CN106951921B - SAR target recognition method based on Bayesian multi-kernel learning support vector machine - Google Patents
SAR target recognition method based on Bayesian multi-kernel learning support vector machine Download PDFInfo
- Publication number
- CN106951921B CN106951921B CN201710149246.9A CN201710149246A CN106951921B CN 106951921 B CN106951921 B CN 106951921B CN 201710149246 A CN201710149246 A CN 201710149246A CN 106951921 B CN106951921 B CN 106951921B
- Authority
- CN
- China
- Prior art keywords
- kernel
- sar image
- data set
- image
- kernel matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2411—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- General Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Medical Informatics (AREA)
- Image Analysis (AREA)
Abstract
本发明公开了一种基于贝叶斯多核学习支持向量机的SAR目标识别方法,主要解决现有的目标识别方法对SAR图像目标识别不准确的问题。其实现步骤为:1)输入原始SAR图像并预处理,计算不同特征的核矩阵;2)根据多核学习方法对核矩阵进行组合;3)根据组合的核矩阵对支持向量机建立贝叶斯多核学习支持向量机模型;4)使用期望最大化算法求解贝叶斯多核学习支持向量机模型,得到最优解;5)使用最优解对SAR图像测试数据进行目标识别。本发明有效地结合了贝叶斯方法的推断能力和多核学习方法的区分能力,提高了识别性能,可用于对SAR图像的分类。
The invention discloses a SAR target recognition method based on a Bayesian multi-kernel learning support vector machine, which mainly solves the problem that the existing target recognition methods are inaccurate in SAR image target recognition. The implementation steps are: 1) input the original SAR image and preprocess it, and calculate the kernel matrix of different features; 2) combine the kernel matrix according to the multi-kernel learning method; 3) establish a Bayesian multi-kernel for the support vector machine according to the combined kernel matrix Learning the support vector machine model; 4) using the expectation maximization algorithm to solve the Bayesian multi-kernel learning support vector machine model to obtain the optimal solution; 5) using the optimal solution to perform target recognition on the SAR image test data. The invention effectively combines the inference ability of the Bayesian method and the discrimination ability of the multi-kernel learning method, improves the recognition performance, and can be used for classifying SAR images.
Description
技术领域technical field
本发明属于雷达目标识别技术领域,特别涉及一种SAR目标识别方法,可用于SAR图像的分类。The invention belongs to the technical field of radar target recognition, in particular to a SAR target recognition method, which can be used for SAR image classification.
背景技术Background technique
合成孔径雷达SAR是一种利用微波进行感知的主动传感器,其成像不受客观因素如光照、气候的影响,可以全天时、全天候地对目标进行监测,无论在民用领域还是在军事领域都具有很高的利用价值。SAR图像中除包含目标外,还包含大量的杂波,加之SAR图像中还包含大量的相干斑,这使得对SAR图像的检测、鉴别和识别变得十分困难;另外,由于SAR目标的配置不同和所处环境的复杂性,不可能得到所有情况下的训练样本。因此,如何提高SAR目标的识别性能是雷达目标识别中的一个重要研究方向。Synthetic Aperture Radar SAR is an active sensor that uses microwaves for perception. Its imaging is not affected by objective factors such as light and climate, and it can monitor targets all day and in all weathers, both in the civilian and military fields. High utilization value. In addition to the target, the SAR image also contains a large number of clutter, and the SAR image also contains a large number of coherent speckles, which makes the detection, identification and identification of the SAR image very difficult; in addition, due to the different configurations of the SAR targets And the complexity of the environment, it is impossible to obtain training samples in all cases. Therefore, how to improve the recognition performance of SAR targets is an important research direction in radar target recognition.
在SAR目标识别方法中主要分以下几种:The SAR target recognition methods are mainly divided into the following categories:
一是基于模板匹配的方法;One is the method based on template matching;
二是基于模型的方法;The second is a model-based approach;
三是基于稀疏表示的分类方法;The third is the classification method based on sparse representation;
四是基于分类器设计的方法,如K近邻分类器,神经网络分类器,支持向量机等等。The fourth is the method based on classifier design, such as K nearest neighbor classifier, neural network classifier, support vector machine and so on.
所述支持向量机,它是一种基于统计学习理论的分类算法,其通过引入核函数,巧妙地解决了高维空间中的内积运算问题,使得核支持向量机在小样本、非线性及高维度模式识别问题中表现出了特有的优点。The support vector machine is a classification algorithm based on statistical learning theory, which cleverly solves the inner product operation problem in high-dimensional space by introducing a kernel function, making the kernel support vector machine in small samples, nonlinear and Specific advantages are shown in high-dimensional pattern recognition problems.
这种将单一数据特征结合支持向量机而成的分类器称为单核学习支持向量机,由于不同的数据特征表征数据的相似性和区分性的能力不同,选取不同的数据特征,单核学习支持向量机会表现出完全不同的分类性能,因此,单核学习支持向量机仅能表现出某一数据特征的特性,不能体现出各数据特征之间的关联性,从而影响分类器的分类性能,使得目标识别率下降。This kind of classifier that combines single data features with support vector machine is called single-kernel learning support vector machine. SVMs show completely different classification performance. Therefore, single-core learning SVMs can only show the characteristics of a certain data feature, but cannot reflect the correlation between various data features, thus affecting the classification performance of the classifier. This reduces the target recognition rate.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于针对上述现有技术的不足问题,提出一种基于贝叶斯多核学习支持向量机的SAR目标识别方法,以提高目标识别性能。The purpose of the present invention is to propose a SAR target recognition method based on the Bayesian multi-kernel learning support vector machine in order to improve the target recognition performance in view of the above-mentioned deficiencies of the prior art.
本发明的技术方案是这样实现的:The technical scheme of the present invention is realized as follows:
一、技术思路1. Technical ideas
本发明将贝叶斯推断与多核学习方法相结合,针对不同数据特征的选取问题,引入多核学习方法,它具有很好的泛化能力和更强的学习能力;同时,用贝叶斯推断推理出支持向量机原始问题的解。其实现方案是:首先,对原始SAR图像进行预处理,得到图像域、频域和稀疏系数三种数据特征并分别计算对应径向核函数RBF的核矩阵;再次,使用多核学习算法将三种核矩阵进行组合;最后,用训练数据的组合核矩阵推理贝叶斯模型并得到最优解,并对测试数据的组合核矩阵分类,其实现步骤包括如下:The invention combines Bayesian inference and multi-core learning method, and introduces multi-core learning method for the selection of different data features, which has good generalization ability and stronger learning ability; Find the solution to the original problem of the support vector machine. The implementation scheme is: first, preprocess the original SAR image to obtain three data features of image domain, frequency domain and sparse coefficient, and calculate the kernel matrix corresponding to the radial kernel function RBF respectively; Finally, use the combined core matrix of the training data to infer the Bayesian model and obtain the optimal solution, and classify the combined core matrix of the test data. The implementation steps include the following:
(A)SAR图像预处理步骤:(A) SAR image preprocessing steps:
A1)输入一幅原始SAR图像:I={imn|1≤m≤M,1≤n≤N},其中,imn表示原始SAR图像的幅度像素值,M表示SAR图像的行数,N表示SAR图像的列数;A1) Input an original SAR image: I={i mn |1≤m≤M, 1≤n≤N}, where i mn represents the amplitude pixel value of the original SAR image, M represents the number of lines of the SAR image, and N Represents the number of columns of the SAR image;
A2)对原始SAR图像I进行二值分割,并计算获得SAR图像的质心 A2) Perform binary segmentation on the original SAR image I, and calculate the centroid of the SAR image
A3)将原始SAR图像I进行圆周移位,使质心移动到图像的中心位置,得到配准图像I1;A3) Circular shift the original SAR image I so that the centroid Move to the center of the image to obtain the registration image I 1 ;
A4)对配准图像I1依次进行对数变换、中值滤波和图像截取,得到SAR图像的图像域特征I2,并将图像域特征I2列向量化;A4) Logarithmic transformation, median filtering and image interception are sequentially performed on the registration image I 1 to obtain the image domain feature I 2 of the SAR image, and the image domain feature I 2 is column vectorized;
A5)对配准图像I1做图像截取和二维傅立叶变换,并将零频移至图像中心,得到频域特征I3,并将频域特征I3列向量化;A5) do image interception and two-dimensional Fourier transform to the registration image I 1 , and move the zero frequency to the center of the image, obtain the frequency domain feature I 3 , and quantize the frequency domain feature I 3 column;
A6)分别对SAR图像训练集和测试集重复过程A1)~A4)得到图像域特征的训练数据集Ttr和测试数据集Tte;A6) Repeat the processes A1) to A4) for the SAR image training set and test set respectively to obtain the training data set T tr and the test data set T te of the image domain feature;
A7)分别对SAR图像训练集和测试集重复过程A1)~A5)得到频域特征的训练数据集Ptr和测试数据集Pte;A7) Repeat the process A1) to A5) for the SAR image training set and test set respectively to obtain the training data set P tr and the test data set P te of the frequency domain feature;
A8)使用KSVD算法对图像域特征训练集Ttr学习,得到字典D和与Ttr对应的稀疏系数特征训练数据集Str,结合字典D和图像域特征测试数据集Tte,使用OMP算法计算得到稀疏系数特征测试数据集Ste;A8) Use the KSVD algorithm to learn the image domain feature training set T tr to obtain a dictionary D and a sparse coefficient feature training data set S tr corresponding to T tr , combine the dictionary D and the image domain feature test data set T te , use the OMP algorithm to calculate Obtain the sparse coefficient feature test data set S te ;
(B)多核学习步骤:(B) Multi-core learning steps:
B1)使用径向核函数RBF,结合图像域特征训练数据集Ttr和测试数据集Tte,计算得到图像域特征训练数据集的核矩阵Kttr(Ttr,Ttr)和图像域特征测试数据集核矩阵Ktte(Ttr,Tte);B1) Using the radial kernel function RBF, combined with the image domain feature training data set T tr and the test data set T te , calculate the kernel matrix K ttr (T tr , T tr ) of the image domain feature training data set and the image domain feature test Dataset kernel matrix K tte (T tr ,T te );
B2)使用径向核函数RBF,结合频域特征训练数据集Ptr和测试数据集Pte,计算得到频域特征训练数据集的核矩阵Kptr(Ptr,Ptr)和频域特征测试数据集核矩阵Kpte(Ptr,Pte);B2) Using the radial kernel function RBF, combined with the frequency domain feature training data set P tr and the test data set P te , calculate the kernel matrix K ptr (P tr , P tr ) of the frequency domain feature training data set and the frequency domain feature test Dataset kernel matrix K pte (P tr ,P te );
B3)使用径向核函数RBF,结合稀疏系数特征训练数据集Str和测试数据集Ste,计算得到稀疏系数特征训练数据集的核矩阵Kstr(Str,Str)和稀疏系数特征测试数据集核矩阵Kste(Str,Ste);B3) Using the radial kernel function RBF, combined with the sparse coefficient feature training data set S tr and the test data set S te , calculate the kernel matrix K str (S tr , S tr ) of the sparse coefficient feature training data set and the sparse coefficient feature test Dataset kernel matrix K ste (S tr ,S te );
B4)结合步骤B1)~B3)中计算得到的三种特征的训练集核矩阵和测试集核矩阵,使用核组合方法计算获得SAR图像训练集的组合核矩阵Ktr(V',Vtr)和测试集的组合核矩阵Kte(V',Vte),其中,V'表示基向量集,Vtr表示SAR图像训练数据集,Vte表示SAR图像测试数据集;B4) Combine the training set kernel matrix and test set kernel matrix of the three features calculated in steps B1) to B3), and use the kernel combination method to calculate and obtain the combined kernel matrix K tr (V', V tr ) of the SAR image training set and the combined kernel matrix K te (V', V te ) of the test set, where V' represents the base vector set, V tr represents the SAR image training data set, and V te represents the SAR image testing data set;
(C)贝叶斯推理步骤:(C) Bayesian inference steps:
C1)使用SAR图像训练集的组合核矩阵Ktr(V',Vtr)建立贝叶斯多核学习支持向量机模型;C1) use the combined kernel matrix K tr (V', V tr ) of the SAR image training set to establish a Bayesian multi-kernel learning support vector machine model;
C2)使用期望最大化算法EM求解贝叶斯多核学习支持向量机模型,获得贝叶斯多核学习支持向量机模型的最优解β';C2) use the expectation maximization algorithm EM to solve the Bayesian multi-kernel learning support vector machine model, and obtain the optimal solution β' of the Bayesian multi-kernel learning support vector machine model;
C3)使用步骤C2)中得到的贝叶斯多核学习支持向量机模型的最优解β',结合SAR图像测试集的组合核矩阵Kte(V',Vte),计算得到SAR图像目标类别标号yte。C3) Using the optimal solution β' of the Bayesian multi-kernel learning support vector machine model obtained in step C2), combined with the combined kernel matrix K te (V', V te ) of the SAR image test set, calculate the target category of the SAR image Label y te .
本发明与现有技术相比,具有如下优点:Compared with the prior art, the present invention has the following advantages:
本发明将贝叶斯支持向量机模型与多核学习方法相结合,提出了基于贝叶斯多核学习支持向量机的SAR目标识别方法,使得多核学习方法在选取数据特征方面优于单核学习方法,更能体现出不同数据特征之间的关联性,显著地提高了目标识别性能。The invention combines the Bayesian support vector machine model with the multi-core learning method, and proposes a SAR target recognition method based on the Bayesian multi-core learning support vector machine, so that the multi-core learning method is superior to the single-core learning method in selecting data features. It can better reflect the correlation between different data features and significantly improve the target recognition performance.
附图说明Description of drawings
图1为本发明的实现流程图;Fig. 1 is the realization flow chart of the present invention;
图2为本发明中对SAR图像预处理过程示意图。FIG. 2 is a schematic diagram of the preprocessing process of the SAR image in the present invention.
具体实施方式Detailed ways
下面结合附图对本发明的实施步骤和效果做进一步说明:The implementation steps and effects of the present invention will be further described below in conjunction with the accompanying drawings:
参照图1本发明的实现步骤如下。Referring to FIG. 1, the implementation steps of the present invention are as follows.
步骤1,对SAR图像进行预处理及核矩阵计算。Step 1: Preprocess the SAR image and calculate the kernel matrix.
1a)输入一幅如图2(a)所示的原始SAR图像:I={imn|1≤m≤M,1≤n≤N},其中,imn表示原始SAR图像的幅度像素值,M表示SAR图像的行数,N表示SAR图像的列数;1a) Input an original SAR image as shown in Figure 2(a): I={i mn |1≤m≤M, 1≤n≤N}, where imn represents the amplitude pixel value of the original SAR image, M represents the number of rows of the SAR image, and N represents the number of columns of the SAR image;
1b)使用变幂次Ostu分割算法对原始SAR图像I进行二值分割,得到分割后的SAR图像I';1b) using the variable power Ostu segmentation algorithm to perform binary segmentation on the original SAR image I to obtain the segmented SAR image I';
1c)将分割后的SAR图像I'和原始SAR图像I进行点乘计算,得到的点乘后SAR图像如图2(b)所示,并计算点乘后SAR图像的质心 1c) Do the point product calculation of the segmented SAR image I' and the original SAR image I, and the obtained point-multiplied SAR image is shown in Figure 2(b), and calculate the centroid of the point-multiplied SAR image
式中,i'mn表示点乘后SAR图像的像素值;In the formula, i'mn represents the pixel value of the SAR image after dot product;
1d)将原始SAR图像I进行圆周移位,使得质心移至图像中心位置,得到配准SAR图像I1,如图2(c)所示;1d) Circular shift the original SAR image I so that the centroid Move to the center of the image to obtain the registered SAR image I 1 , as shown in Figure 2(c);
1e)对配准SAR图像I1进行图像截取得到截取SAR图像I0,如图2(d)所示;1e) performing image interception on the registered SAR image I 1 to obtain the intercepted SAR image I 0 , as shown in FIG. 2(d);
1f)对截取SAR图像I0做对数变换得到对数SAR图像I”',如图2(e)所示;1f) Perform logarithmic transformation on the intercepted SAR image I 0 to obtain a logarithmic SAR image I"', as shown in Figure 2(e);
1g)对对数SAR图像I”'做中值滤波处理,获得图像域特征I2,如图2(f)所示,将图像域特征I2列向量化;1g) perform median filter processing on logarithmic SAR image I"' to obtain image domain feature I 2 , as shown in Figure 2(f), and quantize the image domain feature I 2 column;
1h)对配准SAR图像I1做图像截取和二维傅立叶变换,并将零频移至图像中心,得到频域特征I3,并将频域特征I3列向量化;1h) performing image interception and two-dimensional Fourier transform on the registered SAR image I 1 , and shifting the zero frequency to the center of the image to obtain the frequency domain feature I 3 , and quantizing the frequency domain feature I 3 column;
1i)分别对原始SAR图像的训练集和测试集重复1a)~1g),得到图像域特征的训练数据集Ttr和测试数据集Tte;1i) Repeat 1a) to 1g) for the training set and test set of the original SAR image, respectively, to obtain a training data set T tr and a test data set T te of image domain features;
1j)分别对原始SAR图像的训练集和测试集重复1a)~1h),得到频域特征的训练数据集Ptr和测试数据集Pte;1j) Repeat 1a) to 1h) for the training set and test set of the original SAR image, respectively, to obtain the training data set P tr and the test data set P te of the frequency domain feature;
1k)使用KSVD算法对图像域特征训练集Ttr学习,得到字典D和与Ttr对应的稀疏系数特征训练数据集Str,结合字典D和图像域特征测试数据集Tte,使用OMP算法计算得到稀疏系数特征测试数据集Ste。1k) Use the KSVD algorithm to learn the image domain feature training set T tr to obtain a dictionary D and a sparse coefficient feature training data set S tr corresponding to T tr , combine the dictionary D and the image domain feature test data set T te , Use the OMP algorithm to calculate Obtain the sparse coefficient feature test dataset S te .
步骤2,对步骤1中得到的三种SAR图像特征进行多核学习计算。In step 2, multi-core learning calculation is performed on the three SAR image features obtained in step 1.
2a)使用径向核函数RBF,结合图像域特征训练数据集Ttr和测试数据集Tte,计算得到图像域特征训练数据集的核矩阵Kttr(Ttr,Ttr)和图像域特征测试数据集核矩阵Ktte(Ttr,Tte),其中径向核函数RBF表示如下:2a) Using the radial kernel function RBF, combined with the image domain feature training data set T tr and the test data set T te , calculate the kernel matrix K ttr (T tr , T tr ) of the image domain feature training data set and the image domain feature test The dataset kernel matrix K tte (T tr ,T te ), where the radial kernel function RBF is expressed as follows:
式中,q'和q表示同一空间的两个数据点,K(q',q)表示计算得到的径向核函数值,σ表示径向核函数参数;In the formula, q' and q represent two data points in the same space, K(q', q) represents the calculated radial kernel function value, and σ represents the radial kernel function parameter;
2b)使用径向核函数RBF,结合频域特征训练数据集Ptr和测试数据集Pte,计算得到频域特征训练数据集的核矩阵Kptr(Ptr,Ptr)和频域特征测试数据集核矩阵Kpte(Ptr,Pte);2b) Using the radial kernel function RBF, combining the frequency domain feature training data set P tr and the test data set P te , calculate the kernel matrix K ptr (P tr , P tr ) of the frequency domain feature training data set and the frequency domain feature test Dataset kernel matrix K pte (P tr ,P te );
2c)使用径向核函数RBF,结合稀疏系数特征训练数据集Str和测试数据集Ste,计算得到稀疏系数特征训练数据集的核矩阵Kstr(Str,Str)和稀疏系数特征测试数据集核矩阵Kste(Str,Ste);2c) Using the radial kernel function RBF, combined with the sparse coefficient feature training data set S tr and the test data set S te , calculate the kernel matrix K str (S tr , S tr ) of the sparse coefficient feature training data set and the sparse coefficient feature test Dataset kernel matrix K ste (S tr ,S te );
2d)结合步骤2a)~2c)中计算得到的三种特征的训练集核矩阵,使用核组合方法计算获得SAR图像训练集的组合核矩阵Ktr(V',Vtr):2d) Combine the training set kernel matrix of the three features calculated in steps 2a) to 2c), and use the kernel combination method to calculate and obtain the combined kernel matrix K tr (V', V tr ) of the SAR image training set:
Ktr(V',Vtr)=ηtKttr(Ttr,Ttr)+ηpKptr(Ptr,Ptr)+ηsKstr(Str,Str)K tr (V',V tr )=η t K ttr (T tr ,T tr )+η p K ptr (P tr ,P tr )+η s K str (S tr ,S tr )
式中,ηt表示图像域特征数据集核矩阵的组合系数,取值为0.5,In the formula, η t represents the combination coefficient of the kernel matrix of the image domain feature data set, and its value is 0.5,
ηp表示频域特征数据集核矩阵的组合系数,取值为0.5,η p represents the combination coefficient of the kernel matrix of the frequency domain feature data set, and its value is 0.5,
ηs表示稀疏系数特征核矩阵的组合系数;取值为0.5;η s represents the combination coefficient of the sparse coefficient feature kernel matrix; the value is 0.5;
2e)结合步骤2a)~2c)中计算得到的三种特征的测试集核矩阵,使用核组合方法计算获得SAR图像测试集的组合核矩阵Kte(V',Vte):2e) Combine the test set kernel matrix of the three features calculated in steps 2a) to 2c), and use the kernel combination method to calculate and obtain the combined kernel matrix K te (V', V te ) of the SAR image test set:
Kte(V',Vte)=ηtKtte(Ttr,Tte)+ηpKpte(Ptr,Pte)+ηsKste(Str,Ste)。K te (V′,V te )=η t K tte (T tr ,T te )+η p K pte (P tr ,P te )+η s K ste (S tr ,S te ).
步骤3,构建贝叶斯多核学习支持向量机模型。Step 3, build a Bayesian multi-kernel learning support vector machine model.
3a)给定样本集其中,xl表示训练样本,yl表示训练标号,q表示样本维度,L表示样本数量,T表示矩阵转置符号;支持向量机最大边缘分类器的无约束条件表达式为:3a) Given a sample set Among them, x l represents the training sample, y l represents the training label, q represents the sample dimension, L represents the number of samples, and T represents the matrix transpose symbol; the unconstrained expression of the maximum edge classifier of the support vector machine is:
式中,第一项为正则项,第二项为惩罚项;表示增广向量,表示增广权值,γ表示调和参数;In the formula, the first term is the regular term, and the second term is the penalty term; represents the augmented vector, represents the augmented weight, and γ represents the harmonic parameter;
3b)根据拉格朗日对偶性得到支持向量机SVM最大边缘分类器的增广权值解 式中,αj表示拉格朗日系数;3b) According to Lagrangian duality, the augmented weight solution of SVM maximum edge classifier is obtained In the formula, α j represents the Lagrangian coefficient;
将代入到惩罚项中,得:在惩罚项中引入映射函数φ(·),得到引入映射函数后的惩罚项表达式:Will Substitute into the penalty term, we get: The mapping function φ(·) is introduced into the penalty term, and the penalty term expression after the introduction of the mapping function is obtained:
令式中βj=αjyj,得到最终的惩罚项表达式:where β j =α j y j , Get the final penalty term expression:
式中,β=(β1,…,βj,…,βL),表示增广向量与增广向量的核函数值,Δ表示训练样本矩阵;In the formula, β=(β 1 ,…,β j ,…,β L ), represents the augmented vector with augmented vector The kernel function value of , Δ represents the training sample matrix;
3c)构造正则项为将该正则项与最终的惩罚项相加,得到最终的目标函数d(β)为:3c) Construct the regular term as Add this regular term to the final penalty term to get the final objective function d(β) as:
式中,κ表示调和参数;In the formula, κ represents the harmonic parameter;
3d)计算目标函数中正则项负数的指数,并将其定义为伪先验分布函数:3d) Calculate the exponent of the negative of the regular term in the objective function and define it as a pseudo-prior distribution function:
3e)计算目标函数中的最终的惩罚项负数的指数,将其定义为伪似然分布函数:3e) Calculate the index of the final negative penalty term in the objective function, and define it as a pseudo-likelihood distribution function:
式中,y=(y1,…,yl,…,yL),Δ'表示训练样本矩阵;In the formula, y=(y 1 ,...,y l ,...,y L ), Δ' represents the training sample matrix;
3f)根据步骤3d)和步骤3e)中的计算结果,得到伪后验分布函数:3f) According to the calculation results in step 3d) and step 3e), the pseudo-posterior distribution function is obtained:
p(β|y,K(Δ,Δ'))∝p(β)p(y|β,K(Δ,Δ')),p(β|y,K(Δ,Δ'))∝p(β)p(y|β,K(Δ,Δ')),
3h)用SAR图像训练数据集的组合核矩阵Ktr(V',Vtr)替换步骤3f)中的K(Δ,Δ'),建立贝叶斯多核学习支持向量机模型:3h) Replace K(Δ,Δ') in step 3f) with the combined kernel matrix K tr (V', V tr ) of the SAR image training dataset, and establish a Bayesian multi-kernel learning support vector machine model:
p(β|y,Ktr(V',Vtr))∝p(β)p(y|β,Ktr(V',Vtr))p(β|y,K tr (V',V tr ))∝p(β)p(y|β,K tr (V',V tr ))
式中,Ktr(V',Vtr)=(Ktr(V',v1),…,Ktr(V',vl),…,Ktr(V',vL)),Ktr(V',vl)表示基向集与训练样本做内积计算后构成的向量,p(y|β,Ktr(V',Vtr))为引入组合核矩阵后的伪似然分布函数,其中:In the formula, K tr (V',V tr )=(K tr (V',v 1 ),...,K tr (V',v l ),...,K tr (V',v L )),K tr (V',v l ) represents the vector formed by the inner product calculation of the basis set and the training sample, p(y|β,K tr (V',V tr )) is the pseudo-likelihood after introducing the combined kernel matrix distribution function, where:
步骤4,求解贝叶斯多核学习支持向量机模型。Step 4, solve the Bayesian multi-kernel learning support vector machine model.
4a)用含λl的积分表达式表征步骤3h)中引入组合核矩阵后的伪似然分布函数:4a) Use an integral expression containing λ l to characterize the pseudo-likelihood distribution function after the combined kernel matrix is introduced in step 3h):
其中,伪似然分布函数有下关系式:Among them, the pseudo-likelihood distribution function has the following relationship:
p(yl|β,Ktr(V',vl))=∫p(yl,λl|β,Ktr(V',vl))dλl p(y l |β,K tr (V',v l ))=∫p(y l ,λ l |β,K tr (V',v l ))dλ l
其中,vl表示训练样本,λl表示隐变量,p(yl,λl|β,Ktr(V',vl))为加入隐变量后的伪似然分布函数;Among them, v l represents the training sample, λ l represents the hidden variable, and p(y l ,λ l |β,K tr (V',v l )) is the pseudo-likelihood distribution function after adding the hidden variable;
4b)根据步骤4a)中加入隐变量后的伪似然分布函数,在贝叶斯多核学习支持向量机模型中引入新变量λ,得到新的关系表达式:4b) According to the pseudo-likelihood distribution function after adding the hidden variable in step 4a), a new variable λ is introduced into the Bayesian multi-kernel learning support vector machine model to obtain a new relational expression:
p(β,λ|y,Ktr(V',Vtr))∝p(β)p(y,λ|β,Ktr(V',Vtr))p(β,λ|y,K tr (V',V tr ))∝p(β)p(y,λ|β,K tr (V',V tr ))
其中,in,
式中,λ表示隐变量向量,λ=(λ1,…,λl,…,λL);In the formula, λ represents the latent variable vector, λ=(λ 1 ,…,λ l ,…,λ L );
4c)根据步骤4b)中的新的关系表达式得到λ的后验分布函数:4c) Obtain the posterior distribution function of λ according to the new relational expression in step 4b):
式中, In the formula,
4d)根据4c)中得到的λ的后验分布函数,得到λl的条件后验分布:4d) According to the posterior distribution function of λ obtained in 4c), the conditional posterior distribution of λ l is obtained:
式中,表示广义逆高斯分布,根据与之间的转换关系,得到的条件后验分布:In the formula, represents the generalized inverse Gaussian distribution, according to and The conversion relationship between the The conditional posterior distribution of :
式中,表示逆高斯分布,~表示分布函数中的服从符号;In the formula, represents the inverse Gaussian distribution, and ~ represents the obedience symbol in the distribution function;
4e)根据4d)中的条件后验分布和逆高斯分布的性质得到的期望值:4e) According to 4d) The properties of the conditional posterior distribution and the inverse Gaussian distribution are obtained Expected value of:
4f)根据步骤4b)中得到的新的关系表达式和4e)中得到的的期望值,使用期望最大化算法EM求解贝叶斯多核学习支持向量机模型,得到贝叶斯多核学习支持向量机模型的迭代解β(m+1)的表达式:4f) According to the new relational expression obtained in step 4b) and obtained in 4e) The expectation value of , uses the expectation maximization algorithm EM to solve the Bayesian multi-kernel learning SVM model, and obtains the expression of the iterative solution β (m+1) of the Bayesian multi-kernel learning SVM model:
式中,m表示第m次迭代次数,I表示单位矩阵,表示的第m次期望迭代值;In the formula, m represents the number of iterations of the mth, I represents the identity matrix, express The mth expected iteration value of ;
4g)设定最大迭代次数为M',重复步骤4f),当迭代次数达到M'时迭代停止,最终得到贝叶斯多核学习支持向量机模型的最优解β':4g) Set the maximum number of iterations to M', repeat step 4f), stop the iteration when the number of iterations reaches M', and finally obtain the optimal solution β' of the Bayesian multi-kernel learning SVM model:
步骤5,计算得到SAR图像目标识别类别标号。Step 5: Calculate and obtain the SAR image target recognition category label.
5a)利用步骤4g)中得到的贝叶斯多核学习支持向量机模型的最优解β',结合SAR图像测试数据集Kte(V',Vte),使用下式得到SAR图像目标识别标号yte:5a) Using the optimal solution β' of the Bayesian multi-kernel learning support vector machine model obtained in step 4g), combined with the SAR image test data set K te (V', V te ), use the following formula to obtain the SAR image target identification label y te :
yte=sgn(β'TKte(V',Vte))y te =sgn(β' T K te (V',V te ))
式中,sgn(·)表示符号函数。In the formula, sgn(·) represents the sign function.
至此,完成对SAR目标的分类。So far, the classification of the SAR target is completed.
本发明的效果通过以下对实测数据的实验进一步说明:The effect of the present invention is further illustrated by the following experiments on the measured data:
1.实验场景与参数:1. Experimental scene and parameters:
实验中所用的数据为公开的动态与静态目标获取与识别MSTAR数据集。在该数据集中,选取17°俯仰角下BMP2SN9563、BTR70C71、T72SN132型号图像数据作为训练数据,15°俯仰角下7种型号图像数据作为测试数据,称BMP2SN9566、BMP2SNC21为BMP2SN9563的变体,T72SNS7、T72SN812为T72SN132的变体,原始图像尺寸为128×128。The data used in the experiment is the public MSTAR dataset of dynamic and static target acquisition and recognition. In this dataset, the image data of BMP2SN9563, BTR70C71, and T72SN132 models at a pitch angle of 17° are selected as training data, and the image data of 7 models at a pitch angle of 15° are selected as test data. BMP2SN9566 and BMP2SNC21 are variants of BMP2SN9563. It is a variant of T72SN132, and the original image size is 128×128.
本实验所用的数据类型及样本数如表1所示:The data types and number of samples used in this experiment are shown in Table 1:
表1 MSTAR实验数据Table 1 MSTAR experimental data
实验参数设定如下:The experimental parameters are set as follows:
SAR图像经预处理后的图像尺寸大小为63×63;图像域特征对应的径向核参数σt=1,频域特征对应的径向核参数σp=0.1,稀疏系数特征对应的径向核参数σs=1,贝叶斯多核学习支持向量机模型中新的调和参数κ=0.01;The size of the preprocessed SAR image is 63×63; the radial kernel parameter σ t = 1 corresponding to the image domain feature, the radial kernel parameter σ p = 0.1 corresponding to the frequency domain feature, and the radial kernel parameter σ p = 0.1 corresponding to the sparse coefficient feature. The kernel parameter σ s = 1, the new harmonic parameter κ = 0.01 in the Bayesian multi-kernel learning SVM model;
2.本实验内容与结果:2. The content and results of this experiment:
用本发明方法与其他现有的5种方法对MSTAR三类数据集进行分类,其中第1种是线性支持向量机,第2种是单核学习支持向量机,第3种是多核学习支持向量机,第4种是贝叶斯支持向量机,第5种是贝叶斯单核学习支持向量机;The method of the present invention and other existing five methods are used to classify the three types of MSTAR data sets, the first one is linear support vector machine, the second one is single-core learning support vector machine, and the third one is multi-core learning support vector machine machine, the fourth is Bayesian support vector machine, and the fifth is Bayesian single-kernel learning support vector machine;
用本发明方法进行目标识别的实验步骤如下:The experimental steps of carrying out target recognition with the method of the present invention are as follows:
首先,对实验中的MSTAR三类数据进行预处理,并使用径向核函数计算得到三种特征核矩阵,即图像域特征核矩阵、频域特征核矩阵和稀疏系数特征核矩阵;Firstly, the three types of MSTAR data in the experiment are preprocessed, and the radial kernel function is used to obtain three feature kernel matrices, namely image domain feature kernel matrix, frequency domain feature kernel matrix and sparse coefficient feature kernel matrix;
接着,使用组合核方法对这三种特征核函数矩阵进行组合,得到MSTAR三类数据的训练数据集和测试数据集;Then, use the combined kernel method to combine the three feature kernel function matrices to obtain the training data set and test data set of the three types of MSTAR data;
然后,将MSTAR三类数据的训练数据集分别代入到贝叶斯多核学习支持向量机的最优解的表达式和隐变量期望值的表达式中,设定最大迭代次数,最终得到贝叶斯多核学习支持向量机的最优解;Then, the training data sets of the three types of MSTAR data are substituted into the expression of the optimal solution of the Bayesian multi-kernel learning support vector machine and the expression of the expected value of the hidden variable, and the maximum number of iterations is set, and finally the Bayesian multi-kernel is obtained. Learn the optimal solution of support vector machines;
最后,根据上述得到的最优解结合MSTAR三类数据的测试数据集,计算得到目标识别标号。Finally, according to the optimal solution obtained above and the test data set of the three types of MSTAR data, the target identification label is calculated.
将用本发明方法对MSTAR三类数据的识别结果与其他5种方法的识别结果对比,如表2。The identification results of the three types of MSTAR data by the method of the present invention are compared with the identification results of the other five methods, as shown in Table 2.
表2 本发明方法与其他方法对MSTAR三类数据的结果对比表Table 2 Results comparison table of the method of the present invention and other methods for MSTAR three types of data
从表2可以看出:本发明提出的贝叶斯多核学习支持向量机模型对SAR图像三类目标的识别率为99.12%,相比与其他方法的结果有显著提高,说明本方法对SAR图像目标识别的性能有明显提升。It can be seen from Table 2 that the recognition rate of the Bayesian multi-kernel learning support vector machine model proposed by the present invention for three types of targets in SAR images is 99.12%, which is significantly improved compared with the results of other methods. The performance of target recognition has been significantly improved.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710149246.9A CN106951921B (en) | 2017-03-14 | 2017-03-14 | SAR target recognition method based on Bayesian multi-kernel learning support vector machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710149246.9A CN106951921B (en) | 2017-03-14 | 2017-03-14 | SAR target recognition method based on Bayesian multi-kernel learning support vector machine |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106951921A CN106951921A (en) | 2017-07-14 |
CN106951921B true CN106951921B (en) | 2019-07-02 |
Family
ID=59466946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710149246.9A Active CN106951921B (en) | 2017-03-14 | 2017-03-14 | SAR target recognition method based on Bayesian multi-kernel learning support vector machine |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106951921B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109872319B (en) * | 2019-02-25 | 2021-01-26 | 电子科技大学 | A thermal image defect extraction method based on feature mining and neural network |
CN110045014B (en) * | 2019-03-11 | 2021-08-06 | 西安交通大学 | Lamb wave dispersion elimination method and system based on Bayesian learning |
CN110161035B (en) | 2019-04-26 | 2020-04-10 | 浙江大学 | Structural surface crack detection method based on image feature and Bayesian data fusion |
CN111208483B (en) * | 2020-01-03 | 2022-04-19 | 西安电子科技大学 | Recognition method of out-of-radar targets based on Bayesian support vector data description |
CN112486186B (en) * | 2020-12-14 | 2022-09-16 | 浙江嘉蓝海洋电子有限公司 | Unmanned surface vessel autonomous navigation method based on Bayes multi-feature fusion |
CN112906564B (en) * | 2021-02-19 | 2022-10-04 | 中国人民解放军火箭军工程大学 | Design and implementation method of intelligent decision support system for automatic target recognition of unmanned aerial vehicle SAR images |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7818131B2 (en) * | 2005-06-17 | 2010-10-19 | Venture Gain, L.L.C. | Non-parametric modeling apparatus and method for classification, especially of activity state |
CN102005135A (en) * | 2010-12-09 | 2011-04-06 | 上海海事大学 | Genetic algorithm-based support vector regression shipping traffic flow prediction method |
US8838508B2 (en) * | 2011-10-13 | 2014-09-16 | Nec Laboratories America, Inc. | Two-stage multiple kernel learning method |
CN103186776B (en) * | 2013-04-03 | 2016-04-13 | 西安电子科技大学 | Based on the human body detecting method of multiple features and depth information |
-
2017
- 2017-03-14 CN CN201710149246.9A patent/CN106951921B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN106951921A (en) | 2017-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106951921B (en) | SAR target recognition method based on Bayesian multi-kernel learning support vector machine | |
Shi et al. | Automatic target recognition for synthetic aperture radar images based on super-resolution generative adversarial network and deep convolutional neural network | |
CN102096825B (en) | Graph-based semi-supervised high-spectral remote sensing image classification method | |
Zhou et al. | Double shrinking sparse dimension reduction | |
CN105046276B (en) | Hyperspectral image band selection method based on low-rank representation | |
CN112116017A (en) | Data dimension reduction method based on kernel maintenance | |
Wu et al. | Multiscale CNN with autoencoder regularization joint contextual attention network for SAR image classification | |
CN107563442A (en) | Hyperspectral image classification method based on sparse low-rank regular graph qualified insertion | |
CN105184298A (en) | Image classification method through fast and locality-constrained low-rank coding process | |
CN103955709B (en) | Weighted synthetic kernel and triple markov field (TMF) based polarimetric synthetic aperture radar (SAR) image classification method | |
CN114926693A (en) | SAR image small sample identification method and device based on weighted distance | |
CN109359525A (en) | Polarimetric SAR image classification method based on sparse low-rank discriminative spectral clustering | |
CN104408472A (en) | Wishart and SVM (support vector machine)-based polarimetric SAR (synthetic aperture radar) image classification method | |
CN107392863A (en) | SAR image change detection based on affine matrix fusion Spectral Clustering | |
Qian et al. | A hybrid network with structural constraints for SAR image scene classification | |
CN106886793A (en) | Hyperspectral image band selection method based on discriminant information and manifold information | |
Li et al. | Multi-spectral remote sensing images feature coverage classification based on improved convolutional neural network | |
Ferreira et al. | Ship detection in SAR images using convolutional variational autoencoders | |
CN104021399B (en) | SAR object identification method based on range profile time-frequency diagram non-negative sparse coding | |
Jiang et al. | Semantic segmentation of remote sensing images based on dual‐channel attention mechanism | |
CN113269024B (en) | Unsupervised domain adaptive network polarization SAR ground object classification method and equipment considering polarization statistical properties | |
CN102156879A (en) | Human target matching method based on weighted terrestrial motion distance | |
CN118608847A (en) | SAR image recognition system and method based on distance measurement and fully convolutional network | |
Batisteli et al. | Hierarchical Graph Neural Networks with Scale-Aware Readout for Image Classification. | |
Wang et al. | Kernel-based deep learning for intelligent data analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |