vehicle mode determination

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150006014A1 (en) * 2012-02-06 2015-01-01 Audi Ag Motor vehicle having a driver assistance device and method for operating a motor vehicle
CN105229422A (zh) * 2013-03-15 2016-01-06 大众汽车有限公司 自动驾驶路线规划应用
CN104417547A (zh) * 2013-09-05 2015-03-18 福特全球技术公司 针对受损驾驶员的自主车辆控制
CN104590250A (zh) * 2013-10-31 2015-05-06 财团法人车辆研究测试中心 车辆自主辅助驾驶系统与方法
CN106335513A (zh) * 2015-07-10 2017-01-18 沃尔沃汽车公司 具有先进驾驶员辅助和自主驾驶的车上时间智能使用的方法和系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109388130A (zh) * 2017-08-08 2019-02-26 波音公司 联网的自动车辆的安全控制
CN109388130B (zh) * 2017-08-08 2023-11-03 波音公司 确保联网的自动车辆的安全控制的方法、系统和介质
CN111186446A (zh) * 2018-10-29 2020-05-22 中国电信股份有限公司 自动驾驶的控制方法、装置和计算机可读存储介质
CN111186446B (zh) * 2018-10-29 2022-02-01 中国电信股份有限公司 自动驾驶的控制方法、装置和计算机可读存储介质
WO2024140326A1 (zh) * 2022-12-28 2024-07-04 华为技术有限公司 监控方法、装置以及运载工具

Also Published As

Publication number Publication date
CN106997203B (zh) 2020-09-15
US10198009B2 (en) 2019-02-05
US20170212525A1 (en) 2017-07-27

Similar Documents

Publication Publication Date Title
CN106997203A (zh) 车辆自动化及操作者参与等级预测
US10759343B2 (en) Autonomous vehicle
CN110126731B (zh) 显示装置
US7428449B2 (en) System and method for determining a workload level of a driver
US10937314B2 (en) Driving assistance apparatus for vehicle and control method thereof
US12346125B2 (en) Vehicle platooning systems and methods
US10481614B2 (en) Vehicle platooning systems and methods
US10331141B2 (en) Systems for autonomous vehicle route selection and execution
CN113195326A (zh) 检测一般道路天气状况
CN109421739A (zh) 用于监控自主车辆的方法和设备
US20190064823A1 (en) Method and apparatus for monitoring of an autonomous vehicle
CN109421741A (zh) 用于监测车辆的方法和设备
CN108058712A (zh) 车辆及其控制方法
US20180043825A1 (en) Automatic driving system
US20190276044A1 (en) User interface apparatus for vehicle and vehicle including the same
US20210331709A1 (en) Vehicle control device and control method for the same
KR20150066303A (ko) 운전자의 주행 패턴을 반영하는 자율 주행 장치 및 그 방법
CN107433949A (zh) 自适应驾驶控制的低牵引检测和模式选择
US20190100135A1 (en) Acceleration event-based passenger notification system
CN111845778A (zh) 车辆控制接口、车辆系统和自动驾驶平台
US20210334904A1 (en) Insurance guidance system and method for autonomous vehicle
DE102017101342A1 (de) Fahrzeugautomatisierung und vorhersage für einen bediener-eingriffspegel
CN119502687A (zh) 基于车辆状态和环境条件的动态内容生成方法、装置及汽车

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant