CN105227445B - Recommend platform using methods and applications are recommended - Google Patents
Recommend platform using methods and applications are recommended Download PDFInfo
- Publication number
- CN105227445B CN105227445B CN201510697893.4A CN201510697893A CN105227445B CN 105227445 B CN105227445 B CN 105227445B CN 201510697893 A CN201510697893 A CN 201510697893A CN 105227445 B CN105227445 B CN 105227445B
- Authority
- CN
- China
- Prior art keywords
- application
- user
- access
- service platform
- applications
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000007418 data mining Methods 0.000 claims abstract description 38
- 238000004458 analytical method Methods 0.000 claims abstract description 26
- 230000002354 daily effect Effects 0.000 claims 6
- 230000003203 everyday effect Effects 0.000 claims 2
- 238000012163 sequencing technique Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 1
- 238000010921 in-depth analysis Methods 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Landscapes
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本发明涉及移动互联网技术,尤其涉及一种应用推荐方法和应用推荐业务平台。The invention relates to mobile Internet technology, in particular to an application recommendation method and an application recommendation service platform.
背景技术Background technique
随着移动互联网技术的不断发展,各种各样的应用不断应运而生,这些应用可以应用到移动终端上,网络或应用商店可以向用户推荐各种应用。With the continuous development of mobile Internet technology, various applications emerge as the times require. These applications can be applied to mobile terminals, and networks or application stores can recommend various applications to users.
现有技术中,网络或应用商店可以获取到所有用户对于各个应用的搜索次数、下载次数以及用户评分等信息,然后将这些信息进行计算后得到各个应用的综合评分;网络或应用商店根据各个应用的综合评分,对各个应用进行排序,从而将综合评分较高的应用推荐给用户。In the prior art, the network or application store can obtain information such as the number of searches, download times, and user ratings of all users for each application, and then calculate these information to obtain a comprehensive score for each application; the network or application store according to each application The comprehensive score of each application is sorted, so that the application with a higher comprehensive score is recommended to the user.
然而现有技术提供的应用推荐方法只能推荐给用户搜索次数、下载次数较高的应用,无法满足不同用户对于应用的个性化需求。However, the application recommendation method provided by the prior art can only recommend applications with a high number of searches and downloads by users, which cannot meet the personalized needs of different users for applications.
发明内容Contents of the invention
本发明提供一种应用推荐方法和应用推荐业务平台,用以解决现有技术提供的应用推荐方法只能推荐给用户搜索次数、下载次数较高的应用,无法满足不同用户对于应用的个性化需求的问题。The present invention provides an application recommendation method and an application recommendation service platform, which are used to solve the problem that the application recommendation method provided by the prior art can only recommend applications with high search times and download times, and cannot meet the individual needs of different users for applications. The problem.
本发明一方面是提供一种应用推荐方法,包括:One aspect of the present invention is to provide an application recommendation method, including:
应用推荐业务平台从运营商服务器上采集获取用户的应用数据;The application recommendation business platform collects and obtains the user's application data from the operator's server;
所述应用推荐业务平台对所述应用数据进行数据挖掘分析,得到所述用户的特征信息;The application recommendation service platform performs data mining analysis on the application data to obtain characteristic information of the user;
所述应用推荐业务平台根据所述特征信息,确定待推荐给所述用户的应用的列表信息,并将所述应用的列表信息发送给所述用户。The application recommendation service platform determines list information of applications to be recommended to the user according to the characteristic information, and sends the list information of the applications to the user.
本发明一方面是提供一种应用推荐业务平台,包括:One aspect of the present invention is to provide an application recommendation service platform, including:
数据获取模块,用于从运营商服务器上采集获取用户的应用数据;The data acquisition module is used to collect and acquire the user's application data from the operator's server;
数据挖掘模块,用于对所述应用数据进行数据挖掘分析,得到所述用户的特征信息;A data mining module, configured to perform data mining analysis on the application data to obtain characteristic information of the user;
应用推荐模块,用于根据所述特征信息,确定待推荐给所述用户的应用的列表信息,并将所述应用的列表信息发送给所述用户。An application recommending module, configured to determine list information of applications to be recommended to the user according to the characteristic information, and send the list information of the applications to the user.
本发明通过应用推荐业务平台从运营商服务器上采集获取用户的应用数据;应用推荐业务平台对应用数据进行数据挖掘分析,得到用户的特征信息;应用推荐业务平台根据特征信息,确定待推荐给用户的应用的列表信息,并将应用的列表信息发送给用户。实现了通过分析用户自身的特征,根据用户自身的需求向用户发送应用的推荐列表,满足不同用户对于应用的个性化需求。The present invention collects and acquires the user's application data from the operator's server through the application recommendation service platform; the application recommendation service platform performs data mining and analysis on the application data to obtain the user's feature information; the application recommendation service platform determines to be recommended to the user according to the feature information The list information of the application, and send the list information of the application to the user. By analyzing the user's own characteristics, the application recommendation list is sent to the user according to the user's own needs, so as to meet the personalized needs of different users for the application.
附图说明Description of drawings
图1为本发明实施例一提供的应用推荐方法的流程图;FIG. 1 is a flow chart of an application recommendation method provided in Embodiment 1 of the present invention;
图2为本发明实施例一提供的应用推荐方法的流程图;FIG. 2 is a flow chart of the application recommendation method provided by Embodiment 1 of the present invention;
图3为本发明实施例三提供的应用推荐业务平台的结构示意图;FIG. 3 is a schematic structural diagram of an application recommendation service platform provided by Embodiment 3 of the present invention;
图4为本发明实施例四提供的应用推荐业务平台的结构示意图。FIG. 4 is a schematic structural diagram of an application recommendation service platform provided by Embodiment 4 of the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
图1为本发明实施例一提供的应用推荐方法的流程图,如图1所示,本实施例的方法,包括:Fig. 1 is a flow chart of the application recommendation method provided by Embodiment 1 of the present invention. As shown in Fig. 1, the method of this embodiment includes:
步骤101、应用推荐业务平台从运营商服务器上采集获取用户的应用数据。Step 101, the application recommendation service platform collects and acquires the user's application data from the operator's server.
在本实施例中,具体的,可以在运营商服务器上部署采集设备,去实时检测用户在移动互联网上的行为数据以及信令数据,深度解析分析,从而应用推荐业务平台可以从运营商服务器上采集获取用户的应用数据,这些应用数据可以是移动终端的手机号码、访问网址、访问开始时间、访问结束时间、访问时长、访问流量、业务类型、用户基站/小区等信息。例如:In this embodiment, specifically, a collection device can be deployed on the operator's server to detect the user's behavior data and signaling data on the mobile Internet in real time, and perform in-depth analysis, so that the application recommendation service platform can obtain information from the operator's server Collect and obtain the user's application data, which can be the mobile phone number of the mobile terminal, access website, access start time, access end time, access duration, access traffic, service type, user base station/cell and other information. E.g:
表1应用数据Table 1 Application data
步骤102、应用推荐业务平台对应用数据进行数据挖掘分析,得到用户的特征信息。Step 102, the application recommendation service platform performs data mining analysis on the application data to obtain user characteristic information.
在本实施例中,具体的,应用推荐业务平台对步骤101中获取的应用数据进行数据挖掘分析,从而可以得到用户在一定时间周期内的特征信息。In this embodiment, specifically, the application recommendation service platform performs data mining analysis on the application data obtained in step 101, so as to obtain characteristic information of the user within a certain period of time.
步骤103、应用推荐业务平台根据特征信息,确定待推荐给用户的应用的列表信息,并将应用的列表信息发送给用户。Step 103, the application recommendation service platform determines the list information of the applications to be recommended to the user according to the characteristic information, and sends the list information of the applications to the user.
在本实施例中,具体的,应用推荐业务平台根据特征信息,确定出用户的特征,从而可以根据用户自身的特征向用户推荐应用的列表信息,并且将应用的列表信息发送给用户。In this embodiment, specifically, the application recommendation service platform determines the characteristics of the user according to the characteristic information, so that the application list information can be recommended to the user according to the user's own characteristics, and the application list information is sent to the user.
本实施例通过应用推荐业务平台对从运营商服务器上获取到的用户的应用数据,进行数据挖掘分析,可以得到用户的特征信息,然后根据特征信息,确定待推荐给用户的应用的列表信息,并将应用的列表信息发送给用户。从而实现了通过分析用户自身的特征,根据用户自身的需求向用户发送应用的推荐列表,满足不同用户对于应用的个性化需求。In this embodiment, the application recommendation service platform is used to perform data mining analysis on the user's application data obtained from the operator's server to obtain the user's characteristic information, and then determine the list information of the application to be recommended to the user according to the characteristic information. And send the list information of the application to the user. In this way, by analyzing the user's own characteristics, the application recommendation list is sent to the user according to the user's own needs, so as to meet the personalized needs of different users for the application.
图2为本发明实施例一提供的应用推荐方法的流程图,在实施例一的基础上,如图2所示,本实施例的方法中,包括:Fig. 2 is a flow chart of the application recommendation method provided by Embodiment 1 of the present invention. On the basis of Embodiment 1, as shown in Fig. 2, the method of this embodiment includes:
步骤101、应用推荐业务平台从运营商服务器上采集获取用户的应用数据。Step 101, the application recommendation service platform collects and acquires the user's application data from the operator's server.
在本实施例中,具体的,应用推荐业务平台可以从运营商服务器上采集获取用户的应用数据,这些应用数据可以是移动终端的手机号码、访问网址、访问开始时间、访问结束时间、访问时长、访问流量、业务类型、用户基站/小区等信息。In this embodiment, specifically, the application recommendation service platform can collect and obtain the user's application data from the operator's server, and these application data can be the mobile phone number of the mobile terminal, the access URL, the access start time, the access end time, and the access duration , access traffic, service type, user base station/cell and other information.
步骤201、应用推荐业务平台对应用数据进行数据挖掘分析,得到用户的兴趣爱好特征和/或人群属性特征。Step 201, the application recommendation service platform performs data mining analysis on the application data to obtain the user's hobbies and/or group attribute characteristics.
在本实施例中,具体的,应用推荐业务平台对步骤101中获取的应用数据进行数据挖掘分析,本实施例中,对于数据挖掘分析的具体方式不做限定。从而通过对应用数据的挖掘,分析用户在使用各应用软件的时候的兴趣爱好特征,兴趣爱好特征表征了用户使用各应用软件的喜好程度;也可以分析出用户的人群属性特征,人群属性特征表征了用户属于哪一类人群;也可以同时得到用户的兴趣爱好特征和人群属性特征。In this embodiment, specifically, the application recommendation service platform performs data mining analysis on the application data acquired in step 101. In this embodiment, the specific manner of data mining analysis is not limited. Thus, by mining the application data, we can analyze the user's hobbies and hobbies when using each application software. The hobbies and hobbies represent the user's preference for using each application software; the user's crowd attribute characteristics can also be analyzed, and the crowd attribute characteristics represent Which type of group the user belongs to; can also obtain the user's hobbies and group attribute characteristics at the same time.
步骤202、应用推荐业务平台根据兴趣爱好特征和/或人群属性特征,确定待推荐给用户的应用的列表信息。Step 202, the application recommendation service platform determines the list information of applications to be recommended to the user according to the characteristics of hobbies and/or attributes of groups of people.
在本实施例中,具体的,应用推荐业务平台可以根据用户的兴趣爱好特征,去根据用户使用各应用软件的喜好程度,确定出待推荐给用户的应用的列表信息,例如,用户的兴趣爱好特征显示用户对游戏类、购物类的应用软件更感兴趣,则确定出待推荐给用户的应用的列表信息中包括了游戏类、购物类的应用软件。应用推荐业务平台也可以根据用户的人群属性特征,确定出待推荐给用户的应用的列表信息,例如,用户的人群属性特征显示用户为上班族,则确定出待推荐给用户的应用的列表信息中包括了办公类的应用软件。应用推荐业务平台也可以根据用户的兴趣爱好特征和人群属性特征,综合的去确定待推荐给用户的应用的列表信息,例如,用户的兴趣爱好特征显示用户对购物类的应用软件更感兴趣,同时该用户的人群属性特征为上班族,则确定出待推荐给用户的应用的列表信息中包括了购物类、办公类的应用软件。In this embodiment, specifically, the application recommendation service platform can determine the list information of the applications to be recommended to the user according to the user's hobbies and hobbies, for example, the user's hobbies If the characteristics show that the user is more interested in game-like and shopping-like application software, it is determined that the list information of applications to be recommended to the user includes game-like and shopping-like application software. The application recommendation service platform can also determine the list information of the applications to be recommended to the user according to the user's group attribute characteristics. For example, if the user's group attribute characteristics show that the user is an office worker, then determine the list information of the applications to be recommended to the user Including office application software. The application recommendation service platform can also comprehensively determine the list information of the applications to be recommended to the user according to the user's hobbies and group attributes. For example, the user's hobbies show that the user is more interested in shopping applications. At the same time, the group attribute characteristic of the user is an office worker, and it is determined that the list information of applications to be recommended to the user includes shopping and office application software.
本实施例通过应用推荐业务平台根据得到用户的兴趣爱好特征和/或人群属性特征,去确定待推荐给用户的应用的列表信息。从而实现了通过分析用户自身的特征,根据用户自身的需求向用户发送应用的推荐列表,满足不同用户对于应用的个性化需求。In this embodiment, the application recommendation service platform determines the list information of applications to be recommended to the user according to the user's hobbies and/or group attribute characteristics. In this way, by analyzing the user's own characteristics, the application recommendation list is sent to the user according to the user's own needs, so as to meet the personalized needs of different users for the application.
进一步的,在上述实施例的基础上,步骤101,具体包括:Further, on the basis of the above embodiments, step 101 specifically includes:
应用推荐业务平台从运营商服务器上采集获取用户的与各应用对应的访问业务类型、访问时长、访问频次和访问流量。The application recommendation service platform collects and obtains the user's access service type, access duration, access frequency, and access traffic corresponding to each application from the operator's server.
则相应的,步骤201中的应用推荐业务平台对应用数据进行数据挖掘分析,得到用户的兴趣爱好特征,具体包括:Correspondingly, the application recommendation service platform in step 201 performs data mining analysis on the application data to obtain the user's hobbies and interests, specifically including:
应用推荐业务平台根据与各应用对应的访问时长Si、访问频次Fi和访问流量Mi,确定各应用的得分Ai=Q1Si/S总i+Q2Fi/F总i+Q3Mi/M总i,其中,Q1、Q2和Q3为不同的第一预设权重值,S总i、F总i和M总i分别为用户访问各应用的访问总时长、访问总频次和访问总流量,i∈[1,N],i为正整数,N为正整数;The application recommendation business platform determines the score of each application A i = Q 1 S i /S total i +Q 2 F i /F total i according to the access duration S i , access frequency F i and access traffic M i corresponding to each application +Q 3 M i /M total i , wherein, Q 1 , Q 2 and Q 3 are different first preset weight values, S total i , F total i and M total i are the access totals of each application accessed by the user respectively. Duration, total visit frequency and total visit traffic, i∈[1,N], where i is a positive integer and N is a positive integer;
应用推荐业务平台根据各应用的得分Ai,以及与各应用对应的访问业务类型,确定属于同一访问业务类型的应用的各兴趣指数其中,b∈[1,B],b为正整数,B为正整数;The application recommendation service platform determines the interest indices of the applications belonging to the same access service type according to the score A i of each application and the access service type corresponding to each application Among them, b∈[1,B], b is a positive integer, and B is a positive integer;
应用推荐业务平台根据各兴趣指数Ib,以及预先获取的各应用的评分,确定各应用的基础推荐指数Pi;The application recommendation service platform determines the basic recommendation index P i of each application according to each interest index I b and the pre-acquired scores of each application;
应用推荐业务平台确定各应用与用户当前使用的移动终端中的应用的各相似度Sij,其中,j∈[1,J],j为正整数,J为正整数;The application recommendation service platform determines each similarity S ij between each application and the application in the mobile terminal currently used by the user, where j∈[1,J], j is a positive integer, and J is a positive integer;
应用推荐业务平台根据各相似度Sij,调整各应用的基础推荐指数Pi'={1-(Si1-S阈值)}PiQ1'+…+{1-(Sij-S阈值)}PiQi'+…+{1-(SiJ-S阈值)}PiQ'N,其中,S阈值为预设相似度阈值,Qi'为第二预设权重值;The application recommendation service platform adjusts the basic recommendation index P i '={1-(S i1 -S threshold )}P i Q 1 ' + ...+{1-(S ij -S threshold )}P i Q i '+...+{1-(S iJ -S threshold )}P i Q' N , where the S threshold is the preset similarity threshold, and Q i 'is the second preset weight value;
应用推荐业务平台根据调整后的基础推荐指数,对各应用进行排序,得到兴趣推荐列表,兴趣推荐列表用于表征用户的兴趣爱好特征。The application recommendation business platform sorts the applications according to the adjusted basic recommendation index, and obtains an interest recommendation list, which is used to characterize the user's hobbies and interests.
在本实施方式中,具体的,应用推荐业务平台可以从运营商服务器上采集获取到用户的与各应用对应的各种数据,这些数据包括与各应用对应的访问业务类型、访问时长、访问频次和访问流量。从而可以获取到各个应用的,即各个应用的访问业务类型、访问时长、访问频次和访问流量。In this embodiment, specifically, the application recommendation service platform can collect various data corresponding to each application of the user from the operator's server, and these data include the type of access service, access duration, and access frequency corresponding to each application. and access traffic. In this way, each application, that is, the access service type, access duration, access frequency, and access traffic of each application can be obtained.
对于每一个应用,根据该应用每一次的访问时长Si、访问频次Fi和访问流量Mi,确定在预设时间内用户访问各应用的访问总时长S总i、访问总频次F总i和访问总流量M总i,计算出各应用的得分Ai=Q1Si/S总i+Q2Fi/F总i+Q3Mi/M总i,其中,,Q1、Q2和Q3为根据经验设置的不同的第一预设权重值,并且i∈[1,N],i为正整数,N为正整数。然后统计属于同一访问业务类型的应用的得分之和,可以根据得到的各应用的得分Ai,以及与各应用对应的访问业务类型,计算出属于同一访问业务类型的应用的各兴趣指数其中,b∈[1,B],b为正整数,B为正整数。对各兴趣指数进行排序,然后按照各兴趣指数的值的降序对属于同一访问业务类型的应用进行排序,可以得到用户对哪些类型的应用比较感兴趣。For each application, according to the application's access duration S i , access frequency F i and access traffic M i , determine the total access duration S total i and the total access frequency F total i of the user's access to each application within the preset time and total access traffic M total i , calculate the score A i of each application = Q 1 S i /S total i +Q 2 F i /F total i +Q 3 M i /M total i , where, Q 1 , Q 2 and Q 3 are different first preset weight values set according to experience, and i∈[1,N], i is a positive integer, and N is a positive integer. Then count the sum of the scores of the applications belonging to the same access service type, and calculate the interest indexes of the applications belonging to the same access service type according to the obtained scores A i of each application and the access service types corresponding to each application Among them, b∈[1, B], b is a positive integer, and B is a positive integer. By sorting the interest indexes, and then sorting the applications belonging to the same access service type according to the descending order of the values of the interest indexes, it is possible to obtain which types of applications the user is more interested in.
应用推荐业务平台会预先获取到所有用户对于各应用的综合评分,根据这些评分以及,各兴趣指数Ib,采用常用的推荐算法计算各应用的基础推荐指数Pi,常用的推荐算法可以是应用协同推荐、用户协调推荐等算法。然后应用推荐业务平台对各应用的基础推荐指数Pi按照降序进行排序,选取排名前n位的应用以及与前n位的应用各自对应的基础推荐指数组成一个基础推荐列表。The application recommendation service platform will obtain the comprehensive ratings of all users for each application in advance, and use the commonly used recommendation algorithm to calculate the basic recommendation index P i of each application based on these scores and each interest index I b . The commonly used recommendation algorithm can be application Collaborative recommendation, user coordination recommendation and other algorithms. Then the application recommendation service platform sorts the basic recommendation index P i of each application in descending order, and selects the top n applications and the basic recommendation indexes corresponding to the top n applications to form a basic recommendation list.
应用推荐业务平台统计当前用户中的移动终端中已经安装的各应用的得分,这个得分可以通过数据挖掘分析得到,也可以是所有用户对于各应用的评分,应用推荐业务平台选取得分排名为前m名的应用。应用推荐业务平台根据基础推荐列表中的各应用的标签,以及用户当前使用的移动终端中的排名前m名的各应用的标签,确定基础推荐列表中的各应用与用户当前使用的移动终端中的排名前m名的各应用之间的相似度Sij,其中,j∈[1,J],j为正整数,J为正整数。标签可以被换算成向量,相似度的计算可以采用求两个向量夹角余弦值的方法。The application recommendation service platform counts the scores of each application installed in the mobile terminal of the current user. This score can be obtained through data mining analysis, or it can be the scores of all users for each application. The application recommendation service platform selects the score ranking as the top m-named applications. According to the tags of each application in the basic recommendation list and the tags of the top m applications in the mobile terminal currently used by the user, the application recommendation service platform determines the relationship between each application in the basic recommendation list and the mobile terminal currently used by the user. The similarity S ij between the top m applications of , where j∈[1,J], j is a positive integer, and J is a positive integer. Tags can be converted into vectors, and the similarity can be calculated by calculating the cosine of the angle between two vectors.
然后应用推荐业务平台,根据各相似度Sij,调整各应用的基础推荐指数Pi'={1-(Si1-S阈值)}PiQ1'+…+{1-(Sij-S阈值)}PiQi'+…+{1-(SiJ-S阈值)}PiQ'N,其中,S阈值为预设相似度阈值,Qi'为根据经验设置的第二预设权重值。Then the application recommendation business platform adjusts the basic recommendation index P i '={1-(S i1 -S threshold )}P i Q 1 '+...+{1-(S ij - S threshold )}P i Q i '+…+{1-(S iJ -S threshold )}P i Q' N , where S threshold is the preset similarity threshold, and Q i 'is the second Default weight value.
应用推荐业务平台根据调整后的基础推荐指数,按照调整后的基础推荐指数的降序,对基础推荐列表中的各应用进行重新排序,得到一个兴趣推荐列表,可以得知,当前用户较感兴趣的应用被排到到兴趣推荐列表的前面,从而兴趣推荐列表表征了用户的兴趣爱好特征。According to the adjusted basic recommendation index, the application recommendation business platform reorders the applications in the basic recommendation list in descending order according to the adjusted basic recommendation index, and obtains an interest recommendation list. It can be known that the current user is more interested in The applications are ranked at the front of the interest recommendation list, so that the interest recommendation list represents the characteristics of the user's hobbies.
本实施方式通过根据获取到的与各应用对应的访问业务类型、访问时长、访问频次和访问流量,确定出当前用户的兴趣爱好特征。In this embodiment, the hobbies and hobbies of the current user are determined according to the acquired access service type, access duration, access frequency, and access traffic corresponding to each application.
进一步的,在上述实施例的基础上,步骤101,具体包括:Further, on the basis of the above embodiments, step 101 specifically includes:
应用推荐业务平台从运营商服务器上采集获取用户的与各应用对应的访问开始时间、访问结束时间、访问基站;The application recommendation service platform collects and obtains the user's access start time, access end time, and access base station corresponding to each application from the operator's server;
则相应的,步骤201中的应用推荐业务平台对应用数据进行数据挖掘分析,得到用户的人群属性特征,具体包括:Correspondingly, the application recommendation service platform in step 201 performs data mining analysis on the application data to obtain user group attributes, specifically including:
应用推荐业务平台根据与各应用对应的访问开始时间、访问结束时间,确定用户每天的上网时间比例;The application recommendation business platform determines the proportion of the user's daily online time according to the access start time and access end time corresponding to each application;
应用推荐业务平台根据与各应用对应的访问基站,确定用户每天的运动轨迹;The application recommendation business platform determines the user's daily movement trajectory according to the access base station corresponding to each application;
应用推荐业务平台根据用户每天的上网时间比例、以及每天的运动轨迹,确定用户的人群属性特征。The application recommendation business platform determines the user's group attribute characteristics according to the proportion of the user's daily online time and the daily movement track.
在本实施方式中,具体的,应用推荐业务平台还可以从运营商服务器上采集获取到用户的与各应用对应的各种数据,这些数据包括与各应用对应的访问开始时间、访问结束时间、访问基站。In this embodiment, specifically, the application recommendation service platform can also collect various data corresponding to each application of the user from the operator's server, and these data include the access start time, access end time, Access the base station.
应用推荐业务平台可以根据与各应用对应的访问开始时间、访问结束时间,统计出用户在各个预设时间段的上网时间分布情况。具体的,首先将一天的时间分为几个等长的时间段,例如分为上午(6:00-12:00)、下午(12:00-18:00)、晚上(18:00-24:00)、夜间(24:00-6:00)。应用推荐业务平台根据与各应用对应的访问开始时间、访问结束时间,确定出用户在各个时间段的上网总时间,从而可以确定出用户每天在各个时间段中的上网时间比例,例如,用户每天的上网分别情况为,上午0.5小时,下午0.5小时,晚上4小时,夜间0小时,则得到该用户的每天的上网时间比例为{0.5/24,0.5/24,4/24,0}。同时,应用推荐业务平台可以将各个用户每天的上网时间比例进行比较,得到各个用户在各时间段的休闲指数,例如,将所有用户在各时间段的上网总时间进行统计,各时间段的上网总时间的降序对用户在各时间段上进行排序,将各时间段的休闲指数预先设定为为五级,在某一个时间段中排名前20%的用户休闲指数为5,20%~40%的用户休闲指数为4,40%~60%的用户休闲指数为3,60%~80%的用户休闲指数为2,80%及以上的用户休闲指数为1,当前用户A在各时间段的上网时间比例分别为70%、70%、15%、100%,相应地,用户在各时间段的休闲指数为{2,2,5,1}。The application recommendation service platform can calculate the distribution of users' online time in each preset time period according to the access start time and access end time corresponding to each application. Specifically, first divide the time of a day into several time periods of equal length, for example, in the morning (6:00-12:00), in the afternoon (12:00-18:00), in the evening (18:00-24 :00), night time (24:00-6:00). The application recommendation business platform determines the total time spent online by the user in each time period according to the access start time and end time corresponding to each application, so as to determine the proportion of the user's daily online time in each time period. For example, the user's daily online time The Internet surfing conditions of the user are 0.5 hours in the morning, 0.5 hours in the afternoon, 4 hours in the evening, and 0 hours in the night, so the ratio of the user's daily online time is {0.5/24, 0.5/24, 4/24, 0}. At the same time, the application recommendation business platform can compare the proportion of each user's daily online time to obtain the leisure index of each user in each time period. The descending order of the total time sorts the users in each time period, and the leisure index of each time period is preset to five levels, and the leisure index of the top 20% users in a certain time period is 5, 20%~40 % of the user leisure index is 4, 40% to 60% of the user leisure index is 3, 60% to 80% of the user leisure index is 2, 80% and above the user leisure index is 1, the current user A in each time period The percentages of online time are 70%, 70%, 15%, and 100%. Correspondingly, the user's leisure index in each time period is {2,2,5,1}.
应用推荐业务平台可以根据与各应用对应的访问基站,确定出与各应用对应的访问基站的更新信令消息中携带的位置信息,将用户位置按照功能分为几个区域,例如商业区、生活区、工作区、学校、医院等。应用推荐业务平台根据与各应用对应的位置信息,以及与各应用对应的访问开始时间和结束时间,确定出用户在各时间点所处的位置环境,例如,用户A在早晨九点,所处位置为工作区。应用推荐业务平台根据预设时间内确定出的用户在各时间点所处的位置环境,实施检测出用户在预设时间内的位置变化情况,从而可得到用户每天的运动轨迹,例如,用户A早晨九点在工作区,中午十二点在商业区,晚上八点在生活区等。The application recommendation service platform can determine the location information carried in the update signaling message of the visiting base station corresponding to each application according to the visiting base station corresponding to each application, and divide the user's location into several areas according to functions, such as business district, living area, etc. Districts, work areas, schools, hospitals, etc. The application recommendation service platform determines the location and environment of the user at each time point according to the location information corresponding to each application, and the access start time and end time corresponding to each application. For example, user A is at 9 o'clock in the morning, where The location is the workspace. The application recommendation service platform detects the user's location changes within the preset time according to the location environment of the user at each time point determined within the preset time, so as to obtain the user's daily movement track, for example, user A At nine in the morning in the work area, at twelve in the noon in the commercial area, and at eight in the evening in the living area.
应用推荐业务平台根据确定出的用户每天的上网时间比例、以及每天的运动轨迹,判断出用户的人群属性特征,其中,用户的人群属性特征可以是上班族、学生、闲置族等。例如,用户A周一至周五,白天在工作区,晚上在生活区,可推断用户A为上班族。The application recommendation service platform judges the user's group attribute characteristics according to the determined user's daily online time ratio and daily movement trajectory. Among them, the user's group attribute characteristics can be office workers, students, idlers, etc. For example, user A is in the work area during the day and in the living area at night from Monday to Friday, so it can be inferred that user A is an office worker.
本实施方式通过根据获取到的用户的与各应用对应的访问开始时间、访问结束时间、访问基站,确定出用户每天的上网时间比例以及每天的运动轨迹,然后可以确定出用户的人群属性特征。In this embodiment, according to the obtained user's access start time, access end time, and access base station corresponding to each application, the user's daily online time ratio and daily movement trajectory can be determined, and then the user's crowd attribute characteristics can be determined.
进一步的,在上述实施例的基础上,步骤103中应用推荐业务平台根据特征信息,确定待推荐给用户的应用的列表信息,具体包括:Further, on the basis of the above-mentioned embodiments, in step 103, the application recommendation service platform determines the list information of the applications to be recommended to the user according to the feature information, specifically including:
应用推荐业务平台根据特征信息、用户当前所处的地理位置以及当前时间,确定待推荐给用户的应用的列表信息。The application recommendation service platform determines the list information of the applications to be recommended to the user according to the characteristic information, the current geographic location of the user and the current time.
在本实施方式中,具体的,应用推荐业务平台根据确定用户的兴趣爱好特征和/或人群属性特征这些特征信息,同时依据用户当前所处的地理位置以及当前时间,确定待推荐给用户的应用的列表信息。In this embodiment, specifically, the application recommendation service platform determines the application to be recommended to the user according to the characteristic information of the user's hobbies and/or group attribute characteristics, and at the same time according to the user's current geographical location and current time list information for .
具体的,应用推荐业务平台可以只根据用户的兴趣爱好特征,以及用户当前所处的地理位置以及当前时间,确定待推荐给用户的应用的列表信息,例如,用户的兴趣爱好特征显示用户对游戏类的应用更感兴趣,应用推荐业务平台检测到用户当前处出晚上时间段、且位于居住区域,则确定出的待推荐给用户的应用的列表信息包括了各种游戏类的应用。Specifically, the application recommendation service platform can determine the list information of the applications to be recommended to the user based on the user's hobbies and interests, as well as the user's current geographical location and current time. The application recommendation service platform detects that the user is currently in the evening time period and is located in the residential area, and the determined application list information to be recommended to the user includes various game applications.
应用推荐业务平台也可以只根据用户的人群属性特征,以及用户当前所处的地理位置以及当前时间,确定待推荐给用户的应用的列表信息,例如,用户的人群属性特征显示用户是上班族,应用推荐业务平台检测到用户当前位于工作区且当前为上班时间段,则确定出的待推荐给用户的应用的列表信息包括了新闻、天气、投资软件、办公软件、聊天软件等工具类应用。再例如,用户的人群属性特征显示用户是上班族,应用推荐业务平台检测到用户当前位于工作区或商业区,且当前为休息时间段,则确定出的待推荐给用户的应用的列表信息包括了外卖、送餐、餐饮推荐等服务类应用。再例如,用户的人群属性特征显示用户是上班族,应用推荐业务平台检测到用户当前位于生活区,且当前为晚上时间段,则确定出的待推荐给用户的应用的列表信息包括了视频、音乐、游戏、淘宝等娱乐、购物类的应用。可以将用户进行人群划分,用户的时间进行分片处理,位置进行功能分区,制定情境感知推荐策略,举例如下:The application recommendation service platform can also determine the list information of the applications to be recommended to the user based on the user's crowd attributes, as well as the user's current geographic location and current time. For example, the user's crowd attributes show that the user is an office worker, When the application recommendation service platform detects that the user is currently in the work area and is currently working, the determined list of applications to be recommended to the user includes tool applications such as news, weather, investment software, office software, and chat software. For another example, if the user's group attribute characteristics show that the user is an office worker, and the application recommendation service platform detects that the user is currently in a work area or a business area, and is currently in a rest period, the determined list information of the applications to be recommended to the user includes Service applications such as takeaway, meal delivery, and restaurant recommendations. For another example, if the user's group attribute characteristics show that the user is an office worker, and the application recommendation service platform detects that the user is currently located in the living area, and it is currently in the evening time period, the determined list information of the application to be recommended to the user includes video, Music, games, Taobao and other entertainment and shopping applications. Users can be divided into groups, users' time can be segmented, locations can be divided into functions, and context-aware recommendation strategies can be formulated. Examples are as follows:
表2待推荐给用户的应用的列表信息Table 2 List information of applications to be recommended to users
应用推荐业务平台也可以同时根据用户的兴趣爱好特征和人群属性特征,以及用户当前所处的地理位置以及当前时间,确定待推荐给用户的应用的列表信息。例如,用户的兴趣爱好特征显示用户对金融类以及音乐类的应该更感兴趣,用户的人群属性特征显示用户是上班族,应用推荐业务平台检测到用户当前位于生活区,且当前为晚上时间段,则确定出的待推荐给用户的应用的列表信息包括了金融类、音乐类的应用。The application recommendation service platform can also determine the list information of applications to be recommended to the user according to the user's hobbies and group attributes, as well as the user's current geographic location and current time. For example, the user's hobbies feature shows that the user should be more interested in finance and music, the user's crowd attribute feature shows that the user is an office worker, and the application recommendation service platform detects that the user is currently located in the living area, and it is currently in the evening time period , the determined list information of applications to be recommended to the user includes financial and music applications.
本实施方式通过应用推荐业务平台根据用户的兴趣爱好特征或/和人群属性特征,用户当前所处的地理位置以及当前时间,确定待推荐给用户的应用的列表信息。从而针对各个用户自身的特征,并依照当前时间和位置,指定出应用推荐列表,从而为用户精准推荐符合其兴趣,且兼顾其当前位置、时间信息的应用,满足不同用户在不同时间、不同地点对于应用的个性化需求。In this embodiment, the application recommendation service platform determines the list information of applications to be recommended to the user according to the user's hobbies or/and crowd attribute characteristics, the user's current geographical location and the current time. According to each user's own characteristics, and according to the current time and location, the application recommendation list is specified, so as to accurately recommend applications that meet their interests and take into account their current location and time information, and satisfy different users at different times and in different places. For the individual needs of the application.
进一步的,在上述实施例的基础上,步骤103中将应用的列表信息发送给用户,包括:Further, on the basis of the above embodiments, in step 103, the application list information is sent to the user, including:
应用推荐业务平台在接收到用户发送的推荐请求之后,将应用的列表信息发送给用户;After receiving the recommendation request sent by the user, the application recommendation service platform sends the list information of the application to the user;
或者,or,
在用户登录应用推荐业务平台后,应用推荐业务平台将应用的列表信息发送给用户;After the user logs in to the application recommendation service platform, the application recommendation service platform sends the application list information to the user;
或者,or,
应用推荐业务平台在预设的时间段内,将应用的列表信息发送给用户。The application recommendation service platform sends the application list information to the user within a preset time period.
在本实施方式中,具体的,应用推荐业务平台将确定出的应用的列表信息发送给用户。用户可以向应用推荐业务平台发送的推荐请求,应用推荐业务平台将实时分析出的应用的列表信息发送给用户,或者应用推荐业务平台将已经预先确定出的应用的列表信息发送给用户。In this embodiment, specifically, the application recommendation service platform sends the determined application list information to the user. The user can send a recommendation request to the application recommendation service platform, and the application recommendation service platform will send the list information of the applications analyzed in real time to the user, or the application recommendation service platform will send the list information of the pre-determined applications to the user.
也可以是,用户登录应用推荐业务平台,然后,应用推荐业务平台将已经确定出的应用的列表信息发送给用户,或者在用户登录应用推荐业务平台之后,应用推荐业务平台将实时确定出的应用的列表信息发送给用户。It may also be that the user logs in to the application recommendation service platform, and then the application recommendation service platform sends the list information of the determined applications to the user, or after the user logs in to the application recommendation service platform, the application recommendation service platform sends the determined applications in real time The list information is sent to the user.
也可以是,用户指定出一个第一推送时间表,第一推送时间表中包括各个时间段,应用推荐业务平台在预设的各个时间段内,将应用的列表信息发送给用户,It may also be that the user specifies a first push schedule, the first push schedule includes various time periods, and the application recommendation service platform sends the application list information to the user within each preset time period,
也可以是,应用推荐业务平台指定出一个第二推送时间表,第二推送时间表中包括各个时间段,应用推荐业务平台根据用户的当前位置以及时间,在不同的时间段内向用户发送确定出的应用的列表信息中排名较高的应用。It may also be that the application recommendation service platform specifies a second push schedule, and the second push schedule includes various time periods, and the application recommendation service platform sends the determined information to the user in different time periods according to the user's current location and time. Apps that rank higher in the app's listing information.
也可以是,应用推荐业务平台在不同的时间段内,向休闲指数较高的用户,发送确定出的应用的列表信息中排名较高的应用。Alternatively, the application recommendation service platform may send applications with higher ranks in the determined application list information to users with higher leisure index within different time periods.
图3为本发明实施例三提供的应用推荐业务平台的结构示意图,如图3所示,本实施例提供的应用推荐业务平台,包括:FIG. 3 is a schematic structural diagram of the application recommendation service platform provided by Embodiment 3 of the present invention. As shown in FIG. 3 , the application recommendation service platform provided by this embodiment includes:
数据获取模块31,用于从运营商服务器上采集获取用户的应用数据;The data acquisition module 31 is used to collect and acquire the user's application data from the operator's server;
数据挖掘模块32,用于对应用数据进行数据挖掘分析,得到用户的特征信息;The data mining module 32 is used to perform data mining analysis on the application data to obtain user characteristic information;
应用推荐模块33,用于根据特征信息,确定待推荐给用户的应用的列表信息,并将应用的列表信息发送给用户。The application recommendation module 33 is configured to determine the list information of the applications to be recommended to the user according to the characteristic information, and send the list information of the applications to the user.
本实施例的应用推荐业务平台可执行本发明实施例一提供的应用推荐方法,其实现原理相类似,此处不再赘述。The application recommendation service platform in this embodiment can execute the application recommendation method provided in Embodiment 1 of the present invention, and its implementation principles are similar, so details will not be repeated here.
本实施例通过应用推荐业务平台对从运营商服务器上获取到的用户的应用数据,进行数据挖掘分析,可以得到用户的特征信息,然后根据特征信息,确定待推荐给用户的应用的列表信息,并将应用的列表信息发送给用户。从而实现了通过分析用户自身的特征,根据用户自身的需求向用户发送应用的推荐列表,满足不同用户对于应用的个性化需求。In this embodiment, the application recommendation service platform is used to perform data mining analysis on the user's application data obtained from the operator's server to obtain the user's characteristic information, and then determine the list information of the application to be recommended to the user according to the characteristic information. And send the list information of the application to the user. In this way, by analyzing the user's own characteristics, the application recommendation list is sent to the user according to the user's own needs, so as to meet the personalized needs of different users for the application.
图4为本发明实施例四提供的应用推荐业务平台的结构示意图,在实施例三的基础上,如图4所示,本实施例提供的应用推荐业务平台中,数据挖掘模块32,包括:FIG. 4 is a schematic structural diagram of the application recommendation service platform provided by Embodiment 4 of the present invention. On the basis of Embodiment 3, as shown in FIG. 4 , in the application recommendation service platform provided by this embodiment, the data mining module 32 includes:
数据挖掘子模块321,用于对应用数据进行数据挖掘分析,得到用户的兴趣爱好特征和/或人群属性特征;The data mining sub-module 321 is used to perform data mining analysis on the application data to obtain the user's hobbies and/or crowd attribute characteristics;
相应的,应用推荐模块33,包括:Correspondingly, the application recommendation module 33 includes:
应用确定子模块331,用于根据兴趣爱好特征和/或人群属性特征,确定待推荐给用户的应用的列表信息;The application determination sub-module 331 is used to determine the list information of applications to be recommended to the user according to the characteristics of hobbies and/or attributes of the crowd;
应用发送子模块332,用于将应用的列表信息发送给用户。The application sending sub-module 332 is configured to send the application list information to the user.
数据获取模块31,具体用于:从运营商服务器上采集获取用户的与各应用对应的访问业务类型、访问时长、访问频次和访问流量;The data acquisition module 31 is specifically used to: collect and acquire the user's access business type, access duration, access frequency, and access traffic corresponding to each application from the operator's server;
相应的,数据挖掘子模块321在用于对应用数据进行数据挖掘分析,得到用户的兴趣爱好特征时,具体用于:Correspondingly, when the data mining sub-module 321 is used to perform data mining analysis on the application data to obtain the characteristics of the user's hobbies, it is specifically used for:
根据与各应用对应的访问时长Si、访问频次Fi和访问流量Mi,确定各应用的得分Ai=Q1Si/S总i+Q2Fi/F总i+Q3Mi/M总i,其中,Q1、Q2和Q3为不同的第一预设权重值,S总i、F总i和M总i分别为用户访问各应用的访问总时长、访问总频次和访问总流量,i∈[1,N],i为正整数,N为正整数;According to the access duration S i , access frequency F i and access traffic M i corresponding to each application, determine the score A i of each application = Q 1 S i /S total i +Q 2 F i /F total i +Q 3 M i /M total i , wherein, Q 1 , Q 2 and Q 3 are different first preset weight values, S total i , F total i and M total i are the total access time and total access time of each application respectively. Frequency and total access traffic, i∈[1,N], i is a positive integer, N is a positive integer;
根据各应用的得分Ai,以及与各应用对应的访问业务类型,确定属于同一访问业务类型的应用的各兴趣指数其中,b∈[1,B],b为正整数,B为正整数;According to the score A i of each application and the access service type corresponding to each application, determine the interest index of each application belonging to the same access service type Among them, b∈[1,B], b is a positive integer, and B is a positive integer;
根据各兴趣指数Ib,以及预先获取的各应用的评分,确定各应用的基础推荐指数Pi;Determine the basic recommendation index P i of each application according to each interest index I b and the pre-acquired scores of each application;
确定各应用与用户当前使用的移动终端中的应用的各相似度Sij,其中,j∈[1,J],j为正整数,J为正整数;Determine each similarity S ij between each application and the application in the mobile terminal currently used by the user, where j∈[1,J], j is a positive integer, and J is a positive integer;
根据各相似度Sij,调整各应用的基础推荐指数Pi'={1-(Si1-S阈值)}PiQ1'+…+{1-(Sij-S阈值)}PiQi'+…+{1-(SiJ-S阈值)}PiQ'N,其中,S阈值为预设相似度阈值,Qi'为第二预设权重值;According to each similarity S ij , adjust the basic recommendation index P i '={1-(S i1 -S threshold )}P i Q 1 '+...+{1-(S ij -S threshold )}P i Q i '+...+{1-(S iJ -S threshold )}P i Q' N , where the S threshold is the preset similarity threshold, and Q i 'is the second preset weight value;
根据调整后的基础推荐指数,对各应用进行排序,得到兴趣推荐列表,兴趣推荐列表用于表征用户的兴趣爱好特征。According to the adjusted basic recommendation index, each application is sorted to obtain an interest recommendation list, and the interest recommendation list is used to characterize the user's hobbies and interests.
数据获取模块31,具体用于:从运营商服务器上采集获取用户的与各应用对应的访问开始时间、访问结束时间、访问基站;The data acquisition module 31 is specifically used to: acquire the user's access start time, access end time, and access base station corresponding to each application from the operator's server;
相应的,数据挖掘子模块321在用于对应用数据进行数据挖掘分析,得到用户的人群属性特征时,具体用于:Correspondingly, when the data mining sub-module 321 is used to perform data mining analysis on the application data to obtain user group attributes, it is specifically used for:
根据与各应用对应的访问开始时间、访问结束时间,确定用户每天的上网时间比例;According to the access start time and access end time corresponding to each application, determine the proportion of the user's daily online time;
根据与各应用对应的访问基站,确定用户每天的运动轨迹;According to the access base station corresponding to each application, determine the user's daily movement trajectory;
根据用户每天的上网时间比例、以及每天的运动轨迹,确定用户的人群属性特征。According to the user's daily online time ratio and daily movement trajectory, the user's crowd attribute characteristics are determined.
应用确定子模块331,具体用于:The application determination submodule 331 is specifically used for:
根据特征信息、用户当前所处的地理位置以及当前时间,确定待推荐给用户的应用的列表信息。According to the feature information, the current geographic location of the user, and the current time, list information of applications to be recommended to the user is determined.
应用发送子模块332,具体用于:The application sending submodule 332 is specifically used for:
在接收到用户发送的推荐请求之后,将应用的列表信息发送给用户;或者,在用户登录应用推荐业务平台后,将应用的列表信息发送给用户;或者,在预设的时间段内,将应用的列表信息发送给用户。After receiving the recommendation request sent by the user, send the list information of the application to the user; or, after the user logs in to the application recommendation service platform, send the list information of the application to the user; or, within a preset time period, send the application list information to the user; The list information of the application is sent to the user.
本实施例的应用推荐业务平台可执行本发明实施例二以及上述实施方式提供的应用推荐方法,其实现原理相类似,此处不再赘述。The application recommendation service platform in this embodiment can execute the application recommendation method provided in Embodiment 2 of the present invention and the above-mentioned implementation manners, and the implementation principles thereof are similar, and will not be repeated here.
本实施例通过应用推荐业务平台根据得到用户的兴趣爱好特征和/或人群属性特征,去确定待推荐给用户的应用的列表信息。从而实现了通过分析用户自身的特征,根据用户自身的需求向用户发送应用的推荐列表,满足不同用户对于应用的个性化需求。并且,本实施方式通过应用推荐业务平台根据用户的兴趣爱好特征或/和人群属性特征,用户当前所处的地理位置以及当前时间,确定待推荐给用户的应用的列表信息。从而针对各个用户自身的特征,并依照当前时间和位置,指定出应用推荐列表,从而为用户精准推荐符合其兴趣,且兼顾其当前位置、时间信息的应用,满足不同用户在不同时间、不同地点对于应用的个性化需求。In this embodiment, the application recommendation service platform determines the list information of applications to be recommended to the user according to the user's hobbies and/or group attribute characteristics. In this way, by analyzing the user's own characteristics, the application recommendation list is sent to the user according to the user's own needs, so as to meet the personalized needs of different users for the application. In addition, in this embodiment, the application recommendation service platform determines the list information of applications to be recommended to the user according to the user's hobbies or/and crowd attribute characteristics, the user's current geographical location and the current time. According to each user's own characteristics, and according to the current time and location, the application recommendation list is specified, so as to accurately recommend applications that meet their interests and take into account their current location and time information, and satisfy different users at different times and in different places. For the individual needs of the application.
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。Those of ordinary skill in the art can understand that all or part of the steps for implementing the above method embodiments can be completed by program instructions and related hardware. The aforementioned program can be stored in a computer-readable storage medium. When the program is executed, it executes the steps including the above-mentioned method embodiments; and the aforementioned storage medium includes: ROM, RAM, magnetic disk or optical disk and other various media that can store program codes.
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it can still be Modifications are made to the technical solutions described in the foregoing embodiments, or equivalent replacements are made to some of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the various embodiments of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510697893.4A CN105227445B (en) | 2015-10-23 | 2015-10-23 | Recommend platform using methods and applications are recommended |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510697893.4A CN105227445B (en) | 2015-10-23 | 2015-10-23 | Recommend platform using methods and applications are recommended |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105227445A CN105227445A (en) | 2016-01-06 |
CN105227445B true CN105227445B (en) | 2018-09-14 |
Family
ID=54996149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510697893.4A Active CN105227445B (en) | 2015-10-23 | 2015-10-23 | Recommend platform using methods and applications are recommended |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105227445B (en) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105744305A (en) * | 2016-02-05 | 2016-07-06 | 尼尔森网联媒介数据服务有限公司 | Monitoring methods and monitoring apparatuses for watching users of digital media terminal |
CN105808743B (en) * | 2016-03-11 | 2019-04-30 | 中国联合网络通信集团有限公司 | Terminal recommendation method and terminal recommendation system |
CN106101170A (en) * | 2016-05-20 | 2016-11-09 | 努比亚技术有限公司 | A kind of recommendation method and device of application |
CN107517190B (en) * | 2016-06-17 | 2020-06-12 | 中国移动通信集团上海有限公司 | Service recommendation method and device |
CN107688951B (en) * | 2016-08-03 | 2022-03-29 | 美的智慧家居科技有限公司 | Information pushing method and device |
CN107220269B (en) * | 2016-09-12 | 2020-10-30 | 中山大学 | A Personalized Recommendation Method for Geographically Sensitive Apps |
CN106775849A (en) * | 2016-12-02 | 2017-05-31 | 广东欧珀移动通信有限公司 | Application information processing, application installation method, device and computer equipment |
CN106844240A (en) * | 2017-01-25 | 2017-06-13 | 百度在线网络技术(北京)有限公司 | Information displaying method and device |
CN107087017B (en) | 2017-03-09 | 2020-02-21 | 阿里巴巴集团控股有限公司 | Method and device for service drainage |
CN107612974B (en) * | 2017-08-23 | 2020-04-17 | Oppo广东移动通信有限公司 | Information recommendation method and device, mobile terminal and storage medium |
CN107493339A (en) * | 2017-08-23 | 2017-12-19 | 广东欧珀移动通信有限公司 | Information push method, device, terminal and computer-readable storage medium |
CN110771121A (en) * | 2017-08-31 | 2020-02-07 | 深圳市欢太科技有限公司 | Application resource recommendation method and related equipment |
CN109660574B (en) * | 2017-10-10 | 2022-03-04 | 阿里巴巴集团控股有限公司 | Data providing method and device |
CN107705156B (en) * | 2017-10-16 | 2021-02-05 | 深圳大宇无限科技有限公司 | User feature analysis method and device |
CN109714378A (en) * | 2017-10-26 | 2019-05-03 | 中国电信股份有限公司 | The recommended method and system of application program |
CN107958056A (en) * | 2017-11-29 | 2018-04-24 | 广东欧珀移动通信有限公司 | Application recommendation method and device and mobile terminal |
CN108153891A (en) * | 2017-12-29 | 2018-06-12 | 北京奇虎科技有限公司 | Active time statistical method of surfing the Internet and device |
CN108804167B (en) * | 2018-06-12 | 2022-02-22 | 北京智明星通科技股份有限公司 | Method, device and server for identifying player of pupil |
CN109242252B (en) | 2018-08-03 | 2020-09-04 | 张继升 | Intelligent service platform and method |
CN110827044B (en) * | 2018-08-07 | 2024-11-26 | 北京京东尚科信息技术有限公司 | Method and device for extracting user interest patterns |
CN109190047A (en) * | 2018-09-20 | 2019-01-11 | 北京奇元科技有限公司 | A kind of application recommended method, device |
CN109300218A (en) * | 2018-10-18 | 2019-02-01 | 南京奥拓电子科技有限公司 | A kind of queuing machine management system and method for the auto arrangement number of taking work flow |
CN109859006A (en) * | 2019-01-15 | 2019-06-07 | 上海连尚网络科技有限公司 | For determining method, system, electronic equipment and the computer-readable medium of user interest profile |
CN113327151B (en) * | 2021-06-03 | 2024-06-21 | 广州华多网络科技有限公司 | Commodity object recommendation method, commodity object recommendation device, computer equipment and storage medium |
CN115878892A (en) * | 2022-12-01 | 2023-03-31 | 支付宝(杭州)信息技术有限公司 | Service recommendation method and device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7543051B2 (en) * | 2003-05-30 | 2009-06-02 | Borland Software Corporation | Method of non-intrusive analysis of secure and non-secure web application traffic in real-time |
CN102421062A (en) * | 2011-12-01 | 2012-04-18 | 中国联合网络通信集团有限公司 | Method and system for pushing application information |
CN102999588A (en) * | 2012-11-15 | 2013-03-27 | 广州华多网络科技有限公司 | Method and system for recommending multimedia applications |
CN103198418A (en) * | 2013-03-15 | 2013-07-10 | 北京亿赞普网络技术有限公司 | Application recommendation method and application recommendation system |
CN104601659A (en) * | 2014-12-17 | 2015-05-06 | 深圳市腾讯计算机系统有限公司 | Application recommendation method and system |
-
2015
- 2015-10-23 CN CN201510697893.4A patent/CN105227445B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7543051B2 (en) * | 2003-05-30 | 2009-06-02 | Borland Software Corporation | Method of non-intrusive analysis of secure and non-secure web application traffic in real-time |
CN102421062A (en) * | 2011-12-01 | 2012-04-18 | 中国联合网络通信集团有限公司 | Method and system for pushing application information |
CN102999588A (en) * | 2012-11-15 | 2013-03-27 | 广州华多网络科技有限公司 | Method and system for recommending multimedia applications |
CN103198418A (en) * | 2013-03-15 | 2013-07-10 | 北京亿赞普网络技术有限公司 | Application recommendation method and application recommendation system |
CN104601659A (en) * | 2014-12-17 | 2015-05-06 | 深圳市腾讯计算机系统有限公司 | Application recommendation method and system |
Also Published As
Publication number | Publication date |
---|---|
CN105227445A (en) | 2016-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105227445B (en) | Recommend platform using methods and applications are recommended | |
CN108763314B (en) | Interest recommendation method, device, server and storage medium | |
CN110059249B (en) | Method, terminal device and system for personalized recommendation | |
CN102073699B (en) | For improving the method for Search Results, device and equipment based on user behavior | |
CN102611785B (en) | Personalized active news recommending service system and method for mobile phone user | |
EP2820616B1 (en) | Empirical expert determination and question routing system and method | |
US10275530B2 (en) | System and method for communal search | |
CN119031031B (en) | A method, device and computing equipment for intelligent push based on big data | |
CN105245583A (en) | Promotion information pushing method and device | |
WO2016042357A1 (en) | Predicting human movement behaviors using location services model | |
JP2013058213A5 (en) | ||
TW201447797A (en) | Method and system for multi-phase ranking for content personalization | |
CN101937547A (en) | Software and/or software information pushing method, system, acquisition device, software shop service system and mobile terminal | |
CN102360364A (en) | Automatic application recommendation method and device | |
CN103390000B (en) | A kind of web search method and web page search system | |
US20140006418A1 (en) | Method and apparatus for ranking apps in the wide-open internet | |
WO2011119396A2 (en) | System for sharing favorites and enabling in-network local search based on network rankings | |
CN102999513B (en) | Based on information displaying method and the device of geographic position service search | |
CN110008405A (en) | A timeliness-based personalized message push method and system | |
KR20200133976A (en) | Contents Curation Method and Apparatus thereof | |
CN102737055A (en) | Method and system for determining user features in social network | |
CN103617221B (en) | Software recommendation method and software recommendation system | |
CN117436956A (en) | Intelligent marketing management system based on advertisement pushing | |
CN109408616A (en) | Content similarities short text querying method, equipment, system and storage medium | |
CN108182600A (en) | A kind of method and system that extending user is determined according to weighted calculation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |