[go: up one dir, main page]

CN105527960A - Mobile robot formation control method based on leader-follow - Google Patents

Mobile robot formation control method based on leader-follow Download PDF

Info

Publication number
CN105527960A
CN105527960A CN201510957722.0A CN201510957722A CN105527960A CN 105527960 A CN105527960 A CN 105527960A CN 201510957722 A CN201510957722 A CN 201510957722A CN 105527960 A CN105527960 A CN 105527960A
Authority
CN
China
Prior art keywords
robot
following
formation
information
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510957722.0A
Other languages
Chinese (zh)
Inventor
罗小元
管玲
闫敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201510957722.0A priority Critical patent/CN105527960A/en
Publication of CN105527960A publication Critical patent/CN105527960A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/69Coordinated control of the position or course of two or more vehicles
    • G05D1/695Coordinated control of the position or course of two or more vehicles for maintaining a fixed relative position of the vehicles, e.g. for convoy travelling or formation flight
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/24Arrangements for determining position or orientation
    • G05D1/243Means capturing signals occurring naturally from the environment, e.g. ambient optical, acoustic, gravitational or magnetic signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/24Arrangements for determining position or orientation
    • G05D1/247Arrangements for determining position or orientation using signals provided by artificial sources external to the vehicle, e.g. navigation beacons
    • G05D1/248Arrangements for determining position or orientation using signals provided by artificial sources external to the vehicle, e.g. navigation beacons generated by satellites, e.g. GPS
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/69Coordinated control of the position or course of two or more vehicles
    • G05D1/698Control allocation
    • G05D1/6985Control allocation using a lead vehicle, e.g. primary-secondary arrangements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2111/00Details of signals used for control of position, course, altitude or attitude of land, water, air or space vehicles
    • G05D2111/10Optical signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Artificial Intelligence (AREA)
  • Medical Informatics (AREA)
  • Game Theory and Decision Science (AREA)
  • Evolutionary Computation (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)

Abstract

一种基于领航跟随的移动机器人编队控制方法,由全局定位系统、无线通信系统、算法处理系统和调速系统组成,全局定位系统获取每个机器人的位姿信息,经无线通信系统发送给算法处理系统,通过与调速系统的信息交互最终实现编队运动控制。在控制算法中首先建立领航跟随编队运动模型,给出跟随机器人运动控制率,然后建立跟随机器人轨迹预测模型,采用非线性最小二乘法预测模型,利用改进的粒子群算法优化预测模型参数,定义通信数据异常范围,启用预测点代替异常点以保证编队运动。本发明引入预测模型,避免暂通信异常而导致的编队队形偏离现象,确保跟随机器人运动的可靠性,极大地提高编队的稳定性。

A mobile robot formation control method based on pilot following, which is composed of a global positioning system, a wireless communication system, an algorithm processing system, and a speed control system. The global positioning system obtains the pose information of each robot, and sends it to the algorithm for processing through the wireless communication system System, through the information interaction with the speed control system, the formation motion control is finally realized. In the control algorithm, first establish the motion model of the leader following the formation, give the motion control rate of the following robot, then establish the trajectory prediction model of the following robot, use the nonlinear least square method to predict the model, use the improved particle swarm optimization algorithm to optimize the prediction model parameters, and define the communication Data anomaly range, enabling prediction points instead of anomalous points to ensure formation movement. The invention introduces a predictive model to avoid formation deviation caused by temporary communication abnormalities, ensure the reliability of following the robot movement, and greatly improve the stability of the formation.

Description

一种基于领航跟随的移动机器人编队控制方法A mobile robot formation control method based on leader following

技术领域technical field

本发明涉及移动机器人运动控制领域,尤其涉及一种基于领航跟随的移动机器人编队运动控制方法。The invention relates to the field of motion control of mobile robots, in particular to a method for controlling the motion of mobile robot formations based on pilot follow.

背景技术Background technique

随着机器人技术的发展,移动机器人在应用范围和功能方面都得到了较大的拓展和提高,并且广泛应用于国防、工业、服务业等行业。多移动机器人编队可以有效弥补单个移动机器人能力的不足,使单个机器人在编队行为的群体中拥有了原来所没有的显著优势,通过群体间机器人的协调合作可以完成单个机器人无法或难以完成的工作。因此,对于移动机器人编队控制系统及控制方法的研究是十分必要的。With the development of robot technology, mobile robots have been greatly expanded and improved in terms of application scope and functions, and are widely used in national defense, industry, service industry and other industries. The formation of multiple mobile robots can effectively make up for the lack of ability of a single mobile robot, so that a single robot has a significant advantage in the group of formation behaviors that it did not have before. Through the coordination and cooperation of robots between groups, it can complete the work that a single robot cannot or is difficult to complete. Therefore, it is very necessary to study the formation control system and control method of mobile robots.

经过对现有文献的检索,中国专利申请号为:CN201010618568.1,名称为:基于Ad-Hoc网络和leader-follower算法的多机器人编队方法,该发明提出了一种多机器人编队方法,建立leader运动学模型,根据人工势场法确定follower运动轨迹,并在leader和follower之间引入Ad-Hoc网络,建立信息反馈来保证follower对leader的跟踪过程无丢失。但该发明在领航跟随者中引入Ad-Hoc网络的同时没有考虑网络通信异常的情况,易出现由于网络通信异常造成的跟随者运动偏离现象。中国专利申请号为:201310281499.3,名称为:一种基于行为的领航者—跟随者多智能体队形控制方法,该发明公开了一种基于行为的领航者—跟随者多智能体队形控制方法,该方法通过增加候补领航者在一定程度上弥补领航者在发生障碍后导致队形失效的缺陷。但该发明没有考虑在领航跟随编队中跟随者对领航者信息获取失败的问题,容易导致跟随者丢失的情况。文献名称为:一种多智能体领航跟随编队新型控制器的设计,在该算法中通过引入基于邻居的局部控制率以及基于邻居的状态估计规则设计了一种新型的控制器,在该控制器中通过简单设定领航者和跟随者之间的相对坐标即可方便的实现任意形状编队,但该方法将领航跟随者组成的编队形成一个固定或可切换的连接拓扑,缺乏一定的编队灵活性且没有考虑到通信拓扑受限情况下的领航跟随编队问题。After searching the existing literature, the Chinese patent application number is: CN201010618568.1, and the name is: multi-robot formation method based on Ad-Hoc network and leader-follower algorithm. This invention proposes a multi-robot formation method to establish a leader The kinematics model determines the follower's trajectory according to the artificial potential field method, and introduces the Ad-Hoc network between the leader and the follower, and establishes information feedback to ensure that the follower's tracking process of the leader is not lost. However, the invention introduces the Ad-Hoc network into the pilot follower and does not consider the abnormal network communication, which is prone to follower movement deviation phenomenon caused by abnormal network communication. Chinese patent application number: 201310281499.3, titled: A behavior-based leader-follower multi-agent formation control method, the invention discloses a behavior-based leader-follower multi-agent formation control method , this method makes up for the defect that the leader leads to formation failure after an obstacle occurs to a certain extent by adding alternate leaders. However, this invention does not consider the problem that the follower fails to obtain the leader's information in the lead-follow formation, which may easily lead to the loss of the follower. The name of the document is: Design of a new controller for multi-agent pilot-follow formation. In this algorithm, a new controller is designed by introducing neighbor-based local control rate and neighbor-based state estimation rules. In this controller Arbitrary formations can be easily realized by simply setting the relative coordinates between the leader and the follower, but this method forms a fixed or switchable connection topology for the formation composed of the leader and follower, which lacks certain formation flexibility And it does not take into account the problem of leader-following formation under the condition of limited communication topology.

通过检索发现,现有技术中关于移动机器人领航跟随编队运动控制的研究很多,虽然都能够实现对机器人的编队控制,但都没有考虑到在领航跟随编队中通信受限情况下的跟随者运动问题,编队稳定性差,缺乏有效的编队保障。因此,本发明提出一种基于领航跟随的移动机器人编队控制方法。Through the search, it is found that there are many studies on the motion control of mobile robots leading and following formations in the prior art. Although all of them can realize the formation control of robots, they have not considered the problem of follower movement in the case of limited communication in leading and following formations. , poor formation stability, lack of effective formation protection. Therefore, the present invention proposes a mobile robot formation control method based on leader following.

发明内容Contents of the invention

本发明目的在于提供一种针对领航跟随编队运动中的通信异常、跟随者运动情况以及整体编队队形保持有明显优化的基于领航跟随的移动机器人编队控制方法。The purpose of the present invention is to provide a mobile robot formation control method based on leader following that is obviously optimized for communication anomalies, follower movement conditions and overall formation formation maintenance in leader following formation movement.

为实现上述目的,采用了以下技术方案:本发明所述控制方法包括全局定位系统、无线通信系统、算法处理系统、调速系统以及标定不同颜色的移动机器人;全局定位系统利用摄像头对不同颜色的移动机器人进行颜色识别,采集移动机器人的位姿信息;无线通信系统将采集到的位姿信息发送给各机器人;算法处理系统根据接收到的各移动机器人位姿信息做出运动控制及协调编队算法处理,并且不断地与调速系统进行信息交互,调速系统采集处理各移动机器人的速度信息,对实际控制输出不断做出反馈,实时矫正速度偏差,最终完成各移动机器人编队运动的控制。In order to achieve the above object, the following technical solutions are adopted: the control method of the present invention includes a global positioning system, a wireless communication system, an algorithm processing system, a speed control system, and mobile robots of different colors; The mobile robot performs color recognition and collects the pose information of the mobile robot; the wireless communication system sends the collected pose information to each robot; the algorithm processing system makes motion control and coordination formation algorithms based on the received pose information of each mobile robot The speed control system collects and processes the speed information of each mobile robot, continuously makes feedback on the actual control output, corrects the speed deviation in real time, and finally completes the control of the formation movement of each mobile robot.

所述控制方法的具体步骤如下:The concrete steps of described control method are as follows:

步骤1,在工作平台中,利用全局定位系统获取编队中各机器人相对于平台全局坐标系的位置坐标信息;Step 1, on the working platform, use the global positioning system to obtain the position coordinate information of each robot in the formation relative to the global coordinate system of the platform;

步骤2,根据各机器人的位置坐标信息构建领航机器人与跟随机器人之间的相对位置角度关系式,定义编队期望的领航机器人与跟随机器人的距离角度关系,得到误差动力学方程,进而推导出跟随机器人的运动控制率;Step 2. According to the position coordinate information of each robot, construct the relative position angle relationship between the leader robot and the follower robot, define the distance angle relationship between the leader robot and the follower robot expected by the formation, obtain the error dynamics equation, and then derive the follower robot motor control rate;

步骤3,在编队运动过程中,领航机器人向目标点自主运动并通过无线通信系统不断向跟随机器人发送信息,跟随机器人接收领航机器人信息并计算自己的位置,记录跟随机器人每一时刻的位置信息作为训练数据,建立基于非线性最小二乘法的跟随机器人轨迹预测模型;Step 3. During the formation movement, the leader robot moves autonomously to the target point and continuously sends information to the follower robot through the wireless communication system. The follower robot receives the information of the leader robot and calculates its own position, and records the position information of the follower robot at each moment as Training data, establish a trajectory prediction model based on the nonlinear least squares method to follow the robot;

步骤4,利用粒子群算法解决轨迹预测模型参数选取问题,将轨迹预测模型的一组参数作为轨迹预测模型的一组解,初始化粒子群,计算每个粒子的适应度函数,根据粒子的适应度函数值更新粒子的个体极值及全局极值;Step 4, use the particle swarm algorithm to solve the problem of parameter selection of the trajectory prediction model, use a set of parameters of the trajectory prediction model as a set of solutions of the trajectory prediction model, initialize the particle swarm, calculate the fitness function of each particle, according to the particle fitness The function value updates the individual extremum and the global extremum of the particle;

步骤5,利用迭代公式更新每个粒子的速度和位置;Step 5, using an iterative formula to update the velocity and position of each particle;

步骤6,不断利用下一时刻的数据更新轨迹预测模型,并向后预测轨迹信息,定义一个通信数据异常范围,若接收到的数据在正常范围之内,则根据接收到的领航机器人数据计算跟随机器人位置信息并向其运动;若数据异常时,则启用预测点代替异常数据点作为下一时刻的跟随机器人轨迹点;Step 6. Continuously update the trajectory prediction model with the data at the next moment, and predict the trajectory information backwards, and define an abnormal range of communication data. If the received data is within the normal range, calculate the following based on the received pilot robot data. Robot position information and move towards it; if the data is abnormal, enable the prediction point instead of the abnormal data point as the following robot trajectory point at the next moment;

步骤7,利用全局定位系统不断更新编队中各机器人的位置姿态信息,直到领航跟随编队到达目标点。Step 7, use the global positioning system to continuously update the position and attitude information of each robot in the formation until the leader follows the formation to reach the target point.

进一步地,步骤6中,所述的通信数据异常范围,是利用全局定位系统和无线通信系统采集每帧图像,并且计算发送机器人位置信息的时间间隔及机器人的平均运动速度来确定通信数据是否为异常数据。Further, in step 6, the abnormal range of the communication data is to use the global positioning system and the wireless communication system to collect each frame of image, and calculate the time interval for sending the robot position information and the average moving speed of the robot to determine whether the communication data is abnormal data.

进一步地,步骤6中,所述的数据更新策略为,下一时刻的跟随机器人轨迹点值是根据当前时刻的跟随机器人轨迹点值与数据超出正常范围的最大阈值关系来确定的,通过分别判断当前时刻和下一时刻的跟随机器人轨迹点值在沿平台X、Y轴方向的距离是否满足通信数据异常范围来做出更新决定。Further, in step 6, the data update strategy is that the trajectory point value of the following robot at the next moment is determined according to the relationship between the trajectory point value of the following robot at the current moment and the maximum threshold value of the data exceeding the normal range, and by separately judging Update decisions are made based on whether the distance between the current and next robot trajectory point values along the X and Y axes of the platform meets the abnormal range of communication data.

进一步地,所述的全局定位系统由上位机和一个高清CCD摄像头组成,将高清CCD摄像头置于工作平台的顶部,对平台中每个移动机器人标定不同的颜色,利用颜色识别算法获取机器人在平台中的位置和姿态信息,再将信息传回上位机进行处理,上位机处理后再发送给各移动机器人,从而实现移动机器人的全局定位。Further, the global positioning system is composed of a host computer and a high-definition CCD camera. The high-definition CCD camera is placed on the top of the work platform, and each mobile robot in the platform is marked with a different color, and the color recognition algorithm is used to obtain the position of the robot on the platform. The position and attitude information in the mobile robot is then sent back to the host computer for processing, and then sent to each mobile robot after processing by the host computer, so as to realize the global positioning of the mobile robot.

进一步地,所述的无线通信系统包括上位机、移动机器人及无线路由器,其中移动机器人上安装有无线收发模块,上位机和无线路由通过网线连接,上位机、移动机器人和无线路由器组成基于局域网的通信系统,通过建立上位机与各机器人之间以及各机器人之间的通信协议,实现上位机与机器人、机器人与机器人之间的无线通信。Further, the wireless communication system includes a host computer, a mobile robot and a wireless router, wherein a wireless transceiver module is installed on the mobile robot, the host computer and the wireless router are connected through a network cable, and the host computer, the mobile robot and the wireless router form a network based on a local area network. The communication system realizes wireless communication between the host computer and robots, and between robots by establishing communication protocols between the host computer and each robot and between each robot.

进一步地,所述算法处理系统,由DSP数字信号处理器组成,安装在机器人内部,在该DSP数字信号处理器中植入前面所述的基于领航跟随的移动机器人编队运动控制算法,接收来自无线通信系统的数据,对机器人的自主运动及编队协调控制作出处理;Further, the algorithm processing system is composed of a DSP digital signal processor, which is installed inside the robot, and the aforementioned pilot-following-based mobile robot formation motion control algorithm is implanted in the DSP digital signal processor. The data of the communication system is used to process the robot's autonomous movement and formation coordination control;

进一步地,所述调速系统包括测速码盘模块、Arduino模块及PID调速模块;Further, the speed control system includes a speed measuring code disc module, an Arduino module and a PID speed control module;

其中,所述的测速码盘模块由光栅盘和光电检测装置组成,安装在机器人的左右轮电机旁,通过计算每秒光电编码器输出脉冲的个数反映当前左右轮电机的转数,并结合车轮转动一周的周长,换算得到移动机器人电机左右轮的实际转速;Wherein, the speed measuring code disc module is composed of a grating disc and a photoelectric detection device, installed beside the left and right wheel motors of the robot, and reflects the current revolutions of the left and right wheel motors by calculating the number of output pulses of the photoelectric encoder per second, and combining The circumference of a wheel rotation is converted into the actual speed of the left and right wheels of the mobile robot motor;

所述的Arduino模块为ArduinoMega2560单片机,安装在机器人内部,用于扩展机器人的数字和模拟输入输出口,进而采集接收测速码盘输出脉冲个数,对数据进行分析处理后,通过I2C总线发送给算法处理系统;The Arduino module is an ArduinoMega2560 single-chip microcomputer, which is installed inside the robot, and is used to expand the digital and analog input and output ports of the robot, and then collect and receive the output pulse number of the speed measuring code disc. After analyzing and processing the data, it sends it to the algorithm through the I2C bus. processing system;

所述的PID调速模块是基于BP神经网络的PID控制器,是在经典PID控制器的基础上,将Arduino模块传回的实测速度与算法处理系统中的理论速度做误差比较,利用BP神经网络优化PID控制器参数,从而实现机器人在不同运动状态下控制器参数的自适应调节,实时矫正速度偏差。The PID speed control module is a PID controller based on the BP neural network. On the basis of the classic PID controller, the measured speed returned by the Arduino module is compared with the theoretical speed in the algorithm processing system. The network optimizes the PID controller parameters, so as to realize the adaptive adjustment of the controller parameters of the robot in different motion states, and correct the speed deviation in real time.

与现有技术相比,本发明具有如下优点:建立跟随机器人的轨迹预测模型,采用改进的粒子群算法优化最小二乘预测模型,弥补了因短暂通信异常而导致的编队队形偏离现象,确保了跟随者运动的可靠性,极大地提高了编队的稳定性。Compared with the prior art, the present invention has the following advantages: the trajectory prediction model of the following robot is established, and the least squares prediction model is optimized by using the improved particle swarm optimization algorithm, which makes up for the formation deviation phenomenon caused by short-term communication abnormalities, and ensures It improves the reliability of the follower movement and greatly improves the stability of the formation.

附图说明Description of drawings

图1是本发明方法的系统结构框图。Fig. 1 is a system structure block diagram of the method of the present invention.

图2是本发明方法的控制方法流程图。Fig. 2 is a flow chart of the control method of the method of the present invention.

附图标号:1为全局定位系统、2为无线通信系统、3为算法处理系统、4为调速系统、41为测速码盘模块、42为Arduino模块、43为PID调速模块。Reference numerals: 1 is a global positioning system, 2 is a wireless communication system, 3 is an algorithm processing system, 4 is a speed control system, 41 is a speed measuring code disc module, 42 is an Arduino module, and 43 is a PID speed control module.

具体实施方式detailed description

下面结合附图对本发明做进一步说明:The present invention will be further described below in conjunction with accompanying drawing:

如图1所示,本发明所述控制方法包括全局定位系统1、无线通信系统2、算法处理系统3、调速系统4以及标定不同颜色的移动机器人;全局定位系统利用摄像头对不同颜色的移动机器人进行颜色识别,采集移动机器人的位姿信息;无线通信系统将采集到的位姿信息通过UPD广播的形式发送给各机器人;算法处理系统根据接收到的各移动机器人位姿信息做出运动控制及协调编队算法处理,并且不断地与调速系统进行信息交互,调速系统采集处理各移动机器人的速度信息,对实际控制输出不断做出反馈,实时矫正速度偏差,最终完成各移动机器人编队运动的控制。As shown in Figure 1, the control method of the present invention includes a global positioning system 1, a wireless communication system 2, an algorithm processing system 3, a speed control system 4, and mobile robots of different colors; The robot performs color recognition and collects the pose information of the mobile robot; the wireless communication system sends the collected pose information to each robot in the form of UPD broadcast; the algorithm processing system makes motion control according to the received pose information of each mobile robot And coordinate formation algorithm processing, and constantly interact with the speed control system, the speed control system collects and processes the speed information of each mobile robot, continuously makes feedback on the actual control output, corrects the speed deviation in real time, and finally completes the formation movement of each mobile robot control.

其中,所述的全局定位系统由上位机和一个高清CCD摄像头组成,将高清CCD摄像头置于工作平台的顶部,对平台中每个移动机器人标定不同的颜色,利用颜色识别算法获取机器人在平台中的位置和姿态信息,再将信息传回上位机进行处理,上位机处理后再发送给各移动机器人,从而实现移动机器人的全局定位。Wherein, the global positioning system is composed of a host computer and a high-definition CCD camera. The high-definition CCD camera is placed on the top of the work platform, and each mobile robot in the platform is marked with a different color. The position and attitude information of the mobile robot is then transmitted back to the host computer for processing, and then sent to each mobile robot after processing by the host computer, so as to realize the global positioning of the mobile robot.

所述的无线通信系统包括上位机、移动机器人及无线路由器,其中移动机器人上安装有无线收发模块,上位机、移动机器人和无线路由器组成基于局域网的通信系统,通过建立上位机与各机器人之间以及各机器人之间的通信协议,实现上位机与机器人、机器人与机器人之间的无线通信。The wireless communication system includes a host computer, a mobile robot and a wireless router, wherein the mobile robot is equipped with a wireless transceiver module, and the host computer, the mobile robot and the wireless router form a communication system based on a local area network. By establishing a communication system between the host computer and each robot And the communication protocol between the robots to realize the wireless communication between the upper computer and the robot, and between the robot and the robot.

所述算法处理系统,由DSP数字信号处理器组成,在该DSP数字信号处理器中植入基于领航跟随的移动机器人编队运动控制算法,接收来自无线通信系统的数据,对机器人的自主运动及编队协调控制作出处理;The algorithm processing system is composed of a DSP digital signal processor. In the DSP digital signal processor, a mobile robot formation motion control algorithm based on pilot following is implanted, receiving data from a wireless communication system, and controlling the autonomous movement and formation of the robot. Coordinated control to handle;

所述调速系统包括测速码盘模块41、Arduino模块42及PID调速模块43;The speed control system includes a speed measuring code disc module 41, an Arduino module 42 and a PID speed control module 43;

其中,所述的测速码盘模块由光栅盘和光电检测装置组成,安装在机器人的左右轮电机旁,通过计算每秒光电编码器输出脉冲的个数反映当前左右轮电机的转数,并结合车轮转动一周的周长,换算得到移动机器人电机左右轮的实际转速;Wherein, the speed measuring code disc module is composed of a grating disc and a photoelectric detection device, installed beside the left and right wheel motors of the robot, and reflects the current revolutions of the left and right wheel motors by calculating the number of output pulses of the photoelectric encoder per second, and combining The circumference of a wheel rotation is converted into the actual speed of the left and right wheels of the mobile robot motor;

所述的Arduino模块为ArduinoMega2560单片机,安装在机器人内部,用于扩展机器人的数字和模拟输入输出口,进而采集接收测速码盘输出脉冲个数,对数据进行分析处理后,通过I2C总线发送给算法处理系统;The Arduino module is an ArduinoMega2560 single-chip microcomputer, which is installed inside the robot, and is used to expand the digital and analog input and output ports of the robot, and then collect and receive the output pulse number of the speed measuring code disc. After analyzing and processing the data, it sends it to the algorithm through the I2C bus. processing system;

所述的PID调速模块是基于BP神经网络的PID控制器,在经典PID控制器的基础上,将Arduino模块传回的实测速度与算法处理系统中的理论速度做误差比较,利用BP神经网络优化PID控制器参数,从而实现机器人在不同运动状态下控制器参数的自适应调节,实时矫正速度偏差。The PID speed control module is a PID controller based on the BP neural network. On the basis of the classic PID controller, the measured speed returned by the Arduino module is compared with the theoretical speed in the algorithm processing system, and the BP neural network is used to Optimize the parameters of the PID controller, so as to realize the adaptive adjustment of the controller parameters of the robot in different motion states, and correct the speed deviation in real time.

所述方法具体步骤如下:The specific steps of the method are as follows:

步骤1,在工作平台中,利用全局定位系统获取编队中领航跟随机器人相对于平台全局坐标系的位置坐标信息分别为(xi,yii)(xi-1,yi-1i-1);Step 1. On the working platform, use the global positioning system to obtain the position coordinate information of the leader - following robot in the formation relative to the global coordinate system of the platform. ,θ i-1 );

步骤2,根据各机器人的位置坐标信息构建领航机器人与跟随机器人之间的相对位置角度关系式,定义编队期望的领航机器人与跟随机器人的距离角度关系,得到误差动力学方程,进而推导出跟随机器人的运动控制率;Step 2. According to the position coordinate information of each robot, construct the relative position angle relationship between the leader robot and the follower robot, define the distance angle relationship between the leader robot and the follower robot expected by the formation, obtain the error dynamics equation, and then derive the follower robot motor control rate;

Δxi,i-1=xi-xi-1-dcosθi-1 Δx i,i-1 = x i -x i-1 -dcosθ i-1

Δyi,i-1=yi-yi-1-dsinθi-1 Δy i,i-1 = y i -y i-1 -dsinθ i-1

其中Δxi,i-1,Δyi,i-1是领航机器人和跟随机器人的相对位置关系,d是机器人前部到质心的距离;Among them, Δx i,i-1 and Δy i,i-1 are the relative positional relationship between the leading robot and the following robot, and d is the distance from the front of the robot to the center of mass;

定义编队期望的领航跟随机器人距离角度关系其中,分别是相对距离和角度,得到误差动力学方程,进而推导出跟随机器人运动控制率为:Define the desired distance-angle relationship of the lead-following robot in the formation in, They are the relative distance and angle respectively, and the error dynamic equation is obtained, and then the motion control rate of the following robot is deduced as:

其中k1k2是可变参数;where k 1 k 2 are variable parameters;

步骤3,在编队运动过程中,领航机器人向目标点自主运动并通过无线通信系统不断向跟随机器人发送信息,跟随机器人接收领航机器人信息并计算自己的位置,考虑到跟随领航者编队模型中领航机器人和跟随机器人之间容易出现通信数据异常的情况,记录跟随机器人每一时刻的位置信息作为训练数据,建立基于非线性最小二乘法的跟随机器人轨迹预测模型,公式如下:Step 3. During the formation movement, the leader robot moves autonomously to the target point and continuously sends information to the follower robot through the wireless communication system, and the follower robot receives the information of the leader robot and calculates its own position. Considering that the leader robot in the follower leader formation model It is easy to have abnormal communication data between the robot and the following robot. Record the location information of the following robot at each moment as training data, and establish a trajectory prediction model for the following robot based on the nonlinear least square method. The formula is as follows:

X(t,A)=a0+a1t+a2t2+…antn其中,n=1,2…m为m组训练数据,A=(a0,a1,…,an)是预测模型的一组参数,t是时间常数。我们假定跟随者在初始运动的一段时间内通信数据正常,将跟随者在这段时间内的历史数据作为预测模型的训练集,通过训练待估参数得到A的估计值即预测模型为 X ^ ( t , A ^ ) = a ^ 0 + a ^ 1 t + a ^ 2 t 2 + ... a ^ n t n ; X(t,A)=a 0 +a 1 t+a 2 t 2 +…a n t n Among them, n=1,2…m are m sets of training data, A=(a 0 ,a 1 ,…, a n ) is a set of parameters of the prediction model, and t is the time constant. We assume that the follower has normal communication data during the period of initial movement, and use the historical data of the follower during this period as the training set of the prediction model, and obtain the estimated value of A by training the parameters to be estimated That is, the predictive model is x ^ ( t , A ^ ) = a ^ 0 + a ^ 1 t + a ^ 2 t 2 + ... a ^ no t no ;

步骤4,利用粒子群算法解决轨迹预测模型参数选取问题,将A=(a0,a1,…,an)作为轨迹预测模型的一组解,初始化粒子群,根据公式计算每个粒子的适应度函数,根据粒子的适应度函数值更新粒子的个体极值,利用个体极值中的最优值更新全局极值;其中,Xj分别是每一时刻粒子位置的实际值和估计值;Step 4, use the particle swarm algorithm to solve the problem of parameter selection of the trajectory prediction model, take A=(a 0 ,a 1 ,…,a n ) as a set of solutions of the trajectory prediction model, initialize the particle swarm, according to the formula Calculate the fitness function of each particle, update the individual extremum of the particle according to the fitness function value of the particle, and use the optimal value of the individual extremum to update the global extremum; where, X j and are the actual value and estimated value of the particle position at each moment, respectively;

步骤5,利用迭代公式更新每个粒子的速度和位置;公式如下:Step 5, use the iterative formula to update the velocity and position of each particle; the formula is as follows:

vid=ω×vid+c1×rand()×(pbestid-xid)+c2×Rand()×(gbestid-xid)v id =ω×v id +c 1 ×rand()×(pbest id -x id )+c 2 ×Rand()×(gbest id -x id )

xid=xid+vid x id = x id + v id

其中,整个粒子群包含N个粒子,每个粒子的维度为dvid和xid分别为第i个粒子在d维的速度和位置描述,pbest为粒子的个体极值,gbest为全局极值,c1、c2是学习因子,是各粒子受全局极值和个体极值位置吸引程度的权重,rand()和Rand()是[0,1]内的随机数,ω是惯性权重。Among them, the whole particle swarm contains N particles, the dimension of each particle is d , v id and x id are the description of the speed and position of the i-th particle in the d dimension respectively, pbest is the individual extremum of the particle, and gbest is the global extremum value, c 1 and c 2 are the learning factors, which are the weights of the degree of attraction of each particle to the global extremum and individual extremum positions, rand() and Rand() are random numbers in [0,1], ω is the inertia weight .

其中,考虑到当系统处于建立模型初期,粒子群需要以较快的速度搜索最优位置,构建预测模型,而后期需要进行较细的局部搜索,因此令Among them, considering that when the system is in the initial stage of model establishment, the particle swarm needs to search for the optimal position at a faster speed to build a prediction model, and a finer local search is required in the later stage, so let

ωω == ωω mm aa xx -- (( ωω mm aa xx -- ωω minmin )) ×× kk kk mm aa xx

其中ωmax和ωmin为惯性权重的最大值和最小值,k和kmax分别为当前迭代次数和最大迭代次数,ω随迭代次数的增大呈线性递减趋势;Among them, ω max and ω min are the maximum and minimum values of the inertia weight, k and k max are the current iteration number and the maximum iteration number respectively, and ω shows a linear decreasing trend with the increase of the iteration number;

步骤6,不断利用下一时刻的数据更新轨迹预测模型,并向后预测轨迹信息,定义一个通信数据异常范围,Step 6, continuously update the trajectory prediction model with the data at the next moment, and predict the trajectory information backwards, define an abnormal range of communication data,

like

则判定(x′i-1,y′i-1)为异常数据点。其中(xi-1,yi-1)是当前时刻跟随机器人的轨迹点,(x′i-1,y′i-1)是下一时刻跟随机器人的轨迹点,xth和yth分别是在横纵坐标上数据超出正常范围的最大阈值,是根据全局定位和无线通信系统采集每帧图像并计算发送机器人位置信息的时间间隔及机器人的平均运动速度来确定的。因此下一时刻跟随机器人的运动轨迹点为Then it is determined that (x′ i-1 , y′ i-1 ) is an abnormal data point. Where ( xi-1 , y i-1 ) is the trajectory point following the robot at the current moment, (x′ i-1 , y′ i-1 ) is the trajectory point following the robot at the next moment, x th and y th are respectively It is the maximum threshold of the data exceeding the normal range on the horizontal and vertical coordinates, which is determined according to the global positioning and wireless communication system to collect each frame of image and calculate the time interval for sending the robot position information and the average moving speed of the robot. Therefore, the trajectory point of the following robot at the next moment is

(( xx ii -- 11 ′′ ,, ythe y ii -- 11 ′′ )) == (( xx ii -- 11 ′′ ,, ythe y ii -- 11 ′′ )) ii ff (( xx ii -- 11 ′′ ,, ythe y ii -- 11 ′′ )) ii sthe s cc oo rr rr ee cc tt (( xx pp ++ 11 ,, ythe y pp ++ 11 )) ii ff (( xx ii -- 11 ′′ ,, ythe y ii -- 11 ′′ )) ii sthe s ee rr rr oo rr

其中(xp+1,yp+1)为预测模型的估计值。若接收到的数据在正常范围之内,则根据接收到的领航机器人数据计算跟随机器人位置信息并向其运动,若数据异常,则启用预测点代替异常数据点并计算作为下一时刻的跟随者轨迹点并向其运动;Where (x p+1 , y p+1 ) is the estimated value of the prediction model. If the received data is within the normal range, calculate the position information of the following robot based on the received data of the leading robot and move towards it. If the data is abnormal, use the predicted point to replace the abnormal data point and calculate it as the follower at the next moment track point and move towards it;

所述的数据更新策略为,下一时刻的跟随机器人轨迹点值是根据当前时刻的跟随机器人轨迹点值与数据超出正常范围的最大阈值关系来确定的,通过分别判断当前时刻和下一时刻的跟随机器人轨迹点值在沿平台X、Y轴方向的距离是否满足通信数据异常范围来做出更新决定。The data update strategy is that the following robot trajectory point value at the next moment is determined according to the relationship between the following robot trajectory point value at the current moment and the maximum threshold value of the data exceeding the normal range, and by separately judging the current moment and the next moment The update decision is made by following whether the distance of the robot trajectory point value along the X and Y axis directions of the platform meets the abnormal range of the communication data.

步骤7,利用全局定位系统不断更新编队中各机器人的位置姿态信息,直到领航跟随编队到达目标点。Step 7, use the global positioning system to continuously update the position and attitude information of each robot in the formation until the leader follows the formation to reach the target point.

图2是本发明方法的控制方法流程图。首先初始化各机器人位置,初始化粒子群,初始化编队系统,然后开始运动,跟随者获取领航者位置信息并计算自己的位置信息,与此同时记录训练数据,使用粒子群算法优化预测模型参数,利用优化后的参数建立预测模型,然后不断用下一时刻的数据更新预测模型,并向后预测得到新的预估轨迹,跟随者对获得的自身位置信息做出判断,若数据在正常范围之内,则跟随者按给定轨迹运动,若出现短暂通信数据异常,则启用预估点作为跟随者轨迹点,领航跟随者各自按轨迹点运动,判断编队队形是否满足要求,若不满足要求,则各机器人进行自主调节,若满足要求,则判断是否到达目标点,若没有到达目标点,则循环执行上述操作,若到达目标点,则编队运动结束。Fig. 2 is a flow chart of the control method of the method of the present invention. First initialize the position of each robot, initialize the particle swarm, initialize the formation system, and then start to move, the follower obtains the position information of the leader and calculates its own position information, at the same time records the training data, uses the particle swarm algorithm to optimize the prediction model parameters, and uses the optimized The last parameter to establish a prediction model, and then continuously update the prediction model with the data at the next moment, and predict backward to obtain a new estimated trajectory. Followers make judgments on their own position information obtained. If the data is within the normal range, Then the follower moves according to the given trajectory. If there is an abnormality in the short-term communication data, the estimated point is used as the follower trajectory point, and the leader follower moves according to the trajectory point to judge whether the formation meets the requirements. If not, then Each robot performs self-regulation. If it meets the requirements, it will judge whether it has reached the target point. If it does not reach the target point, it will perform the above operations in a loop. If it reaches the target point, the formation movement will end.

以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。The above-mentioned embodiments are only descriptions of preferred implementations of the present invention, and are not intended to limit the scope of the present invention. All such modifications and improvements should fall within the scope of protection defined by the claims of the present invention.

Claims (8)

1. A control method for formation of a team of mobile robots based on piloting following is characterized by comprising a global positioning system, a wireless communication system, an algorithm processing system, a speed regulating system and mobile robots for calibrating different colors; the global positioning system utilizes the camera to carry out color identification on the mobile robots with different colors, and acquires the pose information of the mobile robots; the wireless communication system sends the collected pose information to each robot; the algorithm processing system performs motion control and coordinated formation algorithm processing according to the received position and attitude information of each mobile robot, continuously performs information interaction with the speed regulating system, the speed regulating system acquires and processes the speed information of each mobile robot, continuously performs feedback on actual control output, corrects speed deviation in real time, and finally completes the control of formation motion of each mobile robot.
2. The pilot following-based mobile robot formation control method according to claim 1, wherein the method comprises the following steps:
step 1, in a working platform, acquiring position coordinate information of each robot in a formation relative to a platform global coordinate system by using a global positioning system;
step 2, constructing a relative position angle relation between the piloting robot and the following robot according to the position coordinate information of each robot, defining a distance angle relation between the piloting robot and the following robot expected by formation, obtaining an error dynamics equation, and further deducing the motion control rate of the following robot;
step 3, in the process of formation movement, the piloting robot autonomously moves to a target point and continuously sends information to the following robot through a wireless communication system, the following robot receives the piloting robot information and calculates the position of the following robot, the position information of the following robot at each moment is recorded as training data, and a following robot track prediction model based on a nonlinear least square method is established;
step 4, solving the problem of selecting parameters of the track prediction model by using a particle swarm algorithm, taking a group of parameters of the track prediction model as a group of solutions of the track prediction model, initializing the particle swarm, calculating a fitness function of each particle, and updating an individual extreme value and a global extreme value of the particle according to the fitness function value of the particle;
step 5, updating the speed and the position of each particle by using an iterative formula;
step 6, continuously utilizing data at the next moment to update a track prediction model, predicting track information backwards, defining a communication data abnormal range, and calculating position information of the following robot according to the received data of the navigation robot and moving the following robot to the following robot if the received data is in the normal range; if the data is abnormal, starting the prediction points to replace abnormal data points as the following robot track points at the next moment;
and 7, continuously updating the position and posture information of each robot in the formation by using a global positioning system until the pilot following formation reaches a target point.
3. The pilot following-based mobile robot formation control method according to claim 1, wherein: the global positioning system is composed of an upper computer and a high-definition CCD camera, the high-definition CCD camera is arranged at the top of the working platform, different colors are marked for each mobile robot in the platform, position and posture information of the robot in the platform is obtained through a color recognition algorithm, the information is transmitted back to the upper computer for processing, and the information is transmitted to each mobile robot after being processed by the upper computer, so that the global positioning of the mobile robots is realized.
4. The pilot following-based mobile robot formation control method according to claim 1, wherein: the wireless communication system comprises an upper computer, a mobile robot and a wireless router, wherein a wireless transceiver module is installed on the mobile robot, the upper computer and the wireless router are connected through a network cable, the upper computer, the mobile robot and the wireless router form a communication system based on a local area network, and the wireless communication between the upper computer and the robots and between the robots is realized by establishing communication protocols between the upper computer and the robots and between the robots.
5. The pilot following-based mobile robot formation control method according to claim 1, wherein: the algorithm processing system consists of a DSP (digital signal processor) and is installed in the robot, a pilot following-based formation motion control algorithm of the mobile robot is implanted in the DSP, data from the wireless communication system is received, and autonomous motion and formation coordination control of the robot are processed.
6. The pilot following-based mobile robot formation control method according to claim 1, wherein: the speed regulating system comprises a speed measuring code disc module, an Arduino module and a PID speed regulating module;
the speed-measuring coded disc module consists of a grating disc and a photoelectric detection device, is arranged beside a left wheel motor and a right wheel motor of the robot, reflects the current revolution number of the left wheel motor and the right wheel motor by calculating the number of pulses output by a photoelectric encoder per second, and is converted by combining the circumference of a circle of wheel rotation to obtain the actual rotating speed of the left wheel and the right wheel of the motor of the mobile robot;
the Arduino module is an ArduinoMega2560 single chip microcomputer, is arranged in the robot and is used for expanding digital and analog input and output ports of the robot, further collecting and receiving the number of output pulses of a speed measuring code disc, analyzing and processing the data, and sending the data to an algorithm processing system through an I2C bus;
the PID speed regulation module is a PID controller based on a BP neural network, and compares the error of the actual measurement speed returned by the Arduino module with the theoretical speed in the algorithm processing system on the basis of the classical PID controller, and optimizes the PID controller parameters by using the BP neural network, thereby realizing the self-adaptive regulation of the controller parameters of the robot under different motion states and correcting the speed deviation in real time.
7. The pilot following-based mobile robot formation control method according to claim 2, wherein: in step 6, the communication data abnormal range is to use the global positioning system and the wireless communication system to collect each frame of image, and calculate the time interval for sending the position information of the robot and the average movement speed of the robot to determine whether the communication data is abnormal data.
8. The pilot following-based mobile robot formation control method according to claim 2, wherein: in step 6, the data update strategy is that the following robot track point value at the next moment is determined according to the maximum threshold relationship between the following robot track point value at the current moment and the data exceeding the normal range, and an update decision is made by respectively judging whether the distances between the following robot track point values at the current moment and the next moment along the axis direction of the platform X, Y meet the abnormal range of the communication data.
CN201510957722.0A 2015-12-18 2015-12-18 Mobile robot formation control method based on leader-follow Pending CN105527960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510957722.0A CN105527960A (en) 2015-12-18 2015-12-18 Mobile robot formation control method based on leader-follow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510957722.0A CN105527960A (en) 2015-12-18 2015-12-18 Mobile robot formation control method based on leader-follow

Publications (1)

Publication Number Publication Date
CN105527960A true CN105527960A (en) 2016-04-27

Family

ID=55770244

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510957722.0A Pending CN105527960A (en) 2015-12-18 2015-12-18 Mobile robot formation control method based on leader-follow

Country Status (1)

Country Link
CN (1) CN105527960A (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106054598A (en) * 2016-05-05 2016-10-26 安徽农业大学 Robot adaptive steering single neuron PID control method
CN106125763A (en) * 2016-08-01 2016-11-16 零度智控(北京)智能科技有限公司 Flying vehicles control method and device
CN106444752A (en) * 2016-07-04 2017-02-22 深圳市踏路科技有限公司 Robot intelligent follow-up system and intelligent follow-up method based on wireless location
CN106444753A (en) * 2016-09-20 2017-02-22 智易行科技(武汉)有限公司 Intelligent following method for human posture judgment based on artificial neural network
CN106774345A (en) * 2017-02-07 2017-05-31 上海仙知机器人科技有限公司 A kind of method and apparatus for carrying out multi-robot Cooperation
CN106802564A (en) * 2017-03-03 2017-06-06 新奥科技发展有限公司 Multi-agent system and its control method
CN106881716A (en) * 2017-02-21 2017-06-23 深圳市锐曼智能装备有限公司 Human body follower method and system based on 3D cameras robot
CN106886155A (en) * 2017-04-28 2017-06-23 齐鲁工业大学 A kind of quadruped robot control method of motion trace based on PSO PD neutral nets
CN107076557A (en) * 2016-06-07 2017-08-18 深圳市大疆创新科技有限公司 Mobile robot recognition positioning method, device, system and mobile robot
CN107085432A (en) * 2017-06-22 2017-08-22 星际(重庆)智能装备技术研究院有限公司 A Tracking Method of Target Trajectory for Mobile Robot
CN107336251A (en) * 2016-09-20 2017-11-10 苏州小璐机器人有限公司 A kind of control method and system of robot queue
CN107598925A (en) * 2017-09-07 2018-01-19 南京昱晟机器人科技有限公司 A kind of robot cluster control method
CN107992035A (en) * 2017-11-15 2018-05-04 西北工业大学 A kind of Multi Mobile Robots Formation's control method based on indoor Global localization
CN108334088A (en) * 2018-01-29 2018-07-27 方锡忠 A kind of intelligence following device and control method
CN108594716A (en) * 2018-05-25 2018-09-28 福州大学 A kind of shallow water grade microminiature ROV control system and control method
CN108664024A (en) * 2018-05-08 2018-10-16 清华大学 The motion planning and Cooperative Localization Method and device that unmanned vehicle network is formed into columns
CN108762253A (en) * 2018-05-02 2018-11-06 东南大学 A kind of man-machine approach to formation control being applied to for people's navigation system
CN108873894A (en) * 2018-06-11 2018-11-23 上海大学 A kind of target following cooperative control system and method based on more unmanned boats
CN108897315A (en) * 2018-06-12 2018-11-27 南京理工大学 A kind of Multi-agent Team Formation
CN108897321A (en) * 2018-07-16 2018-11-27 重庆理工大学 Based on navigating, the robot formation for following method can be changed formation control method and controller
CN108897339A (en) * 2018-07-24 2018-11-27 西北工业大学 A kind of constrained multiple agent formation method based on speed planning
CN108992044A (en) * 2018-07-27 2018-12-14 吉首大学 A kind of novel computer Chinese medicine pulse-taking system
CN109032138A (en) * 2018-07-25 2018-12-18 南京理工大学 Multi-robot formation control system and method based on consistency algorithm
CN109062204A (en) * 2018-07-25 2018-12-21 南京理工大学 It is a kind of based on follow pilotage people form into columns multiple mobile robot's control system
CN109154818A (en) * 2016-06-01 2019-01-04 株式会社久保田 System and Operation Van are coordinated by Operation Van
CN109725532A (en) * 2018-12-24 2019-05-07 杭州电子科技大学 A method for relative distance control and adaptive correction applied to multi-agents
CN110320523A (en) * 2019-07-05 2019-10-11 齐鲁工业大学 Follow the target locating set and method of robot
CN110428603A (en) * 2019-07-26 2019-11-08 北京主线科技有限公司 Following Car travel control method and device in container truck formation
CN110794825A (en) * 2019-08-13 2020-02-14 浙江工业大学 A Formation Control Method for Heterogeneous Stage Robots
CN111308576A (en) * 2019-11-29 2020-06-19 哈尔滨工程大学 A multi-AUV system and deep-sea coral detection method
CN111399500A (en) * 2020-01-19 2020-07-10 浙江工业大学 A centralized formation control method for two-wheeled self-balancing vehicles
CN111679668A (en) * 2020-05-30 2020-09-18 华南理工大学 A follow-control method for networked autonomous fleet based on a new time-distance strategy
CN112123339A (en) * 2020-10-19 2020-12-25 哈尔滨理工大学 A position-constrained multi-mobile manipulator cooperative transportation control system
CN112327840A (en) * 2020-10-27 2021-02-05 中国科学技术大学 Tracking control method, device, equipment and medium for multi-robot system
CN112654473A (en) * 2018-09-06 2021-04-13 Lg电子株式会社 Robot cleaner and control method thereof
CN112859579A (en) * 2021-01-25 2021-05-28 北京大学 Redundancy fault-tolerant control method for remote sensing networking of unmanned aerial vehicle
CN112947501A (en) * 2021-03-04 2021-06-11 河海大学 Multi-AUV hybrid formation method based on improved artificial potential field method and state switching
CN113052899A (en) * 2021-04-23 2021-06-29 江南大学 Dynamic attitude calibration system and method for formation aircrafts
CN113129579A (en) * 2019-12-31 2021-07-16 大唐高鸿数据网络技术股份有限公司 Vehicle driving method and communication equipment
CN113126647A (en) * 2019-12-31 2021-07-16 北京理工大学 Collaborative guidance method based on leader and follower principle
CN113984053A (en) * 2021-09-10 2022-01-28 福建(泉州)哈工大工程技术研究院 A ground robot swarm cooperative positioning technology
CN114326731A (en) * 2021-12-28 2022-04-12 华中科技大学 Laser radar-based multi-robot formation tracking sampling control method and system
CN114800518A (en) * 2022-05-20 2022-07-29 东南大学 Multi-mobile-robot cooperative control experiment platform based on embedded framework
CN114924562A (en) * 2022-05-17 2022-08-19 厦门金龙联合汽车工业有限公司 Calculation method of track target point for vehicle formation
CN115129085A (en) * 2022-07-25 2022-09-30 中国安全生产科学研究院 A method for multi-group robots to perform tasks collaboratively
WO2022252221A1 (en) * 2021-05-31 2022-12-08 山东建筑大学 Mobile robot queue system, path planning method and following method
CN115479599A (en) * 2022-09-19 2022-12-16 中国电子科技集团公司第五十四研究所 A Pose Bias Estimation Method for Photoelectric Sensing Devices Based on Particle Swarm Optimization
CN117826592A (en) * 2023-12-26 2024-04-05 江苏金陵智造研究院有限公司 A method for calculating adaptive control coefficients
CN118456447A (en) * 2024-07-09 2024-08-09 广东工业大学 Data processing system, method and device based on visual positioning and formation prediction

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101630162A (en) * 2008-07-16 2010-01-20 中国科学院自动化研究所 Local following control method of multiple mobile robots
US20100049374A1 (en) * 2008-08-20 2010-02-25 Autonomous Solutions, Inc. Follower vehicle control system and method for forward and reverse convoy movement
CN101685309B (en) * 2008-09-24 2011-06-08 中国科学院自动化研究所 Method for controlling multi-robot coordinated formation
CN104682789A (en) * 2013-11-28 2015-06-03 哈尔滨功成科技创业投资有限公司 PID (Proportion Integration Differentiation) controller applied to two-wheeled robots
CN204527375U (en) * 2015-03-13 2015-08-05 西北农林科技大学 A kind of crawler type detection multi-robot system
CN104898656A (en) * 2014-03-06 2015-09-09 西北农林科技大学 Farmland multiple robot following land cultivation system based on stereo visual sense visual sense and method for the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101630162A (en) * 2008-07-16 2010-01-20 中国科学院自动化研究所 Local following control method of multiple mobile robots
US20100049374A1 (en) * 2008-08-20 2010-02-25 Autonomous Solutions, Inc. Follower vehicle control system and method for forward and reverse convoy movement
CN101685309B (en) * 2008-09-24 2011-06-08 中国科学院自动化研究所 Method for controlling multi-robot coordinated formation
CN104682789A (en) * 2013-11-28 2015-06-03 哈尔滨功成科技创业投资有限公司 PID (Proportion Integration Differentiation) controller applied to two-wheeled robots
CN104898656A (en) * 2014-03-06 2015-09-09 西北农林科技大学 Farmland multiple robot following land cultivation system based on stereo visual sense visual sense and method for the same
CN204527375U (en) * 2015-03-13 2015-08-05 西北农林科技大学 A kind of crawler type detection multi-robot system

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
倪利平: "基于无线通信的多机器人队形控制研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
姚志军: "利用轨迹预测实现深空探测中弱小目标的稳定跟踪", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
张洋成 等: "遗传算法在最小二乘法求解中的应用", 《科技信息》 *
徐智勇 等: "用拟合函数法准确预测运动目标的轨迹", 《光电工程》 *
翟永君: "自主式机器人智能控制实验方法研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106054598A (en) * 2016-05-05 2016-10-26 安徽农业大学 Robot adaptive steering single neuron PID control method
CN109154818A (en) * 2016-06-01 2019-01-04 株式会社久保田 System and Operation Van are coordinated by Operation Van
CN109154818B (en) * 2016-06-01 2022-02-18 株式会社久保田 Work vehicle coordination system and work vehicle
CN107076557A (en) * 2016-06-07 2017-08-18 深圳市大疆创新科技有限公司 Mobile robot recognition positioning method, device, system and mobile robot
WO2017210866A1 (en) * 2016-06-07 2017-12-14 深圳市大疆创新科技有限公司 Mobile robot identification and positioning method, device and system, and mobile robot
CN106444752A (en) * 2016-07-04 2017-02-22 深圳市踏路科技有限公司 Robot intelligent follow-up system and intelligent follow-up method based on wireless location
CN106125763A (en) * 2016-08-01 2016-11-16 零度智控(北京)智能科技有限公司 Flying vehicles control method and device
CN106125763B (en) * 2016-08-01 2024-04-26 零度智控(北京)智能科技有限公司 Aircraft control method and device
CN106444753A (en) * 2016-09-20 2017-02-22 智易行科技(武汉)有限公司 Intelligent following method for human posture judgment based on artificial neural network
CN107336251A (en) * 2016-09-20 2017-11-10 苏州小璐机器人有限公司 A kind of control method and system of robot queue
CN106774345A (en) * 2017-02-07 2017-05-31 上海仙知机器人科技有限公司 A kind of method and apparatus for carrying out multi-robot Cooperation
CN106881716A (en) * 2017-02-21 2017-06-23 深圳市锐曼智能装备有限公司 Human body follower method and system based on 3D cameras robot
CN106802564A (en) * 2017-03-03 2017-06-06 新奥科技发展有限公司 Multi-agent system and its control method
CN106802564B (en) * 2017-03-03 2019-12-13 新奥科技发展有限公司 Multi-agent system and its control method
CN106886155B (en) * 2017-04-28 2020-01-14 齐鲁工业大学 Four-legged robot motion trajectory control method based on PSO-PD neural network
CN106886155A (en) * 2017-04-28 2017-06-23 齐鲁工业大学 A kind of quadruped robot control method of motion trace based on PSO PD neutral nets
CN107085432B (en) * 2017-06-22 2020-03-31 迪比(重庆)智能科技研究院有限公司 Target track tracking method of mobile robot
CN107085432A (en) * 2017-06-22 2017-08-22 星际(重庆)智能装备技术研究院有限公司 A Tracking Method of Target Trajectory for Mobile Robot
CN107598925A (en) * 2017-09-07 2018-01-19 南京昱晟机器人科技有限公司 A kind of robot cluster control method
CN107992035A (en) * 2017-11-15 2018-05-04 西北工业大学 A kind of Multi Mobile Robots Formation's control method based on indoor Global localization
CN108334088A (en) * 2018-01-29 2018-07-27 方锡忠 A kind of intelligence following device and control method
CN108762253A (en) * 2018-05-02 2018-11-06 东南大学 A kind of man-machine approach to formation control being applied to for people's navigation system
CN108762253B (en) * 2018-05-02 2021-03-23 东南大学 Man-machine formation control method applied to human navigation system
CN108664024A (en) * 2018-05-08 2018-10-16 清华大学 The motion planning and Cooperative Localization Method and device that unmanned vehicle network is formed into columns
CN108594716A (en) * 2018-05-25 2018-09-28 福州大学 A kind of shallow water grade microminiature ROV control system and control method
CN108873894A (en) * 2018-06-11 2018-11-23 上海大学 A kind of target following cooperative control system and method based on more unmanned boats
CN108897315A (en) * 2018-06-12 2018-11-27 南京理工大学 A kind of Multi-agent Team Formation
CN108897321B (en) * 2018-07-16 2021-06-15 重庆理工大学 Robot formation variable formation control method and controller based on pilot-following method
CN108897321A (en) * 2018-07-16 2018-11-27 重庆理工大学 Based on navigating, the robot formation for following method can be changed formation control method and controller
CN108897339A (en) * 2018-07-24 2018-11-27 西北工业大学 A kind of constrained multiple agent formation method based on speed planning
CN108897339B (en) * 2018-07-24 2020-10-27 西北工业大学 Constrained multi-agent formation method based on speed planning
CN109062204A (en) * 2018-07-25 2018-12-21 南京理工大学 It is a kind of based on follow pilotage people form into columns multiple mobile robot's control system
CN109032138A (en) * 2018-07-25 2018-12-18 南京理工大学 Multi-robot formation control system and method based on consistency algorithm
CN108992044A (en) * 2018-07-27 2018-12-14 吉首大学 A kind of novel computer Chinese medicine pulse-taking system
CN112654473B (en) * 2018-09-06 2023-11-24 Lg电子株式会社 Robot cleaner and control method thereof
CN112654473A (en) * 2018-09-06 2021-04-13 Lg电子株式会社 Robot cleaner and control method thereof
US11906979B2 (en) 2018-09-06 2024-02-20 Lg Electronics Inc. Plurality of autonomous mobile robots and controlling method for the same
CN109725532B (en) * 2018-12-24 2021-11-16 杭州电子科技大学 Relative distance control and self-adaptive correction method applied to multiple intelligent agents
CN109725532A (en) * 2018-12-24 2019-05-07 杭州电子科技大学 A method for relative distance control and adaptive correction applied to multi-agents
CN110320523B (en) * 2019-07-05 2020-12-11 齐鲁工业大学 Target positioning device and method for following robot
CN110320523A (en) * 2019-07-05 2019-10-11 齐鲁工业大学 Follow the target locating set and method of robot
CN110428603A (en) * 2019-07-26 2019-11-08 北京主线科技有限公司 Following Car travel control method and device in container truck formation
CN110794825A (en) * 2019-08-13 2020-02-14 浙江工业大学 A Formation Control Method for Heterogeneous Stage Robots
CN111308576A (en) * 2019-11-29 2020-06-19 哈尔滨工程大学 A multi-AUV system and deep-sea coral detection method
CN113126647B (en) * 2019-12-31 2022-07-19 北京理工大学 A Collaborative Guidance Method Based on the Leader-Follower Principle
CN113126647A (en) * 2019-12-31 2021-07-16 北京理工大学 Collaborative guidance method based on leader and follower principle
CN113129579A (en) * 2019-12-31 2021-07-16 大唐高鸿数据网络技术股份有限公司 Vehicle driving method and communication equipment
CN111399500A (en) * 2020-01-19 2020-07-10 浙江工业大学 A centralized formation control method for two-wheeled self-balancing vehicles
CN111399500B (en) * 2020-01-19 2023-06-13 浙江工业大学 Centralized formation control method for two-wheeled self-balancing vehicle
CN111679668A (en) * 2020-05-30 2020-09-18 华南理工大学 A follow-control method for networked autonomous fleet based on a new time-distance strategy
CN111679668B (en) * 2020-05-30 2021-09-21 华南理工大学 Following control method of networked autonomous fleet based on new time-distance strategy
CN112123339A (en) * 2020-10-19 2020-12-25 哈尔滨理工大学 A position-constrained multi-mobile manipulator cooperative transportation control system
CN112327840B (en) * 2020-10-27 2022-09-09 中国科学技术大学 Tracking control method, device, device and medium for multi-robot system
CN112327840A (en) * 2020-10-27 2021-02-05 中国科学技术大学 Tracking control method, device, equipment and medium for multi-robot system
CN112859579A (en) * 2021-01-25 2021-05-28 北京大学 Redundancy fault-tolerant control method for remote sensing networking of unmanned aerial vehicle
CN112947501A (en) * 2021-03-04 2021-06-11 河海大学 Multi-AUV hybrid formation method based on improved artificial potential field method and state switching
CN113052899A (en) * 2021-04-23 2021-06-29 江南大学 Dynamic attitude calibration system and method for formation aircrafts
WO2022252221A1 (en) * 2021-05-31 2022-12-08 山东建筑大学 Mobile robot queue system, path planning method and following method
CN113984053A (en) * 2021-09-10 2022-01-28 福建(泉州)哈工大工程技术研究院 A ground robot swarm cooperative positioning technology
CN114326731B (en) * 2021-12-28 2024-04-09 华中科技大学 Multi-robot formation tracking sampling control method and system based on laser radar
CN114326731A (en) * 2021-12-28 2022-04-12 华中科技大学 Laser radar-based multi-robot formation tracking sampling control method and system
CN114924562A (en) * 2022-05-17 2022-08-19 厦门金龙联合汽车工业有限公司 Calculation method of track target point for vehicle formation
CN114800518A (en) * 2022-05-20 2022-07-29 东南大学 Multi-mobile-robot cooperative control experiment platform based on embedded framework
CN114800518B (en) * 2022-05-20 2023-12-12 东南大学 Multi-mobile robot cooperative control experimental platform based on embedded frame
CN115129085B (en) * 2022-07-25 2024-04-30 中国安全生产科学研究院 Method for cooperatively executing tasks by multiple groups of robots
CN115129085A (en) * 2022-07-25 2022-09-30 中国安全生产科学研究院 A method for multi-group robots to perform tasks collaboratively
CN115479599A (en) * 2022-09-19 2022-12-16 中国电子科技集团公司第五十四研究所 A Pose Bias Estimation Method for Photoelectric Sensing Devices Based on Particle Swarm Optimization
CN115479599B (en) * 2022-09-19 2024-11-12 中国电子科技集团公司第五十四研究所 A pose deviation estimation method for photoelectric sensing equipment based on particle swarm optimization
CN117826592A (en) * 2023-12-26 2024-04-05 江苏金陵智造研究院有限公司 A method for calculating adaptive control coefficients
CN118456447A (en) * 2024-07-09 2024-08-09 广东工业大学 Data processing system, method and device based on visual positioning and formation prediction
CN118456447B (en) * 2024-07-09 2024-09-24 广东工业大学 Data processing system, method and device based on visual positioning and formation prediction

Similar Documents

Publication Publication Date Title
CN105527960A (en) Mobile robot formation control method based on leader-follow
CN110602647B (en) Indoor fusion localization method based on extended Kalman filter and particle filter
Elmokadem Distributed coverage control of quadrotor multi-UAV systems for precision agriculture
Gomez-Balderas et al. Tracking a ground moving target with a quadrotor using switching control: nonlinear modeling and control
CN104062902B (en) Delta robot time optimal trajectory planning method
JP3994950B2 (en) Environment recognition apparatus and method, path planning apparatus and method, and robot apparatus
CN108873894A (en) A kind of target following cooperative control system and method based on more unmanned boats
CN103699136B (en) Intelligent home service robot system based on the algorithm that leapfrogs and method of servicing
CN109318890A (en) A dynamic obstacle avoidance method for unmanned vehicles based on dynamic windows and potential energy fields of obstacles
US20150370258A1 (en) Method for controlling a path of a rotary-wing drone, a corresponding system, a rotary-wing drone implementing this system and the related uses of such a drone
CN109799829B (en) Robot group cooperative active sensing method based on self-organizing mapping
CN106647808B (en) AUVs searching and trapping task allocation control method based on fuzzy control algorithm
CN109828580A (en) A kind of Mobile Robot Formation's tracking and controlling method based on separate type ultrasonic wave
Fu et al. Vision-based obstacle avoidance for flapping-wing aerial vehicles
CN113342016B (en) Autonomous underwater robot cooperative control method and system based on dynamic event triggering
CN115407661B (en) Nonlinear robust tracking control method for multi-UAV system based on position measurement information
CN114265406A (en) Intelligent vehicle formation control system based on machine vision and control method thereof
CN115061367A (en) A swarm control method based on the Henneberg constraint under azimuth only
Hu et al. Optimal path planning for mobile manipulator based on manipulability and localizability
Liu et al. Completely distributed time-varying formation target tracking for quadrotor team via image-based visual servoing
Hernandez et al. Formation control of UGVs using an UAV as remote vision sensor
CN119668294A (en) An automated path planning method for UAVs in power transmission line inspection
CN114117633B (en) A control method and system for collecting information from unmanned aerial vehicles
KR101981641B1 (en) Method and system for formation control of multiple mobile robots
CN115951716B (en) Adaptive group-grouping method for fixed wing unmanned aerial vehicle by monocular visual information

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160427