CN106503517B - A security authentication system based on brainprint collection of virtual reality helmet - Google Patents
A security authentication system based on brainprint collection of virtual reality helmet Download PDFInfo
- Publication number
- CN106503517B CN106503517B CN201610889043.9A CN201610889043A CN106503517B CN 106503517 B CN106503517 B CN 106503517B CN 201610889043 A CN201610889043 A CN 201610889043A CN 106503517 B CN106503517 B CN 106503517B
- Authority
- CN
- China
- Prior art keywords
- brain
- user
- characteristic parameter
- brain line
- line characteristic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/30—Authentication, i.e. establishing the identity or authorisation of security principals
- G06F21/31—User authentication
- G06F21/32—User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
本发明公开了一种基于脑纹采集的安全认证系统及方法,该系统包括:数据接入模块、脑纹生成模块及安全认证模块;数据接入模块根据预设的脑纹本地数据库,产生与用户身份信息对应的第一脑纹特征参数;脑纹生成模块获取用户在音视频信号的刺激下产生的第二脑纹特征参数;安全认证模块将第一脑纹特征参数与第二脑纹特征参数进行比对,根据比对结果对用户身份进行识别和安全认证,解决了现有技术中目前并没有一种基于脑纹采集的安全认证系统的问题,具有脑纹密码不容易被盗窃、不容易被复制和滥用的优点,在极端情况下,如果脑纹密码泄露,用户可以方便的重置脑纹密码。
The invention discloses a security authentication system and method based on brain pattern collection. The system includes: a data access module, a brain pattern generation module and a security authentication module; the data access module generates and The first brainprint feature parameter corresponding to the user identity information; the brainprint generation module obtains the second brainprint feature parameter generated by the user under the stimulation of audio and video signals; the security authentication module combines the first brainprint feature parameter with the second brainprint feature The parameters are compared, and the user identity and security authentication are carried out according to the comparison results, which solves the problem that there is no security authentication system based on brainprint collection in the prior art, and the brainprint password is not easy to be stolen. The advantage of being easy to be copied and abused, in extreme cases, if the brainprint password is leaked, the user can easily reset the brainprint password.
Description
技术领域technical field
本发明涉及安全认证领域,特别涉及一种基于虚拟现实头盔脑纹采集的安全认证系统。The invention relates to the field of security authentication, in particular to a security authentication system based on virtual reality helmet brainprint collection.
背景技术Background technique
脑电波(ElectroEncephaloGram,EEG)是一种非线性的随机信号,以周期、振幅和相位作为构成其波形的基本因素,是在人的头部表面安放探查电极,记录的成对电极间的电位差变化。经过神经科学家的研究证实,大脑中至少有四个不同的脑电波:“α”(阿尔法)脑电波,其频率为8-12Hz,“β”(贝塔)脑电波,其频率为14—100Hz,“θ”(西塔)脑电波,其频率4-8Hz,“δ”(德尔塔)脑电波,其频率为0.5-4Hz。脑电波的活动(activity)是指EEG的波或者波的连续(例如β活动、α活动等);脑电波的节律(rhythm)是指由大致恒定周期的波所构成的脑电活动(例如β节律、α节律、棘节律等);复合波(complex)则被界定为,具有特征性的波形、或者反复出现相当恒定的波形,与背景活动有区别的2个或2个以上的波相连续(例如棘慢综合波、尖慢综合波、K复合波等)。Electroencephalogram (ElectroEncephaloGram, EEG) is a nonlinear random signal, with period, amplitude and phase as the basic factors of its waveform. Variety. Research by neuroscientists has confirmed that there are at least four different brain waves in the brain: "α" (Alpha) brain waves, whose frequency is 8-12Hz, "β" (Beta) brain waves, whose frequency is 14-100Hz, "θ" (theta) brain waves have a frequency of 4-8 Hz, and "δ" (delta) brain waves have a frequency of 0.5-4 Hz. Brain wave activity (activity) refers to the EEG wave or wave continuity (such as β activity, α activity, etc.); brain wave rhythm (rhythm) refers to the brain electrical activity (such as β Rhythm, alpha rhythm, spine rhythm, etc.); complex (complex) is defined as a characteristic waveform, or a relatively constant waveform that recurs repeatedly, and two or more waves that are different from background activity are continuous (Such as spike-slow complex, sharp-slow complex, K-complex, etc.).
脑纹是测得的脑电波信号的特征,不同人的大脑对某一特定事物会有不同的反应,从而产生出不同特征的脑电波,通过脑电波的外在表现特征,可以作为特定人或特定事物的识别依据。脑电波对特定事物的反应是独一无二的,每个人都不尽相同,它被科学家简称为“脑纹”。如果将这种反应作为唯一的密码来进行验证,其加密效果是非常难以破解的。Brain pattern is the characteristic of the measured brain wave signal. The brains of different people will have different reactions to a specific thing, thus producing different characteristics of brain waves. Through the external performance characteristics of brain waves, it can be used as A basis for identification of a particular thing. The response of brain waves to certain things is unique, and everyone is different. It is referred to as "brain pattern" by scientists. If this response is used as the only password for verification, the encryption effect is very difficult to crack.
目前的安全认证系统主要采用数字密码认证、图片密码认证或生物特征识别认证。其中,生物特征识别方法有:指纹识别、人脸识别、虹膜识别、声音识别、手形识别、掌纹识别、签名识别、步态识别等。The current security authentication system mainly adopts digital password authentication, picture password authentication or biometric authentication. Among them, biometric identification methods include: fingerprint recognition, face recognition, iris recognition, voice recognition, hand shape recognition, palmprint recognition, signature recognition, gait recognition, etc.
各种生物特征识别方法中,指纹识别应用最为广泛。指纹是指手指正面皮肤上凹凸不平的纹路。尽管指纹只是人体皮肤的一小部分,但是它却蕴涵了大量的信息。这些手指皮肤的纹路在图案、断点和交叉点上是各不相同的,在信息处理中我们将它们称之为“特征”,这些特征对每个手指都是不同的。而且,人的指纹特征是与生俱来的,在出生6个月后即基本形成,此后,指纹的纹线类型、结构、统计特征的总体分布等就不再发生明显变化。依靠指纹特征唯一性特点,我们就可以把一个人与他的指纹对应起来,通过比较他的指纹特征和预先保存的指纹特征,就可以验证他的真实身份。Among various biometric identification methods, fingerprint identification is the most widely used. Fingerprints are the uneven lines on the skin on the front of your fingers. Although a fingerprint is only a small part of human skin, it contains a lot of information. The lines of these finger skins vary in pattern, breakpoints and intersections, which we call "features" in information processing, and these features are different for each finger. Moreover, the fingerprint characteristics of a person are innate and basically formed after 6 months of birth. After that, the ridge type, structure, and overall distribution of statistical features of the fingerprint will no longer change significantly. Relying on the uniqueness of fingerprint features, we can associate a person with his fingerprints, and verify his true identity by comparing his fingerprint features with the pre-saved fingerprint features.
相比于指纹,脑纹具有多种动态特征。脑纹可以用作识别恐怖分子或其他危险分子的方法,通过向他出示以前熟悉的特定书面文件或图像(如训练营或手册)时测量他的“脑纹”。脑纹还可以用于身份识别,与指纹、虹膜一样,可应用于众多安全认证场合。Compared with fingerprints, brainprints have many dynamic characteristics. Brainprints can be used as a method of identifying a terrorist or other dangerous individual by measuring his "brainprint" when he is shown a particular written document or image with which he was previously familiar, such as a training camp or a manual. Brainprint can also be used for identification, just like fingerprints and iris, it can be applied to many security authentication occasions.
在识别个人身份方面,脑纹具备一些指纹没有的潜在优势。例如,如果某人的指纹被窃,他基本就没有挽回的余地了,因为指纹是“不可撤销的”。指纹用作安全认证存在盗用和失效的可能。当手指因天气干燥等原因脱皮时,导致识别异常。当指纹被印模后,容易被滥用。在安全措施一向以严密著称的美国,就曾发生超过600万用户指纹泄漏的事件。而脑纹则不同,它是可以撤销的。如果发生极个别的情况,黑客真的设法从授权用户那里盗取“脑纹”,授权用户也能重新设置“脑纹”。When it comes to identifying individuals, brainprints offer some potential advantages over fingerprints. For example, if someone's fingerprints are stolen, there is little recourse they can take back because fingerprints are "irrevocable." There is the possibility of embezzlement and invalidation when fingerprints are used as security authentication. When the fingers are peeled due to dry weather and other reasons, it will cause abnormal recognition. When the fingerprint is stamped, it is easy to be abused. In the United States, which has always been known for its strict security measures, more than 6 million user fingerprints have been leaked. The brain pattern is different, it can be undone. In the rare event that a hacker does manage to steal a "brainprint" from an authorized user, the authorized user can also reset the "brainprint".
脑纹还可以用来识别一个人的“认知特征”,迅速评估访问者的精神状态。从而判断访问者的认知状态、精神状态是否正常、能否让访问者进入系统。例如,如果一名空中交通管制员太过疲劳,或注意力比较分散,即使他的身份验证成功,他也无法进入系统。如果一名飞行员进入系统前精神状态良好,飞行过程中出现异常,则飞行员头盔中的脑纹采集装置监测到异常脑纹以后,可以发送告警信息到地面站,以便采取补救措施。Brainprints can also be used to identify a person's "cognitive signature," quickly assessing a visitor's mental state. In order to judge whether the visitor's cognitive state and mental state are normal, and whether the visitor can enter the system. For example, if an air traffic controller is too tired, or distracted, he may not be able to enter the system even if his authentication is successful. If a pilot is in a good state of mind before entering the system, and there is an abnormality during the flight, after the brain pattern collection device in the pilot's helmet detects the abnormal brain pattern, it can send an alarm message to the ground station for remedial measures.
虽然脑纹具有安全认证方面具有很多优势,但目前并没有一种基于脑纹采集的安全认证系统及方法。Although brainprint has many advantages in security authentication, there is currently no security authentication system and method based on brainprint collection.
发明内容Contents of the invention
鉴于上述问题,本发明提供了一种基于脑纹采集的安全认证系统及方法。In view of the above problems, the present invention provides a security authentication system and method based on brainprint collection.
本发明提供了一种基于脑纹采集的安全认证系统,包括:The present invention provides a security authentication system based on brain pattern collection, including:
数据接入模块,用于接收用户身份信息的输入,结合预设的脑纹本地数据库,产生与用户身份信息对应的第一脑纹特征参数,所述脑纹本地数据库中存储有若干个用户身份信息及与所述用户身份信息对应的脑纹特征参数;The data access module is used to receive the input of user identity information, and combine with the preset local database of brain patterns to generate the first brain pattern characteristic parameters corresponding to the user identity information. The local brain pattern database stores several user identities Information and brainprint feature parameters corresponding to the user identity information;
脑纹生成模块,用于获取用户在音视频信号的刺激下产生的脑电波数字信号,对所述脑电波数字信号进行特征提取和分析,得到第二脑纹特征参数;The brain pattern generation module is used to obtain the brain wave digital signal generated by the user under the stimulation of audio and video signals, perform feature extraction and analysis on the brain wave digital signal, and obtain the second brain pattern characteristic parameter;
安全认证模块,用于将第一脑纹特征参数与第二脑纹特征参数进行比对,根据比对结果对用户身份进行识别和安全认证。The security authentication module is used to compare the first brainprint feature parameter with the second brainprint feature parameter, and identify and securely authenticate the user identity according to the comparison result.
本发明还提供了一种基于脑纹采集的安全认证方法,包括以下步骤:The present invention also provides a security authentication method based on brain pattern collection, comprising the following steps:
接收用户身份信息的输入,结合预设的脑纹本地数据库,产生与用户身份信息对应的第一脑纹特征参数,所述脑纹本地数据库中存储有若干个用户身份信息及与所述用户身份信息对应的脑纹特征参数;Receive the input of user identity information, combine with the preset local database of brainprint to generate the first brainprint feature parameter corresponding to the user’s identity information, the local brainprint database stores several pieces of user identity information and The characteristic parameters of the brain pattern corresponding to the information;
获取用户在音视频信号的刺激下产生的脑电波数字信号,对所述脑电波数字信号进行特征提取和分析,得到第二脑纹特征参数;Obtaining digital brainwave signals generated by the user under the stimulation of audio and video signals, performing feature extraction and analysis on the digital brainwave signals, and obtaining second brainprint feature parameters;
将第一脑纹特征参数与第二脑纹特征参数进行比对,根据比对结果对用户身份进行识别和安全认证。The first brainprint characteristic parameter is compared with the second brainprint characteristic parameter, and the user identity is identified and security authenticated according to the comparison result.
本发明有益效果如下:The beneficial effects of the present invention are as follows:
本发明实施例中数据接入模块根据预设的脑纹本地数据库,产生与用户身份信息对应的第一脑纹特征参数;脑纹生成模块获取用户在音视频信号的刺激下产生的第二脑纹特征参数;安全认证模块将第一脑纹特征参数与第二脑纹特征参数进行比对,根据比对结果对用户身份进行识别和安全认证,解决了现有技术中目前并没有一种基于脑纹采集的安全认证系统的问题,具有脑纹密码不容易被盗窃、不容易被复制和滥用的优点,在极端情况下,如果脑纹密码泄露,用户可以方便的重置脑纹密码。In the embodiment of the present invention, the data access module generates the first brainprint characteristic parameters corresponding to the user identity information according to the preset local database of brainprints; the brainprint generation module obtains the second brainprint generated by the user under the stimulation of audio and video Pattern characteristic parameters; the security authentication module compares the first brainprint characteristic parameters with the second brainprint characteristic parameters, and performs identification and security authentication on the user identity according to the comparison results, which solves the problem that there is currently no one based on The problem of the security authentication system for brainprint collection has the advantage that the brainprint password is not easy to be stolen, copied and abused. In extreme cases, if the brainprint password is leaked, the user can easily reset the brainprint password.
附图说明Description of drawings
图1是本发明装置实施例的基于脑纹采集的安全认证系统的结构框图;Fig. 1 is a structural block diagram of a security authentication system based on brainprint collection according to a device embodiment of the present invention;
图2是本发明装置实施例脑电波采集子模块采集到的一定时间间隔内脑电波模拟信号的示意图Fig. 2 is a schematic diagram of brain wave analog signals collected by the brain wave acquisition sub-module of the device embodiment of the present invention within a certain time interval
图3是本发明装置实施例中虚拟现实头盔一个实例的结构框图;Fig. 3 is a structural block diagram of an example of a virtual reality helmet in the device embodiment of the present invention;
图4是本发明装置实施例中基于脑纹采集的安全认证系统中脑纹的脑纹生成模块和批式处理模块与其它模块的交互示意图;4 is a schematic diagram of the interaction between the brain pattern generation module and the batch processing module of the brain pattern in the security authentication system based on brain pattern collection in the device embodiment of the present invention;
图5是本发明装置实施例基于脑纹采集的安全认证系统的示意图;Fig. 5 is a schematic diagram of a security authentication system based on brainprint collection according to an embodiment of the device of the present invention;
图6是本发明方法实施例的基于脑纹采集的安全认证方法的流程图。Fig. 6 is a flow chart of the security authentication method based on brainprint collection according to the method embodiment of the present invention.
具体实施方式Detailed ways
为了解决现有技术目前并没有一种基于脑纹采集的安全认证系统及方法的问题,本发明提供了一种基于脑纹采集的安全认证系统及方法,以下结合附图以及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不限定本发明。In order to solve the problem that there is no security authentication system and method based on brainprint collection in the prior art, the present invention provides a security authentication system and method based on brainprint collection. For further details. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
根据本发明的装置实施例,提供了一种基于脑纹采集的安全认证系统,图1是本发明装置实施例的基于脑纹采集的安全认证系统的结构示意图,如图1所示,根据本发明装置实施例的基于脑纹采集的安全认证系统包括:数据接入模块110、脑纹生成模块120、及安全认证模块130,以下对本发明装置实施例的各个模块进行详细的说明。According to the device embodiment of the present invention, a security authentication system based on brainprint collection is provided. Fig. 1 is a schematic structural diagram of the security authentication system based on brainprint collection in the device embodiment of the present invention. As shown in Fig. 1, according to the present invention The security authentication system based on brainprint collection in the embodiment of the device of the invention includes: a data access module 110, a brainprint generation module 120, and a security authentication module 130, and each module of the device embodiment of the invention will be described in detail below.
具体地,数据接入模块110,用于接收用户身份信息的输入,结合预设的脑纹本地数据库,产生与用户身份信息对应的第一脑纹特征参数,所述脑纹本地数据库中存储有若干个用户身份信息及与所述用户身份信息对应的脑纹特征参数。Specifically, the data access module 110 is configured to receive the input of user identity information, combine with the preset local database of brain prints, and generate the first brain print characteristic parameters corresponding to the user identity information, the local brain print database stores Several pieces of user identity information and brainprint feature parameters corresponding to the user identity information.
在本发明装置实施例中数据接入模块110可以选用各种终端,例如电脑等。数据接入模块110,还用于在新增用户模式下,当接收到新增用户身份信息的输入时,触发所述脑纹生成模块。In the device embodiment of the present invention, the data access module 110 can use various terminals, such as computers. The data access module 110 is also used to trigger the brain print generation module when receiving the input of the identity information of the new user in the new user mode.
脑纹生成模块120,用于获取用户在音视频信号的刺激下产生的脑电波数字信号,对所述脑电波数字信号进行特征提取和分析,得到第二脑纹特征参数。The brainprint generation module 120 is used to acquire digital brainwave signals generated by the user under the stimulation of audio and video signals, perform feature extraction and analysis on the digital brainwave signals, and obtain second brainprint feature parameters.
所述脑纹生成模块120,还用于在新增用户模式下,接收到数据接入模块110的触发后,获取新增用户在音视频信号的刺激下产生的脑电波数字信号,对所述脑电波数字信号进行特征提取和分析,得到新增脑纹特征参数,将所述新增脑纹特征参数与新增用户身份信息关联后存储在脑纹本地数据库中。The brain pattern generation module 120 is also used to obtain the brain wave digital signal generated by the new user under the stimulation of audio and video signals after receiving the trigger of the data access module 110 in the new user mode, and to the Feature extraction and analysis are performed on the digital brain wave signal to obtain new brain pattern feature parameters, which are associated with the new user identity information and stored in the brain pattern local database.
所述脑纹生成模块120还用于,将所述第二脑纹与用户身份信息关联后通过无线收发模块存储在脑纹本地数据库中,以便于用户对当前录制的脑纹的快速查看、处理和分析。The brainprint generation module 120 is also used to associate the second brainprint with the user identity information and store it in the local brainprint database through the wireless transceiver module, so that the user can quickly view and process the currently recorded brainprint and analysis.
目前的神经科学研究证明,同一个人的大脑对于同一张图片或同一段音视频的反应几乎是相同的。挑选视频和音频的原则为:使每个人在所述视频和/或音频信号的刺激下能够产生特殊的、与他人不同的反应。Current neuroscience research proves that the same person's brain responds almost identically to the same picture or the same piece of audio and video. The principle of selecting video and audio is to enable each person to produce a special and different response from others under the stimulation of the video and/or audio signal.
具体的,所述脑纹生成模块120包括脑电波采集子模块、脑电波特征提取子模块、以及脑纹分析子模块。Specifically, the brain pattern generation module 120 includes a brain wave acquisition sub-module, a brain wave feature extraction sub-module, and a brain pattern analysis sub-module.
更加具体的,所述脑电波采集子模块,用于获取用户在视频信号的刺激下产生的脑电波模拟信号,并将所述脑电波模拟信号放大、滤波、模数转换得到脑电波数字信号。图2是本发明装置实施例脑电波采集子模块采集到的一定时间间隔内脑电波模拟信号的示意图。在脑电波中常见到由β、α、θ、δ波无序重叠构成多形态的复合波形,此时,就需要采用较恰当的方法(如藤森法)来识别和确定波形、以及计算波的数量(index或称指数)。More specifically, the brain wave acquisition sub-module is used to acquire the brain wave analog signal generated by the user under the stimulation of the video signal, and amplify, filter, and analog-to-digital convert the brain wave analog signal to obtain the brain wave digital signal. Fig. 2 is a schematic diagram of brain wave analog signals collected by the brain wave acquisition sub-module of the device embodiment of the present invention within a certain time interval. In brain waves, it is common to see multi-morphic composite waveforms composed of β, α, θ, and δ waves overlapped disorderly. Quantity (index or index).
所述脑电波采集子模块可选用虚拟现实头盔、虚拟现实眼镜或其他头戴式多媒体设备。图3是本发明装置实施例中虚拟现实头盔一个实例的结构框图。具体的,虚拟现实头盔包括头盔支架、脑电波采集电极、视频播放单元、音频播放单元、低噪音放大器、滤波器、高精度模数转换芯片、直流电源、脑电波特征提取子模块、脑纹生成子模块、存储模块、无线收发模块等。其中,脑电波采集电极、低噪音放大器、滤波器、高精度模数转换芯片、脑电波特征提取子模块、脑纹分析子模块均属于脑纹生成模块。The brainwave acquisition sub-module can be a virtual reality helmet, virtual reality glasses or other head-mounted multimedia devices. Fig. 3 is a structural block diagram of an example of a virtual reality helmet in the device embodiment of the present invention. Specifically, the virtual reality helmet includes a helmet bracket, brain wave acquisition electrodes, video playback unit, audio playback unit, low noise amplifier, filter, high-precision analog-to-digital conversion chip, DC power supply, brain wave feature extraction sub-module, brain pattern generation Sub-modules, storage modules, wireless transceiver modules, etc. Among them, the brain wave acquisition electrodes, low noise amplifiers, filters, high-precision analog-to-digital conversion chips, brain wave feature extraction sub-modules, and brain pattern analysis sub-modules all belong to the brain pattern generation module.
其中,若干个脑电波采集电极布置于头盔支架上,用于采集用户在视频播放单元和/或音频播放单元播放的内容的刺激下产生的脑电波模拟信号;所述低噪音放大器、滤波器、模数转换芯片,用于对脑电波模拟信号进行放大、滤波和模数转换,得到脑电波数字信号。Wherein, several electroencephalogram collecting electrodes are arranged on the helmet bracket, and are used for collecting the brain wave analog signal that the user produces under the stimulation of the content played by the video playback unit and/or audio playback unit; The low noise amplifier, filter, The analog-to-digital conversion chip is used for amplifying, filtering and analog-to-digital conversion of the brain wave analog signal to obtain the brain wave digital signal.
虚拟现实头盔的内部支架可以在多个特定位置布置脑电波采集电极,电极放置于颅外,与头皮通过干电极紧密接触,采集头皮电极脑电图。现在头皮电极脑电图常规使用的是国际10-20系统。10-20系统包括19个记录电极和2个参考电极。电极位置的排列与头颅的大小和形状成比例,就是无论头大头小或者头颅头型变异,放置的位置都有可比性,因为10-20系统是根据自身头部的百分比放置的。在用户使用虚拟现实(VR)头盔中VR眼镜的同时,电波采集电极采集到用户对应的脑电波模拟信号,脑电波模拟信号经过放大器(因为脑电信号非常微弱,为mv或uv级别,而且得经过颅骨和头皮的衰减,所以需要经过数百万倍的放大才能显示出来)、滤波器(减少干扰)、高精度模数转换最后形成脑电波数字信号。The internal bracket of the virtual reality helmet can arrange brain wave acquisition electrodes in multiple specific positions. The electrodes are placed outside the skull and are in close contact with the scalp through dry electrodes to collect scalp electrode EEG. Now the international 10-20 system is routinely used for scalp electrode EEG. The 10-20 system includes 19 recording electrodes and 2 reference electrodes. The arrangement of electrode positions is proportional to the size and shape of the skull, that is, no matter whether the head is large or small or the shape of the skull varies, the placement positions are comparable, because the 10-20 system is placed according to the percentage of the head itself. While the user is using the VR glasses in the virtual reality (VR) helmet, the electric wave acquisition electrode collects the corresponding brain wave analog signal of the user, and the brain wave analog signal passes through the amplifier (because the EEG signal is very weak, it is mv or uv level, and it is obtained After the attenuation of the skull and scalp, it needs to be magnified by millions of times to be displayed), filter (to reduce interference), high-precision analog-to-digital conversion, and finally form a brain wave digital signal.
为了获取更有效的脑电波数字信号,以利于提取脑纹特征参数,本发明装置实施例的脑纹生成模块还包括控制子模块,用于分析一段时间内用户在音视频信号的刺激下产生的脑电波数字信号,如果所述脑电波数字信号的特征不明显,则更改音视频信号。In order to obtain more effective digital brain wave signals to facilitate the extraction of brain pattern characteristic parameters, the brain pattern generation module of the device embodiment of the present invention also includes a control sub-module for analyzing the brain wave generated by the user under the stimulation of audio and video signals within a period of time. Brain wave digital signal, if the feature of the brain wave digital signal is not obvious, the audio and video signal is changed.
本发明装置实施例脑电波采集子模块采用虚拟现实头盔,通过佩戴虚拟现实头盔观看虚拟现实视频或图片的方式采集脑电波,使传统枯燥的脑电波采集过程变得富有娱乐性。通过增加音频播放系统,让用户的体验更愉悦,并且有利于产生更多的脑纹特征,而且虚拟现实中的头盔支架可以在特定的位置安放多个电极,满足脑电波采集的要求。The brain wave acquisition sub-module of the device embodiment of the present invention uses a virtual reality helmet to collect brain waves by wearing a virtual reality helmet to watch virtual reality videos or pictures, making the traditional boring brain wave acquisition process more entertaining. By adding an audio playback system, the user's experience is more pleasant, and it is beneficial to generate more brainprint features, and the helmet bracket in virtual reality can place multiple electrodes at specific positions to meet the requirements for brain wave collection.
所述脑电波特征提取子模块,用于根据从所述脑纹本地数据库中调取的脑纹特征参数,对所述脑电波数字信号进行特征提取得到包含有脑纹特征参数的脑电波数字信号。The brainwave feature extraction submodule is used to perform feature extraction on the brainwave digital signal according to the brainprint feature parameters retrieved from the brainprint local database to obtain the brainwave digital signal containing the brainprint feature parameters .
在本发明装置实施例中,特征提取包括但不限于下列方法:对脑电信号进行聚类、多元线性回归、功率谱密度计算、均值和方差计算、小波变换或傅里叶变换后进行时域频域分析、信道特性分析、李雅普诺夫指数计算、主成分分析以及独立成分分析、共同空间模式法、稀疏编码、集成支持向量机和匹配滤波器法。In the device embodiment of the present invention, feature extraction includes but is not limited to the following methods: clustering of EEG signals, multiple linear regression, power spectral density calculation, mean and variance calculation, wavelet transform or Fourier transform followed by time domain Frequency domain analysis, channel characteristic analysis, Lyapunov exponent calculation, principal component analysis and independent component analysis, common spatial pattern method, sparse coding, integrated support vector machine and matched filter method.
所述脑电波特征提取子模块还用于截取部分包含脑纹特征参数的脑电波数字信号,进行压缩并输出。截取部分数据的目的是精简数据,减少传入脑纹批式处理模块的数据。截取部分数据的方法包括但不限于下列方法:保留包含有脑电特征参数的脑电波模拟信号并剔除重复包含相同脑电特征参数的脑电波模拟信号。脑电波特征提取子模块的输入为脑电波数字信号和脑纹本地数据库中的脑纹特征参数,输出为包含有脑纹特征参数的脑电波数字信号和经过过滤后压缩的脑电波数字信号。The brain wave feature extraction sub-module is also used to intercept part of the brain wave digital signal containing the brain pattern feature parameters, compress and output. The purpose of intercepting part of the data is to simplify the data and reduce the data sent to the brainprint batch processing module. Methods for intercepting part of the data include but are not limited to the following methods: retain the brain wave simulation signals containing the EEG characteristic parameters and eliminate the brain wave simulation signals repeatedly containing the same EEG characteristic parameters. The input of the brainwave feature extraction sub-module is the brainwave digital signal and the brainprint feature parameters in the brainprint local database, and the output is the brainwave digital signal containing the brainprint feature parameters and the filtered brainwave digital signal.
进一步的,所述安全认证系统还包括脑纹批式处理模块、脑纹特征与身份信息云端数据库模块。Further, the security authentication system also includes a brainprint batch processing module, a brainprint feature and identity information cloud database module.
所述脑纹批式处理模块,用于对接收到的同一用户的批量的脑电波数字信号进行聚类和处理,得到该用户的新的脑纹特征参数。The brainprint batch processing module is used for clustering and processing the received batches of brainwave digital signals of the same user to obtain new brainprint characteristic parameters of the user.
具体的,所述脑纹批式处理模块可以部署在分布式大数据云平台之上,利用云平台的软硬件资源实现对脑电波的特征提取,在大数据云平台已有大样本统计分析、深度学习神经网络、机器学习等聚类算法的基础上,针对脑电波特征提取工程的实际特点,可以从算法运行效率、特征提取准确度、特征有效性等几个方面对云平台软硬件资源的性能进行优化。脑纹批式处理模块包括脑电波聚类子模块、脑电波特征提取与增强子模块。Specifically, the brain pattern batch processing module can be deployed on a distributed big data cloud platform, and the software and hardware resources of the cloud platform are used to realize the feature extraction of brain waves. The big data cloud platform already has large sample statistical analysis, On the basis of deep learning neural network, machine learning and other clustering algorithms, according to the actual characteristics of the brain wave feature extraction project, the software and hardware resources of the cloud platform can be evaluated from several aspects such as algorithm operation efficiency, feature extraction accuracy, and feature validity. Performance is optimized. The brain pattern batch processing module includes a brain wave clustering sub-module, and a brain wave feature extraction and enhancement sub-module.
所述脑电波聚类子模块,用于对接收到的同一用户的批量的脑电波数字信号进行聚类,得到脑电波参数聚类结果。The brain wave clustering sub-module is used to cluster the received batches of brain wave digital signals of the same user to obtain a brain wave parameter clustering result.
脑电波聚类子模块对当前用户的脑电波的特征参数和使用过该脑纹采集虚拟现实头盔和其他脑纹采集虚拟现实头盔的用户的脑电波的特征参数进行聚类,找出所有用户的脑电波参数的特征参数之间的分布情况和规律。脑电波聚类模块的输入为脑电波特征提取子模块的经过过滤后压缩的脑电波数字信号,输出为所有用户的脑电波参数聚类结果。The brainwave clustering sub-module clusters the characteristic parameters of the brainwaves of the current user and the characteristic parameters of the brainwaves of users who have used the brainprint collection virtual reality helmet and other brainprint collection virtual reality helmets to find out the brainwave characteristics of all users. The distribution and regularity among the characteristic parameters of the brain wave parameters. The input of the brain wave clustering module is the filtered and compressed brain wave digital signal of the brain wave feature extraction sub-module, and the output is the clustering result of the brain wave parameters of all users.
所述脑电波特征提取与增强子模块,用于基于脑电波已知特征和脑电波参数之间的隐含关联关系,根据脑电波参数聚类结果得到新的脑纹特征参数。The brainwave feature extraction and enhancement sub-module is used to obtain new brainprint feature parameters based on the known brainwave features and implicit correlations between brainwave parameters and according to brainwave parameter clustering results.
脑电波特征提取与增强子模块使用关联算法进行关联规则挖掘,利用特征关键信息之间的隐含关联关系和脑电波已知特征,保留识别率较高的有效脑电特征参数,将这些有效脑电特征参数汇总为脑纹特征参数。脑电波特征提取与增强子模块的输入为脑电波参数聚类结果和脑电波已知特征,输出为脑纹特征参数。The brain wave feature extraction and enhancement sub-module uses the association algorithm to mine association rules, utilizes the implicit association relationship between feature key information and the known features of brain waves, and retains the effective EEG feature parameters with high recognition rate. The electrical characteristic parameters are summarized as brainprint characteristic parameters. The input of the brain wave feature extraction and enhancement sub-module is the brain wave parameter clustering result and the known features of the brain wave, and the output is the brain pattern feature parameter.
脑电波的已知特征有很多,比如:α脑电波频率为8-12Hz,β脑电波频率为14—100Hz,θ脑电波频率为4-8Hz,δ脑电波频率为0.5-4Hz。又比如:在“认知”某种靶刺激时(奇异刺激),可从头皮记录到一组波,主要有N1、P2、N2、P300(P3),统称事件相关电位(ERP)。靶刺激比非靶刺激引出的P300电位潜伏期短,波幅较之亦高。任务难度大小,可影响到潜伏期和波幅变化,难度越大,P300电位越明显。另外,完成试验后有无奖励,即刺激的鼓励价值亦影响到P3波。There are many known characteristics of brain waves, for example: the frequency of α brain waves is 8-12 Hz, the frequency of β brain waves is 14-100 Hz, the frequency of θ brain waves is 4-8 Hz, and the frequency of δ brain waves is 0.5-4 Hz. Another example: when "cognizing" a certain target stimulus (singular stimulus), a group of waves can be recorded from the scalp, mainly including N1, P2, N2, and P300 (P3), which are collectively called event-related potentials (ERP). The latency of P300 potential elicited by the target stimulus is shorter than that of the non-target stimulus, and the amplitude is also higher. The difficulty of the task can affect the latency and amplitude changes. The greater the difficulty, the more obvious the P300 potential. In addition, whether there is a reward after completing the trial, that is, the incentive value of the stimulus also affects the P3 wave.
所述脑纹特征与身份信息云端数据库模块,用于接收所述新的脑纹特征参数,并反馈至脑纹本地数据库中,使所述脑纹本地数据库对该用户对应的脑纹进行更新。The brainprint feature and identity information cloud database module is used to receive the new brainprint feature parameters and feed them back to the local brainprint database, so that the local brainprint database can update the brainprint corresponding to the user.
脑纹特征与身份信息云端数据库中存放一定时间段内所有脑纹采集虚拟现实头盔所采集到的脑纹、用户身份信息和脑纹特征参数。从脑纹本地数据库中获得脑纹进行脑纹数据库更新,增加云平台中脑纹特征与身份信息云端数据库的数据量,便于统计分析和网络查询。脑电波特征提取与增强子模块输出脑纹特征参数到云端数据库中。脑纹特征与身份信息云端数据库输出脑纹特征参数到脑纹本地数据库中。脑纹特征与身份信息云端数据库提供脑纹数据库接口,供科研、医疗、体育、娱乐、商业应用等软件程序调用。脑纹特征与身份信息云端数据库的输入为脑电波特征提取与增强子模块的脑纹特征参数和脑纹本地数据库的脑纹数据,输出为脑纹数据库接口和脑纹参数类别。The brainprint feature and identity information cloud database stores the brainprint, user identity information and brainprint feature parameters collected by all brainprint collection virtual reality helmets within a certain period of time. The brain pattern is obtained from the local brain pattern database to update the brain pattern database, increasing the data volume of the cloud platform's brain pattern characteristics and identity information cloud database, which is convenient for statistical analysis and network query. The brain wave feature extraction and enhancement sub-module outputs the brain pattern feature parameters to the cloud database. The brainprint feature and identity information cloud database outputs the brainprint feature parameters to the brainprint local database. The brainprint feature and identity information cloud database provides a brainprint database interface for software programs such as scientific research, medical treatment, sports, entertainment, and business applications. The input of the brainprint feature and identity information cloud database is the brainprint feature parameters of the brainwave feature extraction and enhancement sub-module and the brainprint data of the local database of the brainprint, and the output is the brainprint database interface and the brainprint parameter category.
所述脑纹分析子模块,用于对所述包含有脑纹特征参数的脑电波数字信号进行分析处理,得到脑纹特征参数,所述脑纹特征参数与从脑纹本地数据库中调取的用户身份信息进行关联后得到与用户对应的脑纹特征参数,并根据预设的正常脑纹特征参数判断所述与用户对应的脑纹特征参数正常还是异常,若正常,则所述与用户对应的脑纹特征参数即为第二脑纹特征参数,将所述第二脑纹特征参数发送至所述安全认证模块;若异常,则将与用户对应的脑纹特征参数发送至预设的异常脑纹信息接口中。The brain pattern analysis sub-module is used to analyze and process the brain wave digital signal containing the brain pattern characteristic parameters to obtain the brain pattern characteristic parameters, and the brain pattern characteristic parameters are the same as those retrieved from the brain pattern local database. After correlating the user identity information, the brainprint feature parameters corresponding to the user are obtained, and according to the preset normal brainprint feature parameters, it is judged whether the brainprint feature parameters corresponding to the user are normal or abnormal. The characteristic parameter of the brain pattern is the second characteristic parameter of the brain pattern, and the second characteristic parameter of the brain pattern is sent to the security authentication module; if it is abnormal, the characteristic parameter of the brain pattern corresponding to the user is sent to the preset abnormal In the brainprint information interface.
脑纹分析子模块的输入为包含有脑纹特征参数的脑电波数字信号和脑纹本地数据库中的用户身份信息,输出为第二脑纹特征参数和异常的脑纹特征参数。所述异常脑纹特征参数用于判断目前录制的脑纹是否有效,还可以判断用户是否存在精神状态或认知状态异常的情况。The input of the brain-print analysis sub-module is the brain wave digital signal including the brain-print feature parameters and the user identity information in the brain-print local database, and the output is the second brain-print feature parameters and abnormal brain-print feature parameters. The abnormal brain pattern feature parameters are used to judge whether the currently recorded brain pattern is valid, and can also judge whether the user has an abnormal mental state or cognitive state.
图4是本发明装置实施例中基于脑纹采集的安全认证系统中脑纹生成模块和批式处理模块与其它模块的交互示意图。脑纹本地数据库中存放一定数量的使用当前脑纹采集虚拟现实头盔所生成的脑纹特征参数和用户身份信息。基于脑纹采集虚拟现实头盔的脑纹生成模块生成的脑纹特征参数通过无线收发模块将脑纹传输到脑纹本地数据库,便于用户对当前录制的脑纹特征参数的快速查看、处理和分析。脑纹本地数据库输出用户身份信息到脑纹分析子模块,供脑纹特征参数与身份信息进行关联。脑纹本地数据库输出脑纹特征参数到脑纹特征提取子模块,供脑纹特征提取模块快速处理脑电波信息,得到脑纹参数。脑纹本地数据库的输入为脑纹生成模块产生的脑纹特征参数和用户登录时的身份信息,输出为脑纹本地数据库接口、脑纹生成模块产生的脑纹特征参数、脑纹本地数据库中的用户身份信息和脑纹特征参数。Fig. 4 is a schematic diagram of the interaction between the brainprint generation module, the batch processing module and other modules in the security authentication system based on brainprint collection in the device embodiment of the present invention. A certain number of brainprint feature parameters and user identity information generated by using the current brainprint collection virtual reality helmet are stored in the brainprint local database. Based on the brain pattern collection virtual reality helmet, the brain pattern feature parameters generated by the brain pattern generation module are transmitted to the brain pattern local database through the wireless transceiver module, which is convenient for users to quickly view, process and analyze the currently recorded brain pattern feature parameters. The brain pattern local database outputs the user identity information to the brain pattern analysis sub-module for the brain pattern characteristic parameters to be associated with the identity information. The brain pattern local database outputs the brain pattern feature parameters to the brain pattern feature extraction sub-module for the brain pattern feature extraction module to quickly process the brain wave information to obtain the brain pattern parameters. The input of the local database of the brain pattern is the characteristic parameters of the brain pattern generated by the brain pattern generation module and the identity information of the user when logging in, and the output is the interface of the local database of the brain pattern, the characteristic parameters of the brain pattern generated by the brain pattern generation module, and the User identity information and brainprint feature parameters.
安全认证模块130,用于将第一脑纹特征参数与第二脑纹特征参数进行比对,根据比对结果对用户身份进行识别和安全认证。The security authentication module 130 is configured to compare the first brainprint feature parameter with the second brainprint feature parameter, and perform identification and security authentication on the user identity according to the comparison result.
具体的,所述安全认证模块130包括比对子模块、身份识别子模块、及安全认证子模块;Specifically, the security authentication module 130 includes a comparison submodule, an identity identification submodule, and a security authentication submodule;
所述比对子模块,用于将第一脑纹特征参数与第二脑纹特征参数进行比对,得到比对结果;The comparison sub-module is used to compare the first brainprint feature parameter with the second brainprint feature parameter to obtain a comparison result;
所述身份识别子模块,用于根据比对结果,判断用户身份是授权用户还是非授权用户,如果用户的第一脑纹特征参数与第二脑纹特征参数的相似度在可接受范围内,则该用户是授权用户;如果用户的第一脑纹特征参数与第二脑纹特征参数的相似度在不可接受范围内,或者用户的第二脑纹特征参数与脑纹本地数据库中所有脑纹特征参数均不匹配,则该用户为非授权用户;The identity recognition sub-module is used to determine whether the user identity is an authorized user or an unauthorized user according to the comparison result, if the similarity between the user's first brainprint characteristic parameter and the second brainprint characteristic parameter is within an acceptable range, Then the user is an authorized user; if the similarity between the user's first brainprint feature parameter and the second brainprint feature parameter is within an unacceptable range, or the user's second brainprint feature parameter is consistent with all brainprint feature parameters in the local brainprint database If the feature parameters do not match, the user is an unauthorized user;
所述安全认证子模块,用于给授权用户开放权限,对非授权用户进行访客入侵预警,将所述第二脑纹特征参数存入预设的未实名认证脑纹子数据库中。The security authentication sub-module is used to open permissions to authorized users, give early warning of visitor intrusion to unauthorized users, and store the second brainprint feature parameters into the preset non-real-name-authenticated brainprint sub-database.
图5是本发明装置实施例基于脑纹采集的安全认证系统的示意图,如图5所示,通过脑纹采集虚拟现实头盔或其他脑纹采集工具采集得到脑纹,将该脑纹与用户身份声称的信息进行脑纹比对,如果脑纹的相似度与脑纹数据库中的某一脑纹在可接受范围内,则认为该用户是脑纹数据库中预先登记的某用户。Fig. 5 is a schematic diagram of a security authentication system based on brain pattern collection according to an embodiment of the device of the present invention. As shown in Fig. 5, the brain pattern is collected through the brain pattern collection virtual reality helmet or other brain pattern collection tools, and the brain pattern is combined with the user identity The claimed information is compared with the brainprint, and if the similarity of the brainprint to a certain brainprint in the brainprint database is within an acceptable range, the user is considered to be a pre-registered user in the brainprint database.
在本发明装置实施例中,采用云平台和大数据的方式进行脑纹处理,使得脑电波数据可以更好的为科研和工程服务,使得提取的脑纹更准确。同时,云平台的数据库中存储了更多的脑纹数据后,有利于通过大样本的统计分析方法,发现一些未知的脑纹特征和其他脑电波现象。而且脑纹批式处理模块通过大样本统计分析、深度学习神经网络等方法精确的提取和预测脑电波的特征,从而为在线的脑纹提取提供参数依据。离线系统采用云平台中的软硬件资源进行计算。In the embodiment of the device of the present invention, the cloud platform and big data are used to process the brain pattern, so that the brain wave data can better serve scientific research and engineering, and the extracted brain pattern is more accurate. At the same time, after storing more brainprint data in the database of the cloud platform, it is beneficial to discover some unknown brainprint features and other brain wave phenomena through the statistical analysis method of large samples. Moreover, the brain pattern batch processing module accurately extracts and predicts the characteristics of brain waves through large sample statistical analysis, deep learning neural network and other methods, thus providing parameter basis for online brain pattern extraction. The offline system uses the software and hardware resources in the cloud platform for calculation.
根据本发明的方法实施例,提供了一种基于脑纹采集的安全认证方法,图6是本发明方法实施例的基于脑纹采集的安全认证方法的流程图,如图6所示,根据本发明实施例的基于脑纹采集的安全认证方法包括如下处理:According to the method embodiment of the present invention, a security authentication method based on brainprint collection is provided. FIG. 6 is a flow chart of the security authentication method based on brainprint collection in the method embodiment of the present invention. As shown in FIG. 6, according to the present invention The security authentication method based on brainprint collection in the embodiment of the invention includes the following processing:
步骤601,接收用户身份信息的输入,结合预设的脑纹本地数据库,产生与用户身份信息对应的第一脑纹特征参数,所述脑纹本地数据库中存储有若干个用户身份信息及与所述用户身份信息对应的脑纹特征参数;Step 601, receiving the input of user identity information, combined with the preset local brainprint database, to generate the first brainprint characteristic parameters corresponding to the user identity information, the brainprint local database stores several user identity information and the corresponding The brainprint feature parameters corresponding to the user identity information;
步骤602,获取用户在音视频信号的刺激下产生的脑电波数字信号,对所述脑电波数字信号进行特征提取和分析,得到第二脑纹特征参数;Step 602, acquiring digital brainwave signals generated by the user under the stimulation of audio and video signals, performing feature extraction and analysis on the digital brainwave signals, and obtaining second brainprint feature parameters;
步骤603,将第一脑纹特征参数与第二脑纹特征参数进行比对,根据比对结果对用户身份进行识别和安全认证。Step 603, comparing the first brainprint feature parameter with the second brainprint feature parameter, and performing identification and security authentication on the user identity according to the comparison result.
本发明方法实施例的基于脑纹采集的安全认证方法还包括以下步骤:The security authentication method based on brainprint collection in the method embodiment of the present invention also includes the following steps:
在新增用户模式下,接收新增用户身份信息的输入;In the new user mode, receive the input of the new user identity information;
获取新增用户在视频信号的刺激下产生的脑电波数字信号,对所述脑电波数字信号进行特征提取和分析,得到新增脑纹特征参数,将所述新增脑纹特征参数与新增用户身份信息关联后存储在脑纹本地数据库中。Obtain the brain wave digital signal generated by the new user under the stimulation of the video signal, perform feature extraction and analysis on the brain wave digital signal, obtain the new brain pattern feature parameter, and combine the new brain pattern feature parameter with the newly added After the user identity information is associated, it is stored in the brainprint local database.
具体的,步骤602具体包括以下步骤;Specifically, step 602 specifically includes the following steps;
获取用户在音视频信号的刺激下产生的脑电波模拟信号,并将所述脑电波模拟信号放大、滤波、模数转换得到脑电波数字信号;Acquiring the analog brain wave signal generated by the user under the stimulation of audio and video signals, and amplifying, filtering, and analog-to-digital conversion of the analog brain wave signal to obtain a digital brain wave signal;
根据从所述脑纹本地数据库中调取的脑纹特征参数,对所述脑电波数字信号进行特征提取得到包含有脑纹特征参数的脑电波数字信号;According to the brainprint feature parameters retrieved from the brainprint local database, feature extraction is performed on the brainwave digital signal to obtain the brainwave digital signal containing the brainprint feature parameters;
对所述包含有脑纹特征参数的脑电波数字信号进行分析处理,得到脑纹特征参数,所述脑纹特征参数与从脑纹本地数据库中调取的用户身份信息进行关联后得到与用户对应的脑纹特征参数,并根据预设的正常脑纹特征参数判断所述与用户对应的脑纹特征参数正常还是异常,若正常,则所述与用户对应的脑纹特征参数即为第二脑纹特征参数;若异常,则将与用户对应的脑纹特征参数发送至预设的异常脑纹信息接口中。Analyzing and processing the brainwave digital signal containing the brainprint feature parameters to obtain the brainprint feature parameters, and correlating the brainprint feature parameters with the user identity information retrieved from the brainprint local database to obtain the corresponding According to the preset normal brain pattern characteristic parameters, it is judged whether the brain pattern characteristic parameters corresponding to the user are normal or abnormal. If normal, the brain pattern characteristic parameters corresponding to the user are the second brain pattern characteristic parameters. if abnormal, send the corresponding brainprint feature parameters to the preset abnormal brainprint information interface.
本发明方法实施例的基于脑纹采集的安全认证方法还包括以下步骤:The security authentication method based on brainprint collection in the method embodiment of the present invention also includes the following steps:
在脑电波数字信号中截取部分数据,进行压缩得到批量的脑电波数字信号;Intercept part of the data from the brain wave digital signal, and compress it to obtain a batch of brain wave digital signals;
对接收到的同一用户的批量的脑电波数字信号进行聚类和处理,得到该用户的新的脑纹特征参数;Clustering and processing the received batches of brainwave digital signals of the same user to obtain the new brainprint feature parameters of the user;
接收所述新的脑纹特征参数,并反馈至脑纹本地数据库中,使所述脑纹本地数据库对该用户对应的脑纹特征参数进行更新。The new brainprint feature parameters are received and fed back to the local brainprint database, so that the brainprint local database updates the brainprint feature parameters corresponding to the user.
具体的,所述对接收到的同一用户的批量的脑电波数字信号进行聚类和处理,得到该用户的新的脑纹特征参数具体包括以下步骤;Specifically, the clustering and processing of the received batches of brainwave digital signals of the same user to obtain the new brainprint feature parameters of the user specifically includes the following steps;
对接收到的同一用户的批量的脑电波数字信号进行聚类,得到脑电波参数聚类结果;Clustering the received batches of brainwave digital signals of the same user to obtain the brainwave parameter clustering result;
基于脑电波已知特征和脑电波参数之间的隐含关联关系,根据脑电波参数聚类结果得到新的脑纹特征参数。Based on the implicit correlation between known features of brain waves and brain wave parameters, new brainprint feature parameters are obtained according to the clustering results of brain wave parameters.
具体的,步骤603包括以下步骤:Specifically, step 603 includes the following steps:
将第一脑纹特征参数与第二脑纹特征参数进行比对,得到比对结果;Comparing the first brainprint feature parameter with the second brainprint feature parameter to obtain a comparison result;
根据比对结果,判断用户身份是授权用户还是非授权用户,如果用户的第一脑纹特征参数与第二脑纹特征参数的相似度在可接受范围内,则该用户是授权用户;如果用户的第一脑纹特征参数与第二脑纹特征参数的相似度在不可接受范围内,或者用户的第二脑纹特征参数与脑纹本地数据库中所有脑纹特征参数均不匹配,则该用户为非授权用户;According to the comparison result, it is judged whether the user identity is an authorized user or an unauthorized user, if the similarity between the first brainprint characteristic parameter and the second brainprint characteristic parameter of the user is within an acceptable range, then the user is an authorized user; if the user The similarity between the first and second brainprint feature parameters of the user is within an unacceptable range, or the user's second brainprint feature parameters do not match all the brainprint feature parameters in the local brainprint database, then the user as an unauthorized user;
给授权用户开放权限,对非授权用户进行访客入侵预警,将所述第二脑纹特征参数存入预设的未实名认证脑纹子数据库中。Authorized users are granted permission, visitor intrusion warnings are given to unauthorized users, and the second brainprint feature parameters are stored in the preset non-real-name-authenticated brainprint sub-database.
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the present invention without departing from the spirit and scope of the present invention. Thus, if these modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalent technologies, the present invention also intends to include these modifications and variations.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610889043.9A CN106503517B (en) | 2016-10-12 | 2016-10-12 | A security authentication system based on brainprint collection of virtual reality helmet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610889043.9A CN106503517B (en) | 2016-10-12 | 2016-10-12 | A security authentication system based on brainprint collection of virtual reality helmet |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106503517A CN106503517A (en) | 2017-03-15 |
CN106503517B true CN106503517B (en) | 2019-09-03 |
Family
ID=58293906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610889043.9A Active CN106503517B (en) | 2016-10-12 | 2016-10-12 | A security authentication system based on brainprint collection of virtual reality helmet |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106503517B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108989015B (en) * | 2017-05-31 | 2021-11-02 | 北京京东尚科信息技术有限公司 | Encryption method and device |
CN108108603A (en) | 2017-12-04 | 2018-06-01 | 阿里巴巴集团控股有限公司 | Login method and device and electronic equipment |
CN108682434B (en) * | 2018-03-26 | 2020-08-21 | Oppo广东移动通信有限公司 | Electronic device, data processing method and related products |
CN109684296A (en) * | 2018-12-14 | 2019-04-26 | 深圳大学 | Brain line identification database construction method, device, computer equipment and storage medium |
CN110321691B (en) * | 2019-07-30 | 2022-03-11 | 东南大学 | A user authentication device suitable for a brain-computer interface and an authentication method thereof |
CN111031057B (en) * | 2019-12-21 | 2020-10-09 | 北京理工大学 | An information transmission method based on stimulation signal-induced brain waves |
CN113705277B (en) * | 2020-05-20 | 2024-03-12 | 江苏集萃脑机融合智能技术研究所有限公司 | Brain pattern recognition system and method |
CN112084471A (en) * | 2020-07-23 | 2020-12-15 | 于晓璇 | Authentication and authorization system based on brain waves |
CN114743218A (en) * | 2022-04-08 | 2022-07-12 | 中国银行股份有限公司 | An identity verification method and system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101716079A (en) * | 2009-12-23 | 2010-06-02 | 江西蓝天学院 | Brainprint identity identification authentication method based on multi-characteristics algorithm |
CN101862194A (en) * | 2010-06-17 | 2010-10-20 | 天津大学 | Imaginative Action EEG Identity Recognition Method Based on Fusion Feature |
CN103310142A (en) * | 2013-05-22 | 2013-09-18 | 复旦大学 | Man-machine fusion security authentication method based on wearable equipment |
CN103729586A (en) * | 2013-12-20 | 2014-04-16 | 北京握奇数据系统有限公司 | Method and system for authenticating passwords on basis of brain wave signals |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014165230A1 (en) * | 2013-03-13 | 2014-10-09 | Lookout, Inc. | System and method for changing security behavior of a device based on proximity to another device |
-
2016
- 2016-10-12 CN CN201610889043.9A patent/CN106503517B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101716079A (en) * | 2009-12-23 | 2010-06-02 | 江西蓝天学院 | Brainprint identity identification authentication method based on multi-characteristics algorithm |
CN101862194A (en) * | 2010-06-17 | 2010-10-20 | 天津大学 | Imaginative Action EEG Identity Recognition Method Based on Fusion Feature |
CN103310142A (en) * | 2013-05-22 | 2013-09-18 | 复旦大学 | Man-machine fusion security authentication method based on wearable equipment |
CN103729586A (en) * | 2013-12-20 | 2014-04-16 | 北京握奇数据系统有限公司 | Method and system for authenticating passwords on basis of brain wave signals |
Also Published As
Publication number | Publication date |
---|---|
CN106503517A (en) | 2017-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106503517B (en) | A security authentication system based on brainprint collection of virtual reality helmet | |
Maiorana et al. | Longitudinal evaluation of EEG-based biometric recognition | |
Maiorana et al. | On the permanence of EEG signals for biometric recognition | |
Keshishzadeh et al. | Improved EEG based human authentication system on large dataset | |
KR101607432B1 (en) | Method, System and Computer Program for Personal authentication based on electroencephalography | |
Su et al. | A biometric-based covert warning system using EEG | |
CN109784023A (en) | Stable state vision inducting brain electricity personal identification method and system based on deep learning | |
Phothisonothai | An investigation of using SSVEP for EEG-based user authentication system | |
TW201926101A (en) | Login method and apparatus, and electronic device | |
Dan et al. | An identification system based on portable EEG acquisition equipment | |
CN107277075A (en) | Authentication device and authentication method | |
Jianfeng et al. | Multi-feature authentication system based on event evoked electroencephalogram | |
Reshmi et al. | A novel approach to brain biometric user recognition | |
CN108564011A (en) | A kind of personal identification method that normal form being presented based on brain electricity Rapid Speech | |
CN109766751A (en) | Steady-state visually evoked EEG identification method and system based on frequency domain coding | |
Kumari et al. | Brainwave's energy feature extraction using wavelet transform | |
CN113591051A (en) | Electronic file full life cycle information security system and method | |
Mohanchandra et al. | Using brain waves as new biometric feature for authenticating a computer user in real-time | |
Almehmadi et al. | The state of the art in electroencephalogram and access control | |
Zhao et al. | Improving individual identification in security check with an EEG based biometric solution | |
CN108234130A (en) | Auth method and device and electronic equipment | |
CN100411580C (en) | Identification method based on objective detection of human brain memory features | |
Mukai et al. | Introduction of fractal dimension feature and reduction of calculation amount in person authentication using evoked EEG by ultrasound | |
Cao et al. | Towards nonintrusive and secure mobile two-factor authentication on wearables | |
Das et al. | Visually evoked potentials for EEG biometric recognition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |