CN105157708A - Unmanned aerial vehicle autonomous navigation system and method based on image processing and radar - Google Patents
Unmanned aerial vehicle autonomous navigation system and method based on image processing and radar Download PDFInfo
- Publication number
- CN105157708A CN105157708A CN201510653965.5A CN201510653965A CN105157708A CN 105157708 A CN105157708 A CN 105157708A CN 201510653965 A CN201510653965 A CN 201510653965A CN 105157708 A CN105157708 A CN 105157708A
- Authority
- CN
- China
- Prior art keywords
- module
- image processing
- uav
- radar
- hybrid control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012545 processing Methods 0.000 title claims abstract description 107
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000004891 communication Methods 0.000 claims abstract description 11
- 238000001514 detection method Methods 0.000 claims description 6
- 230000003287 optical effect Effects 0.000 claims description 6
- 238000012544 monitoring process Methods 0.000 claims description 4
- 230000005484 gravity Effects 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 2
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 3
- 206010039203 Road traffic accident Diseases 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/48—Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Automation & Control Theory (AREA)
- Traffic Control Systems (AREA)
- Navigation (AREA)
Abstract
本发明公开了一种基于图像处理与雷达的无人机自主导航系统及方法。该系统包括无人机平台和地面站系统,所述无人机平台设置有GPS卫星定位模块、图像处理模块、雷达系统模块及混合控制模块,混合控制模块分别与GPS卫星定位模块、图像处理模块、雷达系统模块、无人机飞行控制器及通信模块相连接;图像处理模块包括高速摄像机、云台单元及图像处理单元;雷达系统模块包括微波毫米波雷达单元、信号处理单元;混合控制模块包括无人机高速嵌入式处理单元。无人机导航方法为:传感器组、图像处理模块、雷达系统模块循环收集有效信息并反馈给混合控制模块分级处理,从而实现无人机自主导航。本发明系统先进,可拓展性强,具有很好的自动化无人机自主导航效果。
The invention discloses a UAV autonomous navigation system and method based on image processing and radar. The system includes an unmanned aerial vehicle platform and a ground station system. The unmanned aerial vehicle platform is provided with a GPS satellite positioning module, an image processing module, a radar system module and a hybrid control module, and the hybrid control module is connected with the GPS satellite positioning module and the image processing module respectively. , radar system module, UAV flight controller and communication module are connected; the image processing module includes a high-speed camera, pan-tilt unit and image processing unit; the radar system module includes a microwave millimeter wave radar unit and a signal processing unit; the hybrid control module includes UAV high-speed embedded processing unit. The UAV navigation method is: the sensor group, the image processing module, and the radar system module cyclically collect effective information and feed it back to the hybrid control module for hierarchical processing, so as to realize the autonomous navigation of the UAV. The system of the invention is advanced, has strong expandability, and has a good autonomous navigation effect of the automatic unmanned aerial vehicle.
Description
技术领域technical field
本发明属于无人机导航的技术领域,特别是一种基于图像处理与雷达的无人机自主导航系统及方法。The invention belongs to the technical field of drone navigation, in particular to an image processing and radar-based autonomous navigation system and method for drones.
背景技术Background technique
如今无人机的使用率日益增高,但由于无人机平台的局限性,无法自身判断航线及飞行路径,因此真正能实现自主导航飞行的技术很少。Nowadays, the utilization rate of drones is increasing day by day, but due to the limitations of the drone platform, it is impossible to judge the route and flight path by itself, so there are few technologies that can truly realize autonomous navigation and flight.
目前解决无人机导航的方法有GPS导航,实现自主导航的方法有红外线扫描绘制地图法,室内视觉系统导航法,由于此些方法还在实验室研究中,并没有一个很好的解决方案应用于目前无人机领域。At present, the solution to UAV navigation is GPS navigation, and the methods to realize autonomous navigation include infrared scanning map drawing method and indoor visual system navigation method. Since these methods are still in laboratory research, there is no good solution application. in the field of unmanned aerial vehicles.
发明内容Contents of the invention
本发明的目的在于提供一种安全可靠、灵活应变,应用广泛的基于图像处理与雷达的无人机自主导航系统及方法。The purpose of the present invention is to provide a safe, reliable, flexible and widely used UAV autonomous navigation system and method based on image processing and radar.
实现本发明目的的技术解决方案为:一种基于图像处理与雷达的无人机自主导航系统,包括无人机平台和地面站系统,其中无人机平台设置有动力系统、无人机飞行控制器、通信模块,无人机飞行控制器接入动力系统,所述无人机平台还设置有GPS卫星定位模块、图像处理模块、雷达系统模块及混合控制模块,混合控制模块分别与GPS卫星定位模块、图像处理模块、雷达系统模块、无人机飞行控制器及通信模块相连接;The technical solution to realize the object of the present invention is: a UAV autonomous navigation system based on image processing and radar, including a UAV platform and a ground station system, wherein the UAV platform is provided with a power system, UAV flight control device, communication module, UAV flight controller connected to the power system, the UAV platform is also provided with a GPS satellite positioning module, an image processing module, a radar system module and a hybrid control module, the hybrid control module is connected with the GPS satellite positioning module respectively Module, image processing module, radar system module, UAV flight controller and communication module are connected;
所述GPS卫星定位模块通过接收卫星信号,确定无人机当前所在经纬位置,为导航提供基本数据;所述图像处理模块包括高速摄像机、云台单元及图像处理单元;所述图像处理模块通过云台单元控制高速摄像机使其保持稳定,高速摄像机收集图像信息并输入图像处理单元,图像处理单元进行目标匹配跟踪来实现无人机跟踪飞行;所述雷达系统模块包括微波毫米波雷达单元、信号处理单元;所述雷达系统模块通过微波毫米波雷达单元来探测周围地形,并将探测信号输入信号处理单元进行目标搜索;所述混合控制模块包括无人机高速嵌入式处理单元;所述混合控制模块收集图像处理模块及雷达系统模块的信息,并通过GPS卫星定位模块得到位置信息,根据收到的信息综合处理决策飞行计划;并且混合控制模块能够执行不同飞行模式,包括低空飞行模式、高空飞行模式、悬停模式、跟踪模式。The GPS satellite positioning module determines the current longitude and latitude position of the unmanned aerial vehicle by receiving satellite signals, and provides basic data for navigation; the image processing module includes a high-speed camera, a cloud platform unit and an image processing unit; The station unit controls the high-speed camera to keep it stable, the high-speed camera collects image information and inputs it into the image processing unit, and the image processing unit performs target matching and tracking to realize the UAV tracking flight; the radar system module includes a microwave and millimeter wave radar unit, a signal processing unit; the radar system module detects the surrounding terrain through the microwave and millimeter wave radar unit, and inputs the detection signal into the signal processing unit for target search; the hybrid control module includes a high-speed embedded processing unit of the drone; the hybrid control module Collect the information of the image processing module and the radar system module, and obtain the position information through the GPS satellite positioning module, and comprehensively process and decide the flight plan according to the received information; and the hybrid control module can execute different flight modes, including low-altitude flight mode and high-altitude flight mode , hover mode, track mode.
进一步地,所述无人机飞行控制器包括超声波距离传感器、光流计传感器,所述超声波距离传感器、光流计传感器均设置于无人机平台的底部,且传感器的发射端或镜头垂直对准地面。Further, the UAV flight controller includes an ultrasonic distance sensor and an optical flow meter sensor, the ultrasonic distance sensor and the optical flow meter sensor are all arranged on the bottom of the UAV platform, and the transmitting end or the lens of the sensor is vertically opposite to the quasi-ground.
进一步地,所述图像处理模块与雷达系统模块均安装无人机平台的底部,且处在飞机的垂直重心线上,图像处理模块的高速摄像机与雷达系统模块的微波毫米波雷达单元均安装于雷达系统模块的云台单元。Further, the image processing module and the radar system module are installed on the bottom of the UAV platform, and are on the vertical center of gravity of the aircraft, and the high-speed camera of the image processing module and the microwave and millimeter wave radar unit of the radar system module are installed on the The gimbal unit of the radar system module.
进一步地,所述地面站系统包括控制系统、任务系统和监控系统,控制系统用于实时远程控制无人机;任务系统用于设置无人机自动任务,并实时自动处理调整飞机任务规划;监控系统用于查看无人机的实时数据。Further, the ground station system includes a control system, a mission system and a monitoring system, the control system is used to remotely control the UAV in real time; the mission system is used to set the automatic mission of the UAV, and automatically process and adjust the mission planning of the aircraft in real time; The system is used to view the real-time data of the drone.
一种基于图像处理与雷达的无人机自主导航方法,包括以下步骤:A method for autonomous navigation of unmanned aerial vehicles based on image processing and radar, comprising the following steps:
步骤1,在无人机平台上装载GPS卫星定位模块、图像处理模块、雷达系统模块及混合控制模块,并使混合控制模块分别与GPS卫星定位模块、图像处理模块、雷达系统模块、无人机飞行控制器及通信模块相连接;Step 1, load the GPS satellite positioning module, image processing module, radar system module and hybrid control module on the UAV platform, and make the hybrid control module work with the GPS satellite positioning module, image processing module, radar system module, UAV The flight controller is connected with the communication module;
步骤2,通过地面站系统设置无人机任务,包括航点、执行动作,无人机起飞执行任务,同时混合控制模块根据无人机任务设定飞行模式;Step 2, set the UAV mission through the ground station system, including waypoints, execution actions, UAV take off and execute the mission, and the hybrid control module sets the flight mode according to the UAV mission;
步骤3,图像处理模块、雷达系统模块同时对目标环境进行检测,并根据检测到的结果,配合无人机平台的传感器组,通过混合控制模块实时控制无人机飞行姿态;Step 3, the image processing module and the radar system module detect the target environment at the same time, and according to the detected results, cooperate with the sensor group of the UAV platform to control the UAV flight attitude in real time through the hybrid control module;
步骤4,根据无人机任务,无人机首先到达GPS定位区域,然后根据雷达系统模块的搜索结果锁定追踪目标,最后采用图像处理模块进一步识别目标,完成设定的执行动作。Step 4: According to the mission of the UAV, the UAV first arrives at the GPS positioning area, then locks and tracks the target according to the search results of the radar system module, and finally uses the image processing module to further identify the target and complete the set execution action.
进一步地,步骤2所述混合控制模块根据无人机任务设定飞行模式,飞行模式包括低空飞行模式、高空飞行模式、悬停模式、跟踪模式。Further, the hybrid control module in step 2 sets the flight mode according to the mission of the drone, and the flight modes include low-altitude flight mode, high-altitude flight mode, hovering mode, and tracking mode.
进一步地,步骤3所述图像处理模块、雷达系统模块同时对目标环境进行检测,具体为:图像处理模块通过云台单元控制高速摄像机使其保持稳定,高速摄像机收集图像信息并输入图像处理单元,图像处理单元进行目标匹配跟踪来实现无人机跟踪飞行;雷达系统模块通过微波毫米波雷达单元来探测周围地形,并将探测信号输入信号处理单元进行目标搜索。Further, the image processing module and the radar system module described in step 3 detect the target environment at the same time, specifically: the image processing module controls the high-speed camera through the pan-tilt unit to keep it stable, and the high-speed camera collects image information and inputs it to the image processing unit, The image processing unit performs target matching and tracking to realize UAV tracking flight; the radar system module detects the surrounding terrain through the microwave and millimeter wave radar unit, and inputs the detection signal into the signal processing unit for target search.
本发明与现有技术相比,其显著优点在于:(1)所述无人机根据不同任务要求,其自主控制系统执行不同模式的程序,采用最有效的方式完成任务;(2)能够自身判断航线及飞行路径,实现自主导航,可拓展性强,具有很好的自动化无人机自主导航效果;(3)具有安全可靠、灵活应变的特点,应用范围广泛。Compared with the prior art, the present invention has significant advantages in that: (1) the autonomous control system of the UAV executes programs in different modes according to different task requirements, and the most effective way is used to complete the task; (2) it can Judging the route and flight path, realizing autonomous navigation, strong scalability, and good autonomous navigation effect of automated drones; (3) It is safe, reliable, flexible and adaptable, and has a wide range of applications.
附图说明Description of drawings
图1为本发明基于图像处理与雷达的无人机自主导航系统的架构示意图。FIG. 1 is a schematic diagram of the architecture of the autonomous navigation system for UAVs based on image processing and radar in the present invention.
图2为本发明基于图像处理与雷达的无人机自主导航方法的流程图。Fig. 2 is a flow chart of the autonomous navigation method of the UAV based on image processing and radar in the present invention.
具体实施方式Detailed ways
下面结合附图及具体实施例对本发明作进一步详细描述。The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.
结合图1,本发明基于图像处理与雷达的无人机自主导航系统,包括无人机平台和地面站系统,其中无人机平台设置有动力系统、无人机飞行控制器、通信模块,无人机飞行控制器接入动力系统,所述无人机平台还设置有GPS卫星定位模块、图像处理模块、雷达系统模块及混合控制模块,混合控制模块分别与GPS卫星定位模块、图像处理模块、雷达系统模块、无人机飞行控制器及通信模块相连接;In conjunction with Fig. 1, the UAV autonomous navigation system based on image processing and radar in the present invention includes a UAV platform and a ground station system, wherein the UAV platform is provided with a power system, a UAV flight controller, and a communication module. The man-machine flight controller is connected to the power system, and the unmanned aerial vehicle platform is also provided with a GPS satellite positioning module, an image processing module, a radar system module and a hybrid control module, and the hybrid control module is connected with the GPS satellite positioning module, the image processing module, The radar system module, UAV flight controller and communication module are connected;
所述GPS卫星定位模块通过接收卫星信号,确定无人机当前所在经纬位置,为导航提供基本数据;所述图像处理模块包括高速摄像机、云台单元及图像处理单元;所述图像处理模块通过云台单元控制高速摄像机使其保持稳定,高速摄像机收集图像信息并输入图像处理单元,图像处理单元进行目标匹配跟踪来实现无人机跟踪飞行;所述雷达系统模块包括微波毫米波雷达单元、信号处理单元;所述雷达系统模块通过微波毫米波雷达单元来探测周围地形,并将探测信号输入信号处理单元进行目标搜索;所述混合控制模块包括无人机高速嵌入式处理单元;所述混合控制模块收集图像处理模块及雷达系统模块的信息,并通过GPS卫星定位模块得到位置信息,根据收到的信息综合处理决策飞行计划;并且混合控制模块能够执行不同飞行模式,包括低空飞行模式、高空飞行模式、悬停模式、跟踪模式。The GPS satellite positioning module determines the current longitude and latitude position of the unmanned aerial vehicle by receiving satellite signals, and provides basic data for navigation; the image processing module includes a high-speed camera, a cloud platform unit and an image processing unit; The station unit controls the high-speed camera to keep it stable, the high-speed camera collects image information and inputs it into the image processing unit, and the image processing unit performs target matching and tracking to realize the UAV tracking flight; the radar system module includes a microwave and millimeter wave radar unit, a signal processing unit; the radar system module detects the surrounding terrain through the microwave and millimeter wave radar unit, and inputs the detection signal into the signal processing unit for target search; the hybrid control module includes a high-speed embedded processing unit of the drone; the hybrid control module Collect the information of the image processing module and the radar system module, and obtain the position information through the GPS satellite positioning module, and comprehensively process and decide the flight plan according to the received information; and the hybrid control module can execute different flight modes, including low-altitude flight mode and high-altitude flight mode , hover mode, track mode.
所述图像处理模块的高速摄像机采用Gopro4Silver,配有高速SD储存卡;云台单元采用飞宇MINI3D三轴云台;图像处理单元采用MK802IV作为嵌入式处理模块且装有Android操作系统及OpenCV的运行程序;电源使用12V稳压模块。飞宇MINI云台无刷电机受控于MK802IV嵌入式处理模块,摄像机Gopro视频输出线分别连接无线图像传输器以及MK802IV。The high-speed camera of the image processing module adopts Gopro4Silver, and is equipped with a high-speed SD memory card; the pan-tilt unit adopts Feiyu MINI3D three-axis pan-tilt; the image processing unit adopts MK802IV as an embedded processing module and is equipped with Android operating system and OpenCV operation Program; the power supply uses a 12V voltage regulator module. The brushless motor of Feiyu MINI gimbal is controlled by the MK802IV embedded processing module, and the Gopro video output cable of the camera is connected to the wireless image transmitter and MK802IV respectively.
所述雷达系统模块包括微波毫米波雷达单元、信号处理单元;信号处理单元采用FPGA高速嵌入式系统,其毫米波雷达天线方向与摄像机方向一致,采集距离数据及物体属性信息,信号处理单元收集模拟信号,A/D采样后进行计算。若在目标追踪模式下,需与数据库设置的数据对比,从而实现搜索目标功能。The radar system module includes a microwave and millimeter-wave radar unit and a signal processing unit; the signal processing unit adopts an FPGA high-speed embedded system, and the direction of the millimeter-wave radar antenna is consistent with the direction of the camera to collect distance data and object attribute information, and the signal processing unit collects and simulates The signal is calculated after A/D sampling. If it is in the target tracking mode, it needs to be compared with the data set in the database to realize the search target function.
所述混合控制模块为最高控制模块,采用Linux嵌入式系统作为平台,它收集图像处理模块的移动信息及雷达模块的距离信息,并通过GPS系统得知经纬位置信息,根据任务来综合处理决策飞行计划。此外具有控制模式切换,其模式包括人工遥控控制及无人机程序自动控制。飞行控制器收集传感器组的数据全部转交给混合控制模块,混合控制模块根据信息实时计算当前飞机状态,并实时调整。所述图像处理模块、雷达系统模块和混合控制模块均属于无人机平台的负载。The hybrid control module is the highest control module, which adopts a Linux embedded system as a platform. It collects the movement information of the image processing module and the distance information of the radar module, and obtains the longitude and latitude position information through the GPS system, and comprehensively processes and decides to fly according to the task. plan. In addition, it has control mode switching, and its modes include manual remote control and automatic control of UAV programs. The data collected by the flight controller from the sensor group is all transferred to the hybrid control module, and the hybrid control module calculates the current aircraft status in real time according to the information and adjusts it in real time. The image processing module, radar system module and hybrid control module all belong to the load of the UAV platform.
进一步地,所述无人机飞行控制器采用有GPS导航能力的APM飞行控制系统,在飞行控制系统原有传感器组基础上,还包括超声波距离传感器、光流计传感器,其原有传感器组包括气压计,加速度计,角加速度计,电子罗盘,6HGPS接收器,电流电压传感器;所述超声波距离传感器、光流计传感器均设置于无人机平台的底部,且传感器的发射端或镜头垂直对准地面。Further, the UAV flight controller adopts an APM flight control system with GPS navigation capability. On the basis of the original sensor group of the flight control system, it also includes an ultrasonic distance sensor and an optical flow meter sensor. The original sensor group includes Barometer, accelerometer, angular accelerometer, electronic compass, 6HGPS receiver, current and voltage sensor; the ultrasonic distance sensor and optical flow meter sensor are all arranged at the bottom of the UAV platform, and the transmitter or lens of the sensor is vertically opposite to the quasi-ground.
进一步地,所述图像处理模块与雷达系统模块均安装无人机平台的底部,且处在飞机的垂直重心线上,图像处理模块的高速摄像机与雷达系统模块的微波毫米波雷达单元均安装于雷达系统模块的云台单元。Further, the image processing module and the radar system module are installed on the bottom of the UAV platform, and are on the vertical center of gravity of the aircraft, and the high-speed camera of the image processing module and the microwave and millimeter wave radar unit of the radar system module are installed on the The gimbal unit of the radar system module.
进一步地,所述地面站系统包括控制系统、任务系统和监控系统,控制系统用于实时远程控制无人机;任务系统用于设置无人机自动任务,并实时自动处理调整飞机任务规划;监控系统用于查看无人机的实时数据。Further, the ground station system includes a control system, a mission system and a monitoring system, the control system is used to remotely control the UAV in real time; the mission system is used to set the automatic mission of the UAV, and automatically process and adjust the mission planning of the aircraft in real time; The system is used to view the real-time data of the drone.
结合图2,本发明基于图像处理与雷达的无人机自主导航方法,包括以下步骤:In conjunction with Fig. 2, the present invention is based on the UAV autonomous navigation method of image processing and radar, comprises the following steps:
步骤1,在无人机平台上装载GPS卫星定位模块、图像处理模块、雷达系统模块及混合控制模块,并使混合控制模块分别与GPS卫星定位模块、图像处理模块、雷达系统模块、无人机飞行控制器及通信模块相连接;Step 1, load the GPS satellite positioning module, image processing module, radar system module and hybrid control module on the UAV platform, and make the hybrid control module work with the GPS satellite positioning module, image processing module, radar system module, UAV The flight controller is connected with the communication module;
步骤2,通过地面站系统设置无人机任务,包括航点、执行动作,无人机起飞执行任务,同时混合控制模块根据无人机任务设定飞行模式;Step 2, set the UAV mission through the ground station system, including waypoints, execution actions, UAV take off and execute the mission, and the hybrid control module sets the flight mode according to the UAV mission;
步骤3,图像处理模块、雷达系统模块同时对目标环境进行检测,并根据检测到的结果,配合无人机平台的传感器组,通过混合控制模块实时控制无人机飞行姿态;Step 3, the image processing module and the radar system module detect the target environment at the same time, and according to the detected results, cooperate with the sensor group of the UAV platform to control the UAV flight attitude in real time through the hybrid control module;
步骤4,根据无人机任务,无人机首先到达GPS定位区域,然后根据雷达系统模块的搜索结果锁定追踪目标,最后采用图像处理模块进一步识别目标,完成设定的执行动作。Step 4: According to the mission of the UAV, the UAV first arrives at the GPS positioning area, then locks and tracks the target according to the search results of the radar system module, and finally uses the image processing module to further identify the target and complete the set execution action.
进一步地,步骤2所述混合控制模块根据无人机任务设定飞行模式,飞行模式包括低空飞行模式、高空飞行模式、悬停模式、跟踪模式。Further, the hybrid control module in step 2 sets the flight mode according to the mission of the drone, and the flight modes include low-altitude flight mode, high-altitude flight mode, hovering mode, and tracking mode.
进一步地,步骤3所述图像处理模块、雷达系统模块同时对目标环境进行检测,具体为:图像处理模块通过云台单元控制高速摄像机使其保持稳定,高速摄像机收集图像信息并输入图像处理单元,图像处理单元进行目标匹配跟踪来实现无人机跟踪飞行;雷达系统模块通过微波毫米波雷达单元来探测周围地形,并将探测信号输入信号处理单元进行目标搜索。Further, the image processing module and the radar system module described in step 3 detect the target environment at the same time, specifically: the image processing module controls the high-speed camera through the pan-tilt unit to keep it stable, and the high-speed camera collects image information and inputs it to the image processing unit, The image processing unit performs target matching and tracking to realize UAV tracking flight; the radar system module detects the surrounding terrain through the microwave and millimeter wave radar unit, and inputs the detection signal into the signal processing unit for target search.
实施例1Example 1
本实施例以交通事故及追踪肇事车辆为例,对本发明做进一步详细说明。In this embodiment, taking a traffic accident and tracking the vehicle involved in the accident as examples, the present invention is further described in detail.
本发明基于图像处理与雷达的无人机自主导航系统及方法,系统包括交通无人机控制终端及分布在城市中的巡逻无人机;交通巡逻无人机硬件包括无人机平台、图像处理模块、雷达系统模块及混合控制单元模块,图像处理模块分为高速摄像机Gopro相机、飞宇MINI云台及Android嵌入式MK802IV图像处理单元模块;雷达系统模块分为微波毫米波雷达模块,高速FPGA信号处理模块;混合控制模块包括无人机高速Linux嵌入式处理单元并与无人机飞行器控制单元相连接;交通无人机控制终端通过网络及雷达实时跟踪锁定无人机,并可以上传指令及下载图像信息及无人机状态信息。The present invention is based on image processing and radar UAV autonomous navigation system and method, the system includes traffic UAV control terminal and patrol UAV distributed in the city; traffic patrol UAV hardware includes UAV platform, image processing module, radar system module and hybrid control unit module, the image processing module is divided into high-speed camera Gopro camera, Feiyu MINI gimbal and Android embedded MK802IV image processing unit module; the radar system module is divided into microwave millimeter wave radar module, high-speed FPGA signal The processing module; the hybrid control module includes a high-speed Linux embedded processing unit of the UAV and is connected with the UAV aircraft control unit; the traffic UAV control terminal tracks and locks the UAV in real time through the network and radar, and can upload instructions and download Image information and UAV status information.
步骤1,在组装好或完整的无人机平台上装载图像处理模块、雷达系统模块及混合控制模块;其中雷达天线及摄像机都固定在飞宇MINI三轴云台上,云台固定在无人机整体中心处,之后连接设备之间的数据线及电源线,设置好所有设备的固件,使所有功能都能正常运行;Step 1. Load the image processing module, radar system module and hybrid control module on the assembled or complete UAV platform; the radar antenna and camera are fixed on the Feiyu MINI three-axis gimbal, and the gimbal is fixed on the unmanned At the center of the machine as a whole, then connect the data cables and power cables between the devices, and set the firmware of all devices so that all functions can run normally;
步骤2,将无人机整体系统通电测试,检查使通信系统正常工作,若信息反馈正常便可开始后续工作,自检程序完成后,无人机系统进入待机状态;Step 2. Power on the overall system of the UAV to test, check to make the communication system work normally, and start the follow-up work if the information feedback is normal. After the self-inspection procedure is completed, the UAV system enters the standby state;
步骤3,交通无人机控制终端设置无人机任务,包括航点、执行动作,跟踪程序,完成设置后,执行任务,无人机在巡逻驻扎地区起飞;Step 3, the traffic UAV control terminal sets the UAV task, including the waypoint, execution action, and tracking program. After the setting is completed, the task is executed, and the UAV takes off in the patrolling area;
步骤4,图像处理模块、雷达系统模块检测环境信息,根据任务规划,首先通过到GPS定位,到达交通无人机控制终端选择的道路及地域巡逻,同时混合控制模块根据无人机平台自身传感器组,及图像处理模块、雷达系统模块反馈的数据,实时控制无人机飞行姿态,使无人机平稳运行以及保持航线;Step 4: The image processing module and the radar system module detect the environmental information. According to the task planning, firstly, through GPS positioning, arrive at the road and area patrol selected by the traffic UAV control terminal. , and the data fed back by the image processing module and the radar system module to control the flight attitude of the UAV in real time, so that the UAV can run smoothly and maintain the route;
步骤5,根据任务信息,如果遇到突发事件,有事故,交通无人机控制终端优先选择控制离案发现场最近的交通巡逻无人机,通过GPS定位使快速飞到事故地点上空区域,然后根据雷达系统搜索匹配事故目标,锁定后追踪目标,并制定最高效航线飞向事故地点,在一定距离内,使用图像识别系统对目标更精确识别匹配,同时把视频及图像资料返回交通无人机控制终端;若无肇事者逃脱,则不需跟踪,执行步骤7;Step 5, according to the task information, if there is an emergency or an accident, the traffic drone control terminal will give priority to controlling the traffic patrol drone closest to the crime scene, and quickly fly to the area above the accident site through GPS positioning. Then search and match the accident target according to the radar system, track the target after locking, and formulate the most efficient route to fly to the accident site. Within a certain distance, use the image recognition system to identify and match the target more accurately, and return the video and image data to the traffic unmanned machine control terminal; if no perpetrator escapes, then no tracking is required, and step 7 is performed;
步骤6,若有肇事者逃脱,根据采集的图像信息及雷达采集的目标信息,联合追踪肇事者,并时刻回传肇事者GPS及视频图像信息给交通无人机控制终端,交通部门则可以通知民警联合行动,高效解决事故。Step 6. If the perpetrator escapes, according to the collected image information and the target information collected by the radar, jointly track the perpetrator, and send back the perpetrator's GPS and video image information to the traffic drone control terminal at all times, and the traffic department can notify The police worked together to resolve the accident efficiently.
步骤7,无人机完成任务后继续巡逻任务,任务完成后或电量低则降落在起附近无人机驻扎点。Step 7. After the drone completes the task, it continues to patrol. After the task is completed or the battery is low, it lands at a nearby drone station.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510653965.5A CN105157708A (en) | 2015-10-10 | 2015-10-10 | Unmanned aerial vehicle autonomous navigation system and method based on image processing and radar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510653965.5A CN105157708A (en) | 2015-10-10 | 2015-10-10 | Unmanned aerial vehicle autonomous navigation system and method based on image processing and radar |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105157708A true CN105157708A (en) | 2015-12-16 |
Family
ID=54798649
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510653965.5A Pending CN105157708A (en) | 2015-10-10 | 2015-10-10 | Unmanned aerial vehicle autonomous navigation system and method based on image processing and radar |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105157708A (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105551280A (en) * | 2016-03-09 | 2016-05-04 | 武汉博感空间科技有限公司 | Unmanned aerial vehicle traffic signal indicating system |
CN105676870A (en) * | 2016-01-18 | 2016-06-15 | 国家基础地理信息中心 | Photo control point information collecting method and system based on unmanned plane |
CN105721751A (en) * | 2016-03-28 | 2016-06-29 | 中国人民解放军第三军医大学第三附属医院 | Method for collecting information of night traffic accident scene |
CN105809687A (en) * | 2016-03-08 | 2016-07-27 | 清华大学 | Monocular vision ranging method based on edge point information in image |
CN106054737A (en) * | 2016-07-19 | 2016-10-26 | 陈昊 | Photosensitive sensor-based unmanned aerial vehicle visual recognition device and using method thereof |
CN106354157A (en) * | 2016-11-28 | 2017-01-25 | 深圳明创自控技术有限公司 | A drone autonomous flight system |
CN106584516A (en) * | 2016-11-01 | 2017-04-26 | 河池学院 | Intelligent photographing robot for tracing specified object |
CN107087435A (en) * | 2016-09-27 | 2017-08-22 | 深圳市大疆创新科技有限公司 | Control method, control device, electronic installation and flight control system |
CN107094245A (en) * | 2017-06-05 | 2017-08-25 | 北京天承遥感科技有限公司 | A kind of artificial intelligence unmanned plane city management target identification and alarm supplying system |
CN107148777A (en) * | 2016-10-26 | 2017-09-08 | 深圳前海达闼云端智能科技有限公司 | Intelligent patrol device, cloud control device, patrol method, control method, robot, controller, and non-transitory computer-readable storage medium |
CN107200130A (en) * | 2017-04-19 | 2017-09-26 | 江苏大学 | A kind of brainpower insufflation agricultural chemicals aircraft and method |
CN107291092A (en) * | 2017-06-15 | 2017-10-24 | 上海工程技术大学 | A kind of air-ground coordination UAS of WiFi supports |
CN107290960A (en) * | 2017-06-19 | 2017-10-24 | 江西洪都航空工业集团有限责任公司 | A kind of intelligence multiple control system of large-scale intelligent grass-removing robot |
CN107784841A (en) * | 2017-11-22 | 2018-03-09 | 成都大学 | Traffic monitoring system and monitoring method based on aircraft |
WO2018072509A1 (en) * | 2016-10-19 | 2018-04-26 | 广东容祺智能科技有限公司 | Automatic obstacle-avoidance navigation system and method for unmanned aerial vehicle |
CN108062108A (en) * | 2017-12-11 | 2018-05-22 | 郑宏远 | A kind of intelligent multi-rotor unmanned aerial vehicle and its implementation based on airborne computer |
CN108572380A (en) * | 2017-06-17 | 2018-09-25 | 苏州博田自动化技术有限公司 | A kind of air navigation aid and its application based on satellite navigation and vision guided navigation |
CN108627152A (en) * | 2018-04-25 | 2018-10-09 | 珠海全志科技股份有限公司 | A kind of air navigation aid of the miniature drone based on Fusion |
CN108803633A (en) * | 2018-07-25 | 2018-11-13 | 安康学院 | A kind of unmanned plane low latitude monitoring system based on mobile communications network |
CN109186553A (en) * | 2018-08-15 | 2019-01-11 | 上海海洋大学 | Tuna seine detection of fish school tracing system and method based on unmanned air vehicle technique |
CN109238240A (en) * | 2018-10-22 | 2019-01-18 | 武汉大势智慧科技有限公司 | A kind of unmanned plane oblique photograph method that taking landform into account and its camera chain |
CN109634297A (en) * | 2018-12-18 | 2019-04-16 | 辽宁壮龙无人机科技有限公司 | A multi-rotor unmanned aerial vehicle based on optical flow sensor positioning and navigation and its control method |
CN112556691A (en) * | 2020-11-26 | 2021-03-26 | 广东工业大学 | Unmanned aerial vehicle autonomous navigation and temperature measurement system and method based on relative distance and displacement measurement value |
CN113716048A (en) * | 2021-07-22 | 2021-11-30 | 北京航空航天大学 | Taking-off and landing method for floating type air mobile airport platform carrying fixed-wing aircraft |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080215204A1 (en) * | 2006-12-06 | 2008-09-04 | Mercury Computer Systems, Inc. | Methods, apparatus and systems for enhanced synthetic vision and multi-sensor data fusion to improve operational capabilities of unmanned aerial vehicles |
CN101667032A (en) * | 2008-09-03 | 2010-03-10 | 中国科学院自动化研究所 | Vision-based target tracking system using unmanned helicopter |
CN102707724A (en) * | 2012-06-05 | 2012-10-03 | 清华大学 | Visual localization and obstacle avoidance method and system for unmanned plane |
CN103744429A (en) * | 2013-02-07 | 2014-04-23 | 山东英特力光通信开发有限公司 | Flight control system of small unmanned helicopter |
CN104076817A (en) * | 2014-06-18 | 2014-10-01 | 北京计算机技术及应用研究所 | High-definition video aerial photography multimode sensor self-outer-sensing intelligent navigation system and method |
CN104950906A (en) * | 2015-06-15 | 2015-09-30 | 中国人民解放军国防科学技术大学 | Unmanned aerial vehicle remote measuring and control system and method based on mobile communication network |
-
2015
- 2015-10-10 CN CN201510653965.5A patent/CN105157708A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080215204A1 (en) * | 2006-12-06 | 2008-09-04 | Mercury Computer Systems, Inc. | Methods, apparatus and systems for enhanced synthetic vision and multi-sensor data fusion to improve operational capabilities of unmanned aerial vehicles |
CN101667032A (en) * | 2008-09-03 | 2010-03-10 | 中国科学院自动化研究所 | Vision-based target tracking system using unmanned helicopter |
CN102707724A (en) * | 2012-06-05 | 2012-10-03 | 清华大学 | Visual localization and obstacle avoidance method and system for unmanned plane |
CN103744429A (en) * | 2013-02-07 | 2014-04-23 | 山东英特力光通信开发有限公司 | Flight control system of small unmanned helicopter |
CN104076817A (en) * | 2014-06-18 | 2014-10-01 | 北京计算机技术及应用研究所 | High-definition video aerial photography multimode sensor self-outer-sensing intelligent navigation system and method |
CN104950906A (en) * | 2015-06-15 | 2015-09-30 | 中国人民解放军国防科学技术大学 | Unmanned aerial vehicle remote measuring and control system and method based on mobile communication network |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105676870A (en) * | 2016-01-18 | 2016-06-15 | 国家基础地理信息中心 | Photo control point information collecting method and system based on unmanned plane |
CN105676870B (en) * | 2016-01-18 | 2018-08-21 | 国家基础地理信息中心 | A kind of photo control point information collecting method and system based on unmanned plane |
CN105809687A (en) * | 2016-03-08 | 2016-07-27 | 清华大学 | Monocular vision ranging method based on edge point information in image |
CN105809687B (en) * | 2016-03-08 | 2019-09-27 | 清华大学 | A Monocular Vision Odometry Method Based on Edge Point Information in Image |
CN105551280A (en) * | 2016-03-09 | 2016-05-04 | 武汉博感空间科技有限公司 | Unmanned aerial vehicle traffic signal indicating system |
CN105721751A (en) * | 2016-03-28 | 2016-06-29 | 中国人民解放军第三军医大学第三附属医院 | Method for collecting information of night traffic accident scene |
CN106054737A (en) * | 2016-07-19 | 2016-10-26 | 陈昊 | Photosensitive sensor-based unmanned aerial vehicle visual recognition device and using method thereof |
CN107087435A (en) * | 2016-09-27 | 2017-08-22 | 深圳市大疆创新科技有限公司 | Control method, control device, electronic installation and flight control system |
WO2018058309A1 (en) * | 2016-09-27 | 2018-04-05 | 深圳市大疆创新科技有限公司 | Control method, control device, electronic device, and aerial vehicle control system |
WO2018072509A1 (en) * | 2016-10-19 | 2018-04-26 | 广东容祺智能科技有限公司 | Automatic obstacle-avoidance navigation system and method for unmanned aerial vehicle |
CN107148777A (en) * | 2016-10-26 | 2017-09-08 | 深圳前海达闼云端智能科技有限公司 | Intelligent patrol device, cloud control device, patrol method, control method, robot, controller, and non-transitory computer-readable storage medium |
CN107148777B (en) * | 2016-10-26 | 2019-11-08 | 深圳前海达闼云端智能科技有限公司 | Intelligent patrol equipment, cloud control device, patrol method and control method |
CN106584516A (en) * | 2016-11-01 | 2017-04-26 | 河池学院 | Intelligent photographing robot for tracing specified object |
CN106354157A (en) * | 2016-11-28 | 2017-01-25 | 深圳明创自控技术有限公司 | A drone autonomous flight system |
CN106354157B (en) * | 2016-11-28 | 2019-05-14 | 中山市昌源模型有限公司 | A drone autonomous flight system |
CN107200130A (en) * | 2017-04-19 | 2017-09-26 | 江苏大学 | A kind of brainpower insufflation agricultural chemicals aircraft and method |
CN107200130B (en) * | 2017-04-19 | 2024-03-22 | 江苏大学 | Intelligent pesticide spraying aircraft and method |
CN107094245A (en) * | 2017-06-05 | 2017-08-25 | 北京天承遥感科技有限公司 | A kind of artificial intelligence unmanned plane city management target identification and alarm supplying system |
CN107291092A (en) * | 2017-06-15 | 2017-10-24 | 上海工程技术大学 | A kind of air-ground coordination UAS of WiFi supports |
CN108572380A (en) * | 2017-06-17 | 2018-09-25 | 苏州博田自动化技术有限公司 | A kind of air navigation aid and its application based on satellite navigation and vision guided navigation |
CN108572380B (en) * | 2017-06-17 | 2022-02-08 | 苏州博田自动化技术有限公司 | Navigation method based on satellite navigation and visual navigation and application thereof |
CN107290960A (en) * | 2017-06-19 | 2017-10-24 | 江西洪都航空工业集团有限责任公司 | A kind of intelligence multiple control system of large-scale intelligent grass-removing robot |
CN107784841A (en) * | 2017-11-22 | 2018-03-09 | 成都大学 | Traffic monitoring system and monitoring method based on aircraft |
CN108062108A (en) * | 2017-12-11 | 2018-05-22 | 郑宏远 | A kind of intelligent multi-rotor unmanned aerial vehicle and its implementation based on airborne computer |
CN108627152A (en) * | 2018-04-25 | 2018-10-09 | 珠海全志科技股份有限公司 | A kind of air navigation aid of the miniature drone based on Fusion |
CN108803633A (en) * | 2018-07-25 | 2018-11-13 | 安康学院 | A kind of unmanned plane low latitude monitoring system based on mobile communications network |
CN109186553A (en) * | 2018-08-15 | 2019-01-11 | 上海海洋大学 | Tuna seine detection of fish school tracing system and method based on unmanned air vehicle technique |
CN109238240B (en) * | 2018-10-22 | 2021-01-08 | 武汉大势智慧科技有限公司 | Unmanned aerial vehicle oblique photography method considering terrain and photography system thereof |
CN109238240A (en) * | 2018-10-22 | 2019-01-18 | 武汉大势智慧科技有限公司 | A kind of unmanned plane oblique photograph method that taking landform into account and its camera chain |
CN109634297A (en) * | 2018-12-18 | 2019-04-16 | 辽宁壮龙无人机科技有限公司 | A multi-rotor unmanned aerial vehicle based on optical flow sensor positioning and navigation and its control method |
CN112556691A (en) * | 2020-11-26 | 2021-03-26 | 广东工业大学 | Unmanned aerial vehicle autonomous navigation and temperature measurement system and method based on relative distance and displacement measurement value |
CN112556691B (en) * | 2020-11-26 | 2022-08-02 | 广东工业大学 | A method for autonomous navigation and temperature measurement system of unmanned aerial vehicle |
CN113716048A (en) * | 2021-07-22 | 2021-11-30 | 北京航空航天大学 | Taking-off and landing method for floating type air mobile airport platform carrying fixed-wing aircraft |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105157708A (en) | Unmanned aerial vehicle autonomous navigation system and method based on image processing and radar | |
US11604479B2 (en) | Methods and system for vision-based landing | |
JP7606812B2 (en) | Adaptive Detect and Avoid Systems | |
US9977434B2 (en) | Automatic tracking mode for controlling an unmanned aerial vehicle | |
EP3077879B1 (en) | Imaging method and apparatus | |
US11046430B1 (en) | Intelligent trajectory adviser system for unmanned aerial vehicles in complex environments | |
US10133281B1 (en) | Leading drone system | |
EP3077760B1 (en) | Payload delivery | |
CN105302150A (en) | Unmanned aircraft infinite endurance system | |
CN111819610A (en) | Air situational information and traffic management systems for unmanned and manned aerial vehicles | |
EP3077880B1 (en) | Imaging method and apparatus | |
CN104007767A (en) | Unmanned aerial vehicle space navigation method, unmanned aerial vehicle control system and unmanned aerial vehicle control device | |
KR20160072425A (en) | Drone monitoring and control system | |
CN106325300A (en) | Remote condition monitoring and controlling system of unmanned aerial vehicle based on GSM-4G communication | |
KR20190048748A (en) | Autonomous flight system using dual GPS and method thereof | |
AU2017251682A1 (en) | Systems and methods for establishing a flight pattern adjacent to a target for a vehicle to follow | |
CN110997488A (en) | System and method for dynamically controlling parameters for processing sensor output data | |
WO2015082594A1 (en) | Determining routes for aircraft | |
GB2522327A (en) | Determining routes for aircraft | |
EP2881827A1 (en) | Imaging method and apparatus | |
EP2881697A1 (en) | Capturing and processing images | |
GB2522328A (en) | Payload delivery | |
EP2881825A1 (en) | Imaging method and apparatus | |
EP2881824A1 (en) | Imaging method and system | |
EP2881698A1 (en) | Payload delivery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20151216 |
|
RJ01 | Rejection of invention patent application after publication |