[go: up one dir, main page]

CN104751176B - A kind of target in hyperspectral remotely sensed image band selection method - Google Patents

A kind of target in hyperspectral remotely sensed image band selection method Download PDF

Info

Publication number
CN104751176B
CN104751176B CN201510129917.6A CN201510129917A CN104751176B CN 104751176 B CN104751176 B CN 104751176B CN 201510129917 A CN201510129917 A CN 201510129917A CN 104751176 B CN104751176 B CN 104751176B
Authority
CN
China
Prior art keywords
mrow
algorithm
population
evolution
populations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510129917.6A
Other languages
Chinese (zh)
Other versions
CN104751176A (en
Inventor
高红民
李臣明
王艳
陈玲慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201510129917.6A priority Critical patent/CN104751176B/en
Publication of CN104751176A publication Critical patent/CN104751176A/en
Application granted granted Critical
Publication of CN104751176B publication Critical patent/CN104751176B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Analysis (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

本发明公开了一种基于混合二进制粒子群差分进化的高光谱遥感影像波段选择方法,首先对原始高光谱遥感影像进行预处理,将双种群个体和算法参数初始化,然后应用混合二进制粒子群差分进化(HBPSODE)法,让双种群并行迭代并通过种群之间传递最优解信息,并利用SVM分类器计算分类精度作为适应度值,更新进化直至达到规定进化次数或达到最大精度为止。The invention discloses a hyperspectral remote sensing image band selection method based on mixed binary particle swarm differential evolution. Firstly, the original hyperspectral remote sensing image is preprocessed, dual population individuals and algorithm parameters are initialized, and then mixed binary particle swarm differential evolution is applied. (HBPSODE) method, let the two populations iterate in parallel and transmit the optimal solution information between the populations, and use the SVM classifier to calculate the classification accuracy as the fitness value, and update the evolution until it reaches the specified number of evolutions or reaches the maximum accuracy.

Description

一种高光谱遥感影像波段选择方法A method for band selection of hyperspectral remote sensing images

技术领域technical field

本发明涉及一种高光谱遥感影像波段选择方法,具体为一种基于混合二进制粒子群差分进化的、以获得最优波段组合为目标的基于封装式HBPSODE-SVM算法的高光谱遥感影像波段选择方法,属于高光谱遥感图像处理技术领域。The present invention relates to a hyperspectral remote sensing image band selection method, specifically a hyperspectral remote sensing image band selection method based on a packaged HBPSODE-SVM algorithm based on mixed binary particle swarm differential evolution and aiming at obtaining the optimal band combination , belonging to the technical field of hyperspectral remote sensing image processing.

背景技术Background technique

遥感(Remote Sensing)是一门利用电磁波原理来获取远方信号并使之成像,能够遥远地感受感知远方事物的技术,是一门新兴科学。随着计算机技术及光学技术的提高,遥感技术也得到了迅速的发展。近年来,各式各样的遥感卫星不断成功发射,推动了遥感数据获取技术朝着三高(高空间分辨率、高光谱分辨率和高时间分辨率)和三多(多平台、多传感器、多角度)方向发展。Remote Sensing (Remote Sensing) is a technology that uses the principle of electromagnetic waves to obtain distant signals and image them, and can feel and perceive distant things remotely. It is a new science. With the improvement of computer technology and optical technology, remote sensing technology has also been developed rapidly. In recent years, a variety of remote sensing satellites have been successfully launched, which has promoted the remote sensing data acquisition technology towards three high (high spatial resolution, high spectral resolution and high temporal resolution) and three multi (multi-platform, multi-sensor, multi-angle) development direction.

高光谱遥感具有光谱分辨率高的特点,它通过在不同空间平台上搭载高光谱传感器,从而可以在电磁波谱的可见光、近红外、中红外和热红外波段范围内,以连续的光谱波段对地表区域同时成像,波段数目可达到数十以致数百个,并获得地物连续的光谱信息,从而实现了地物空间、辐射和光谱信息的同步获取。与常规遥感相比,主要区别在于高光谱遥感是窄波段成像,且除了二维的空间信息外,还增加了一维光谱信息,使得遥感技术的应用领域得到了拓展。Hyperspectral remote sensing has the characteristics of high spectral resolution. By carrying hyperspectral sensors on different space platforms, it can measure the surface of the earth in continuous spectral bands in the visible, near-infrared, mid-infrared and thermal infrared bands of the electromagnetic spectrum. The area is imaged at the same time, the number of bands can reach dozens or even hundreds, and continuous spectral information of ground objects is obtained, thus realizing the simultaneous acquisition of space, radiation and spectral information of ground objects. Compared with conventional remote sensing, the main difference is that hyperspectral remote sensing is narrow-band imaging, and in addition to two-dimensional spatial information, one-dimensional spectral information is added, which expands the application field of remote sensing technology.

高光谱遥感可以探测到更为精细的光谱特性,高光谱图像具有常规遥感无法企及的光谱信息,有利于地物分类、识别和混合像元分解等处理。但是高光谱图像在光谱信息量增加的同时,也增加了数据的维数,使得图像的数据量激增。其较高的维数和波段间的相关性不仅会使运算变得复杂,处理速度大大下降,而且在有限样本的情况下,可能会导致分类精度降低。当成像光谱仪获得高光谱图像数据后,波段选择显得尤为重要。Hyperspectral remote sensing can detect finer spectral characteristics. Hyperspectral images have spectral information that cannot be obtained by conventional remote sensing. However, while the amount of spectral information in hyperspectral images increases, the dimensionality of data also increases, which makes the amount of image data surge. Its high dimensionality and inter-band correlation will not only complicate the calculation and greatly reduce the processing speed, but also may lead to a decrease in classification accuracy in the case of limited samples. When the imaging spectrometer obtains the hyperspectral image data, the band selection is particularly important.

高光谱遥感影像波段选择可以被看作是一个NP难组合优化问题,用智能次优搜索算法依照评价准则函数能从全波段中选择出若干个波段组成对分类精度有较好性能的波段组合。常见的智能算法已经被成功应用到波段选择当中,但是其缺陷也很快暴露出来,遗传算法不能在有限的时间内有效地收敛,蚁群算法由于其初始信息素匮乏求解速度慢,一般需要较长的搜索时间,且易出现早熟现象。粒子群算法虽然收敛速度快,但精度不高容易出现早熟。PSO算法和DE算法都属于基于群体智能的新型启发式算法,都可以单独运用于高光谱遥感影像波段选择当中。但是两种算法都存在着一些缺陷,在种群迭代的初期个体保持着较高的多样性,随着迭代次数的增加,PSO算法中的个体逐步靠近种群中最优粒子,DE算法则在执行选择操作时采用贪心策略,即只有当变异个体比当前个体的适应度函数值更优秀时候才能参与下一次迭代进化。这些进化机制虽然可以加快算法收敛速度,但也使得种群个体间的差异逐渐缩小,种群的多样性也随之减小,此时种群易于陷入局部最优解,即适应度函数值变化缓慢或者几乎没有变化。针对两种算法的缺陷,本发明的方法是采用双种群进化策略,让两种算法同时迭代进化寻找最优波段组合解,通过一种信息交流机制来帮助彼此种群脱离局部最优解。Hyperspectral remote sensing image band selection can be regarded as an NP-hard combinatorial optimization problem. Using the intelligent suboptimal search algorithm according to the evaluation criterion function, several bands can be selected from all bands to form a band combination with better performance for classification accuracy. The common intelligent algorithm has been successfully applied to the band selection, but its defects are quickly exposed. The genetic algorithm cannot effectively converge within a limited time. The ant colony algorithm generally needs more Long search time, and prone to premature phenomenon. Although the particle swarm optimization algorithm has a fast convergence speed, its precision is not high and it is prone to premature. Both the PSO algorithm and the DE algorithm are new heuristic algorithms based on swarm intelligence, and both can be used independently in the band selection of hyperspectral remote sensing images. However, both algorithms have some defects. In the initial stage of population iteration, the individuals maintain a high diversity. With the increase of the number of iterations, the individuals in the PSO algorithm gradually approach the optimal particle in the population, and the DE algorithm is performing selection. The greedy strategy is adopted in the operation, that is, only when the mutant individual has a better fitness function value than the current individual can it participate in the next iterative evolution. Although these evolutionary mechanisms can speed up the convergence speed of the algorithm, they also make the differences between individuals in the population gradually narrow, and the diversity of the population also decreases. no change. Aiming at the defects of the two algorithms, the method of the present invention adopts a dual-population evolutionary strategy, allowing the two algorithms to iteratively evolve simultaneously to find the optimal band combination solution, and to help each other's populations escape from the local optimal solution through an information exchange mechanism.

发明内容Contents of the invention

发明目的:为了克服现有高光谱遥感图像波段选择技术上的不足,提高分类精度,本发明提供了一种高光谱波段选择方法,是一种以获得最优波段组合为目标的基于封装式混合二进制粒子群差分进化(HBPSODE-SVM)算法的波段选择方法。Purpose of the invention: In order to overcome the deficiencies in the existing hyperspectral remote sensing image band selection technology and improve the classification accuracy, the present invention provides a hyperspectral band selection method, which is a package-based hybrid method aimed at obtaining the optimal band combination Band Selection Method for Binary Particle Swarm Differential Evolution (HBPSODE-SVM) Algorithm.

技术方案:一种高光谱遥感影像波段选择方法,首先对原始高光谱遥感影像进行预处理,将双种群个体和算法参数初始化,然后应用混合二进制粒子群差分进化(HBPSODE)法,让双种群并行迭代并通过种群之间传递最优解信息,并利用SVM分类器计算分类精度作为适应度值,更新进化直至达到规定进化次数或达到最大精度为止。Technical solution: A hyperspectral remote sensing image band selection method. First, the original hyperspectral remote sensing image is preprocessed, the dual population individuals and algorithm parameters are initialized, and then the hybrid binary particle swarm differential evolution (HBPSODE) method is applied to make the dual populations parallel Iterate and pass the optimal solution information between the populations, and use the SVM classifier to calculate the classification accuracy as the fitness value, and update the evolution until the specified number of evolutions is reached or the maximum accuracy is reached.

对PSO算法和DE算法做出相应的修改,提出一种混合编码的二进制差分进化算法,使其能拓展到离散域上;首先定义辅助搜索空间S’=[-a,a]d,a为正整数,解空间S={0,1}d,d为问题的维数;然后由辅助搜索空间D维实数向量X加解空间二进制D维向量B即(X,B)作为个体(或变异体)的混合编码表示形式;实数向量X依然按照差分进化算法执行变异操作和交叉操作,在执行选择操作之前,需要将实数向量X通过满同态演化映射成二进制向量B,满同态演化映射函数定义:Make corresponding modifications to the PSO algorithm and the DE algorithm, and propose a binary differential evolution algorithm with mixed coding, so that it can be extended to the discrete domain; firstly, define the auxiliary search space S'=[-a,a] d , where a is Positive integer, solution space S={0,1} d , d is the dimension of the problem; then the auxiliary search space D-dimensional real number vector X plus the solution space binary D-dimensional vector B (X, B) as the individual (or variation body) mixed encoding representation; the real vector X still performs mutation operations and crossover operations according to the differential evolution algorithm. Before performing the selection operation, it is necessary to map the real vector X into a binary vector B through full homomorphic evolution. Function definition:

其中,hij(t+1)为交叉操作后变异体的每一个分量值,为模糊函数,bij(t+1)为二进制向量B的每一个分量值,调整因子μ可以控制bij(t+1)被置为1的概率大小,取μ=0.5。Among them, h ij (t+1) is each component value of the variant after the crossover operation, is a fuzzy function, b ij (t+1) is each component value of the binary vector B, the adjustment factor μ can control the probability that b ij (t+1) is set to 1, and μ=0.5.

设(Xi(t),Bi(t))和(Xi(t+1),Bi(t+1))分别表示种群的第t代和第t+1代个体i,(Hi(t+1),Ei(t+1))表示第t+1代个体i的变异体,f(x)表示适应度函数。新的选择操作如下定义:Let (X i (t),B i (t)) and (X i (t+1),B i (t+1)) denote individual i of the tth generation and the t+1th generation of the population respectively, (H i (t+1), E i (t+1)) represents the variant of individual i in the t+1th generation, and f(x) represents the fitness function. The new selection operation is defined as follows:

高光谱波段选择方法,具体包括如下步骤:The hyperspectral band selection method specifically includes the following steps:

步骤1:原始高光谱遥感影像预处理。剔除干扰波段,预选地物类型,设置搜索空间的维数D,算法最大迭代进化次数MaxDT。Step 1: Preprocessing of original hyperspectral remote sensing images. Eliminate interference bands, pre-select the type of ground objects, set the dimension D of the search space, and the maximum number of iterative evolutions of the algorithm MaxDT.

步骤2:初始化按HBPSO算法进化的种群Ppso以及相关参数。设置种群个数为Np,设置学习因子c1,学习因子c2,最大惯性权重系数wmax,最小惯性权重系数wmin等。为了提高粒子群(PSO)算法的性能,其中惯性权重w按照如下公式更新,i表示第i次迭代。Step 2: Initialize the population Ppso and related parameters evolved according to the HBPSO algorithm. Set the population number as Np, set the learning factor c 1 , learning factor c 2 , the maximum inertia weight coefficient w max , the minimum inertia weight coefficient w min and so on. In order to improve the performance of the particle swarm optimization (PSO) algorithm, the inertia weight w is updated according to the following formula, and i represents the ith iteration.

步骤3:初始化按HBDE算法进化的种群Pde以及相关参数。设置种群个数为Nd,缩放因子F,杂交参数CR等。为了提高差分进化(DE)算法性能,其中缩放因子F按照如下公式更新,F0是一个常数,i表示第i次迭代。Step 3: Initialize the population Pde and related parameters evolved according to the HBDE algorithm. Set the number of populations as Nd, scaling factor F, hybridization parameter CR, etc. In order to improve the performance of the differential evolution (DE) algorithm, the scaling factor F is updated according to the following formula, F0 is a constant, and i represents the ith iteration.

步骤4:设置进化迭代计数器t=0。Step 4: Set evolution iteration counter t=0.

步骤5:Ppso种群按照HBPSO算法进行一次位置和速度更新,利用SVM分类器对更新后的波段组合实施分类,并计算分类精度作为适应度值,记录下第t代最佳适应度值和波段组合。Step 5: The Ppso population performs a position and velocity update according to the HBPSO algorithm, uses the SVM classifier to classify the updated band combination, and calculates the classification accuracy as the fitness value, and records the best fitness value and band combination of the tth generation .

步骤6:Pde种群按照HBDE算法对所有个体进行变异、交叉、选择操作。利用SVM分类器计算适应度值,记录下第t代最佳适应度值和波段组合。Step 6: The Pde population performs mutation, crossover and selection operations on all individuals according to the HBDE algorithm. Use the SVM classifier to calculate the fitness value, and record the best fitness value and band combination of the tth generation.

步骤7:比较Ppso和Pde第t代选择出来的最佳适应度值,调整各自种群的最优解。Step 7: Compare the best fitness values selected in the tth generation of Ppso and Pde, and adjust the optimal solutions of the respective populations.

步骤8:更新进化代数计数器t=t+1。如果进化代数达到最大进化次数或者满足精度要求,则终止算法,否则转回步骤5。Step 8: Update the evolution algebra counter t=t+1. If the evolution algebra reaches the maximum number of evolutions or meets the precision requirements, the algorithm is terminated, otherwise, go back to step 5.

为了更好的理解本发明所涉及的技术和方法,在此对本发明涉及的理论进行介绍。In order to better understand the technology and method involved in the present invention, the theory involved in the present invention is introduced here.

1、粒子群(PSO)算法1. Particle Swarm Optimization (PSO) Algorithm

PSO算法的实现方法是令粒子i为种群中任意一个个体,第t次迭代的位置Xi(t)=[x1,x2,…,xD],速度Vi(t)=[v1,v2,…,vD],其中D表示问题的维数,pBesti表示粒子i的历史最优解位置,gBest(t)表示第t次迭代中全局最优解位置。粒子i根据以下公式更新速度和位置:The implementation method of the PSO algorithm is to let the particle i be any individual in the population, the position Xi (t) of the tth iteration=[x 1 ,x 2 ,…,x D ], the velocity V i (t)=[v 1 ,v 2 ,…,v D ], where D represents the dimension of the problem, pBest i represents the historical optimal solution position of particle i, and gBest(t) represents the global optimal solution position in the t-th iteration. Particle i updates its velocity and position according to the following formula:

Vi(t+1)=w·Vi(t)+c1·rand(0,1)·(pBesti-Xi(t))V i (t+1)=w·V i (t)+c 1 ·rand(0,1)·(pBest i -X i (t))

+c2·rand(0,1)·(gBest(t)-Xi(t)) (3)+c 2 rand(0,1)(gBest(t)-X i (t)) (3)

Xi(t+1)=Xi(t)+Vi(t+1) (4)X i (t+1)=X i (t)+V i (t+1) (4)

其中,c1和c2为加速常数表示粒子受社会认知和个体认知的影响程度,rand(0,1)表示服从[0,1]分布的随机数,w是惯性权重,它能随迭代过程动态调整粒子速度。Among them, c 1 and c 2 are acceleration constants, which indicate the degree to which particles are affected by social cognition and individual cognition, rand(0,1) represents a random number that obeys the [0,1] distribution, and w is the inertia weight, which can be The iterative process dynamically adjusts the particle velocity.

2、差分进化(DE)算法2. Differential evolution (DE) algorithm

差分进化算法的实现方法是首先随机生成一个初始种群,令Xi(t)表示第t代种群中第i个体。变异操作就是为Xi(t)产生出一个新的变异体。首先,从当前种群中任意挑选三个不同个体Xr1(t)、Xr2(t)、Xr3(t),然后按照(2.3)式产生变异个体Xi(t)’:The implementation method of the differential evolution algorithm is to first randomly generate an initial population, and let Xi (t) represent the i-th individual in the t-th generation population. The mutation operation is to generate a new variant for Xi (t). First, randomly select three different individuals X r1 (t), X r2 (t), and X r3 (t) from the current population, and then generate mutant individuals X i (t)' according to formula (2.3):

Xi(t)'=Xr1(t)+F·(Xr2(t)-Xr3(t)) (5)X i (t)'=X r1 (t)+F·(X r2 (t)-X r3 (t)) (5)

其中F为缩放因子,其取值范围为[0.1,1]。Where F is the scaling factor, and its value range is [0.1,1].

交叉操作目的是让当前个体Xi(t)与变异个体Xi(t)’进行交叉,从而引入种群个体的多样性。具体操作过程如下:The purpose of the crossover operation is to crossover the current individual Xi (t) and the mutant individual Xi (t)', thereby introducing the diversity of individuals in the population. The specific operation process is as follows:

首先随机生成一个整数r∈[1,D],D表示问题的维数,然后对个体向量每一维按照(6)式操作:First randomly generate an integer r ∈ [1, D], D represents the dimension of the problem, and then operate according to formula (6) for each dimension of the individual vector:

其中CR表示交叉率,其取值范围为[0,1]。整数r的能够保证交叉后的新个体至少有一个分量的值与当前个体不同。Among them, CR represents the cross rate, and its value range is [0,1]. The integer r can guarantee that the value of at least one component of the new individual after crossover is different from the current individual.

选择操作确定交叉操作后的新个体能否进入下一轮迭代进化。通过评价准则函数可以判断出新个体的适应度值是否优于当前个体,选择操作按照(2.5)式操作:The selection operation determines whether the new individual after the crossover operation can enter the next round of iterative evolution. Through the evaluation criterion function, it can be judged whether the fitness value of the new individual is better than the current individual, and the selection operation is operated according to (2.5):

在DE算法中,变异模式一般可被表示为:DE/x/y/z,其中x表示变异操作中基向量选择方式,y表示差异向量的个数,z表示交叉采用的模式。上文介绍的变异模式表示为:DE/rand/1/bin,bin表示采用二项式交叉模式。此外还有一些其他的经典变异模式:In the DE algorithm, the mutation mode can generally be expressed as: DE/x/y/z, where x represents the selection method of the base vector in the mutation operation, y represents the number of difference vectors, and z represents the crossover mode. The variation pattern introduced above is expressed as: DE/rand/1/bin, and bin means that the binomial crossover pattern is used. In addition, there are some other classic mutation modes:

DE/best/1/bin。该模式表示变异个体是从当前种群中选择两个随机个体和最优个体结合而来,其表达式如下: DE/best/1/bin. This mode indicates that the mutant individual is a combination of two random individuals selected from the current population and the optimal individual, and its expression is as follows:

Xi(t)'=Xbest(t)+F·(Xr1(t)-Xr2(t)) (8)X i (t)'=X best (t)+F·(X r1 (t)-X r2 (t)) (8)

DE/best/2/bin。该模式表示需从当前种群选择4个随机个体产生两个差分向量来构成变异个体,其表达式如下: DE/best/2/bin. This mode indicates that four random individuals need to be selected from the current population to generate two difference vectors to form mutant individuals, and the expression is as follows:

Xi(t)'=Xbest(t)+F·(Xr1(t)+Xr2(t)-Xr3(t)-Xr4(t)) (9)X i (t)'=X best (t)+F·(X r1 (t)+X r2 (t)-X r3 (t)-X r4 (t)) (9)

DE/rang-to-best/1/bin。该模式表示将当前种群中的最优向量加入到差分向量中来构成变异个体,其表达式如下: DE/rang-to-best/1/bin. This mode means that the optimal vector in the current population is added to the difference vector to form a mutant individual, and its expression is as follows:

Xi(t)'=Xi(t)+λ·(Xbest(t)-Xr1(t))+F·(Xr2(t)-Xr3(t)) (10)X i (t)'=X i (t)+λ·(X best (t)-X r1 (t))+F·(X r2 (t)-X r3 (t)) (10)

1、支持向量机(SVM)分类器概述1. Overview of support vector machine (SVM) classifier

支持向量机(support vector machine,SVM)是Vapnik等人在统计学习理论基础之上提出来的一种新的机器学习方法。它是在线性分类器的基础之上,引入结构风险最小化原则、最优化理论和核方法演变而来。它本质上是求解凸二次规划问题,在解决小样本、非线性和高维模式识别问题中有较大优势并且已经被成功地应用于回归问题、分类识别、判别分析等诸多问题当中。Support vector machine (support vector machine, SVM) is a new machine learning method proposed by Vapnik et al. on the basis of statistical learning theory. It is based on the linear classifier and evolved by introducing the principle of structural risk minimization, optimization theory and kernel method. It is essentially a convex quadratic programming problem, which has great advantages in solving small sample, nonlinear and high-dimensional pattern recognition problems and has been successfully applied to many problems such as regression problems, classification recognition, and discriminant analysis.

SVM的机理是寻找一个满足分类要求的最优分类超平面,使得该超平面在保证分类精度的同时,能够使平面两侧的空白区域最大化。以两类数据的分类来说明,假设训练样本集为(xi,yi),i=1,2,...,l,xi∈Rn,yi∈{±1}。一般的d维空间中线性判别函数可以表示为:The mechanism of SVM is to find an optimal classification hyperplane that meets the classification requirements, so that the hyperplane can maximize the blank area on both sides of the plane while ensuring the classification accuracy. To illustrate with the classification of two types of data, it is assumed that the training sample set is (xi , y i ), i=1,2,...,l, x i ∈R n , y i ∈{±1}. The linear discriminant function in a general d-dimensional space can be expressed as:

g(x)=ωTx+b (11)g(x)=ω T x+b (11)

那么分类的超平面方程表示为:Then the classification hyperplane equation is expressed as:

ωTx+b=0 (12)ω T x + b = 0 (12)

所有被正确分类且具备分类间隔的样本点都必须满足:All sample points that are correctly classified and have classification intervals must satisfy:

yi·(ωTxi+b)≥1,i=1,2,...,l,yi∈{±1} (13)y i ·(ω T x i +b)≥1,i=1,2,...,l,y i ∈{±1} (13)

其中,yi是第i个样本的类别标签,ω为权系数。如图2所示,那些恰好落在分类超平面上点被叫做支持向量(support vector),两类样本的分类间隔大小Among them, y i is the category label of the i-th sample, and ω is the weight coefficient. As shown in Figure 2, those points that happen to fall on the classification hyperplane are called support vectors, and the classification interval between the two types of samples is

表示为:Expressed as:

此时,寻找最优超平面问题转化为在(13)式的约束之下,求解函数:At this point, the problem of finding the optimal hyperplane is transformed into solving the function under the constraints of (13):

引入Lagrange因子αi,对(15)式求解可得:Introducing the Lagrange factor α i , and solving equation (15), we can get:

对ω,b求偏导,可得到:Taking partial derivatives for ω, b, we can get:

将(17)式代入(16)式,得到:Substituting formula (17) into formula (16), we get:

求解可得最优解的训练样本即为支持向量,最优分类超平面的权系数向量ω*为支持向量的线性组合。b*可由约束条件yiTxi+b)-1=0求解得到。Solve for the optimal solution make The training samples of are the support vectors, and the weight coefficient vector ω * of the optimal classification hyperplane is a linear combination of support vectors. b * can be obtained by solving the constraint condition y iT x i +b)-1=0.

上文描述的是一个线性的分类超平面,但是在很多实际问题当中类别之间的分类面经常是某种非线性的曲面。SVM在解决线性不可分问题中,采用核函数把低维空间中的非线性分类映射到高维空间中,在高维空间中构造线性分类超平面。目前典型的核函数主要以下4种:The above description is a linear classification hyperplane, but in many practical problems, the classification surface between categories is often a nonlinear surface. In solving linear inseparable problems, SVM uses kernel functions to map nonlinear classification in low-dimensional space to high-dimensional space, and constructs a linear classification hyperplane in high-dimensional space. At present, there are mainly four types of typical kernel functions:

线性(linear)核函数:K(xi,xj)=(xi·xj); Linear (linear) kernel function: K(x i , x j )=(xi x j );

多项式(polynomial)核函数:K(xi,xj)=[(xi·xj)+1]q Polynomial (polynomial) kernel function: K( xi , x j )=[( xi x j )+1] q ;

径向基(RBF)核函数:K(xi,xj)=exp{-|xi-xj|22}; Radial basis (RBF) kernel function: K(x i ,x j )=exp{-| xi -x j | 22 };

S形(sigmoid)核函数:K(xi,xj)=tanh(υ(xi·xj)+c)。 S-shaped (sigmoid) kernel function: K(x i , x j )=tanh(υ(x i ·x j )+c).

附图说明Description of drawings

图1为本发明实施例的方法流程图;Fig. 1 is the method flowchart of the embodiment of the present invention;

图2为SVM分类超平面图;Fig. 2 is SVM classification hyperplane diagram;

图3为由50,27,17波段合成的图像;Figure 3 is an image synthesized by 50, 27, and 17 bands;

图4为AVIRIS原始地物定标图;Figure 4 is the calibration map of AVIRIS original ground objects;

图5为算法最优个体适应度值变化曲线图;Figure 5 is a curve diagram of the optimal individual fitness value of the algorithm;

图6为算法分类结果图,其中(a)为BPSO-SVM分类结果图,(b)为HBPSO-SVM分类结果图,(c)为HBDE-SVM分类结果图,(d)为HBPSODE-SVM分类结果图。Figure 6 is the classification results of the algorithm, where (a) is the classification results of BPSO-SVM, (b) is the classification results of HBPSO-SVM, (c) is the classification results of HBDE-SVM, and (d) is the classification of HBPSODE-SVM Result graph.

具体实施方式Detailed ways

下面结合具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。Below in conjunction with specific embodiment, further illustrate the present invention, should be understood that these embodiments are only used to illustrate the present invention and are not intended to limit the scope of the present invention, after having read the present invention, those skilled in the art will understand various equivalent forms of the present invention All modifications fall within the scope defined by the appended claims of the present application.

高光谱遥感影像波段选择方法,首先对原始高光谱遥感影像进行预处理,将双种群个体和算法参数初始化,然后应用混合二进制粒子群差分进化(HBPSODE)法,让双种群并行迭代并通过种群之间传递最优解信息,并利用SVM分类器计算分类精度作为适应度值,更新进化直至达到规定进化次数或达到最大精度为止。The hyperspectral remote sensing image band selection method first preprocesses the original hyperspectral remote sensing image, initializes the dual population individuals and algorithm parameters, and then applies the hybrid binary particle swarm differential evolution (HBPSODE) method to allow the dual populations to iterate in parallel and pass through the two populations. The information of the optimal solution is transmitted among them, and the SVM classifier is used to calculate the classification accuracy as the fitness value, and the evolution is updated until the specified number of evolutions is reached or the maximum accuracy is reached.

对PSO算法和DE算法做出相应的修改,提出一种混合编码的二进制差分进化算法,使其能拓展到离散域上;首先定义辅助搜索空间S’=[-a,a]d,a为正整数,解空间S={0,1}d,d为问题的维数;然后由辅助搜索空间D维实数向量X加解空间二进制D维向量B即(X,B)作为个体(或变异体)的混合编码表示形式;实数向量X依然按照差分进化算法执行变异操作和交叉操作,在执行选择操作之前,需要将实数向量X通过满同态演化映射成二进制向量B,满同态演化映射函数定义:Make corresponding modifications to the PSO algorithm and the DE algorithm, and propose a binary differential evolution algorithm with mixed coding, so that it can be extended to the discrete domain; firstly, define the auxiliary search space S'=[-a,a] d , where a is Positive integer, solution space S={0,1} d , d is the dimension of the problem; then the auxiliary search space D-dimensional real number vector X plus the solution space binary D-dimensional vector B (X, B) as the individual (or variation body) mixed encoding representation; the real vector X still performs mutation operations and crossover operations according to the differential evolution algorithm. Before performing the selection operation, it is necessary to map the real vector X into a binary vector B through full homomorphic evolution. Function definition:

其中,hij(t+1)为交叉操作后变异体的每一个分量值,为模糊函数,bij(t+1)为二进制向量B的每一个分量值,调整因子μ可以控制bij(t+1)被置为1的概率大小,取μ=0.5。Among them, h ij (t+1) is each component value of the variant after the crossover operation, is a fuzzy function, b ij (t+1) is each component value of the binary vector B, the adjustment factor μ can control the probability that b ij (t+1) is set to 1, and μ=0.5.

设(Xi(t),Bi(t))和(Xi(t+1),Bi(t+1))分别表示种群的第t代和第t+1代个体i,(Hi(t+1),Ei(t+1))表示第t+1代个体i的变异体,f(x)表示适应度函数。新的选择操作如下定义:Let (X i (t),B i (t)) and (X i (t+1),B i (t+1)) denote individual i of the tth generation and the t+1th generation of the population respectively, (H i (t+1), E i (t+1)) represents the variant of individual i in the t+1th generation, and f(x) represents the fitness function. The new selection operation is defined as follows:

如图1所示,具体包括如下步骤:As shown in Figure 1, it specifically includes the following steps:

步骤1:原始高光谱遥感影像预处理。剔除干扰波段,预选地物类型,设置搜索空间的维数D,算法最大迭代进化次数MaxDT。Step 1: Preprocessing of original hyperspectral remote sensing images. Eliminate interference bands, pre-select the type of ground objects, set the dimension D of the search space, and the maximum number of iterative evolutions of the algorithm MaxDT.

步骤2:初始化按HBPSO算法进化的种群Ppso以及相关参数。设置种群个数为Np,设置学习因子c1,学习因子c2,最大惯性权重系数wmax,最小惯性权重系数wmin等。为了提高粒子群(PSO)算法的性能,其中惯性权重w按照如下公式更新,i表示第i次迭代。Step 2: Initialize the population Ppso and related parameters evolved according to the HBPSO algorithm. Set the population number as Np, set learning factor c1, learning factor c2, maximum inertia weight coefficient w max , minimum inertia weight coefficient w min , etc. In order to improve the performance of the particle swarm optimization (PSO) algorithm, the inertia weight w is updated according to the following formula, and i represents the ith iteration.

步骤3:初始化按HBDE算法进化的种群Pde以及相关参数。设置种群个数为Nd,缩放因子F,杂交参数CR等。为了提高差分进化(DE)算法性能,其中缩放因子F按照如下公式更新,F0是一个常数,i表示第i次迭代。Step 3: Initialize the population Pde and related parameters evolved according to the HBDE algorithm. Set the number of populations as Nd, scaling factor F, hybridization parameter CR, etc. In order to improve the performance of the differential evolution (DE) algorithm, the scaling factor F is updated according to the following formula, F0 is a constant, and i represents the ith iteration.

步骤4:设置进化迭代计数器t=0。Step 4: Set evolution iteration counter t=0.

步骤5:Ppso种群按照HBPSO算法进行一次位置和速度更新,利用SVM分类器对更新后的波段组合实施分类,并计算分类精度作为适应度值,记录下第t代最佳适应度值和波段组合。Step 5: The Ppso population performs a position and velocity update according to the HBPSO algorithm, uses the SVM classifier to classify the updated band combination, and calculates the classification accuracy as the fitness value, and records the best fitness value and band combination of the tth generation .

步骤6:Pde种群按照HBDE算法对所有个体进行变异、交叉、选择操作。利用SVM分类器计算适应度值,记录下第t代最佳适应度值和波段组合。Step 6: The Pde population performs mutation, crossover and selection operations on all individuals according to the HBDE algorithm. Use the SVM classifier to calculate the fitness value, and record the best fitness value and band combination of the tth generation.

步骤7:比较Ppso和Pde第t代选择出来的最佳适应度值,调整各自种群的最优解。Step 7: Compare the best fitness values selected in the tth generation of Ppso and Pde, and adjust the optimal solutions of the respective populations.

步骤8:更新进化代数计数器t=t+1。如果进化代数达到最大进化次数或者满足精度要求,则终止算法,否则转回步骤5。Step 8: Update the evolution algebra counter t=t+1. If the evolution algebra reaches the maximum number of evolutions or meets the precision requirements, the algorithm is terminated, otherwise, go back to step 5.

仿真实验结果分析Simulation experiment result analysis

1.实验图像1. Experimental image

通过仿真实验对算法的性能进行分析和评价。为验证HBPSODE-SVM算法的有效性,本文对针对某一标准高光谱遥感影像进行试验。所使用的遥感影像为1992年6月由AVIRIS传感器获取的美国印第安纳州西北部某农林混合试验区高光谱遥感影像的一部分。其波长范围为0.4~2.5μm,图像大小为145×145pixel,空间分辨率为25m。从原始波段中去除掉受水汽噪声等污染严重的波段(波段1~4,78,80~86,103~110,149~165,217~224),保留剩余的179个波段来进行试验。图3为试验选取第50,27,17波段合成R,G,B假彩色图像。图4为AVIRIS原始地物定。The performance of the algorithm is analyzed and evaluated through simulation experiments. In order to verify the effectiveness of the HBPSODE-SVM algorithm, this paper conducts an experiment on a standard hyperspectral remote sensing image. The remote sensing image used is a part of the hyperspectral remote sensing image acquired by the AVIRIS sensor in June 1992 of an agricultural and forestry mixed experimental area in northwestern Indiana, USA. The wavelength range is 0.4-2.5μm, the image size is 145×145pixel, and the spatial resolution is 25m. The bands seriously polluted by water vapor and noise (bands 1-4, 78, 80-86, 103-110, 149-165, 217-224) were removed from the original bands, and the remaining 179 bands were reserved for testing. Figure 3 is the synthetic R, G, B false color images of the 50th, 27th, and 17th bands selected for the test. Figure 4 is the original map of AVIRIS.

图像中共有17类地物,选取其中7类地物参与分类实验。训练样本和测试样本按1:1的比例均匀选取。表-1-所示7类地物的编号,名称,训练和测试样本数量。实验程序采用Matlab(R2009b)编程实现,SVM分类器采用libsvm工具箱。There are 17 types of ground objects in the image, and 7 types of ground objects are selected to participate in the classification experiment. The training samples and test samples are uniformly selected at a ratio of 1:1. Table-1- shows the number, name, number of training and testing samples of the 7 types of ground objects. The experimental program is implemented by Matlab (R2009b), and the SVM classifier is implemented by libsvm toolbox.

表-1-训练样本和测试样本Table-1-Training samples and testing samples

2.实验方法及相关参数设置2. Experimental method and related parameter settings

为了验证HBPSODE-SVM方法的优越性,设计A、B、C、D,4组对比仿真实验。考虑到算法相关参数设置的公平性,A组采用基于二进制粒子群(BPSO)算法,B组基于混合二进制的粒子群(HBPSO)算法,C组基于混合二进制差分进化(HBDE)算法以及D组基于混合二进制粒子群差分进化(HBPSODE)算法的波段选择方法进行对比。4组实验均采用支持向量机(SVM)作为分类器,采用RBF核函数。算法和分类器的相关参数设置如下表-2-:In order to verify the superiority of the HBPSODE-SVM method, design A, B, C, D, 4 groups of comparative simulation experiments. Considering the fairness of algorithm-related parameter settings, group A uses the binary particle swarm optimization (BPSO) algorithm, group B uses the hybrid binary particle swarm optimization (HBPSO) algorithm, group C uses the hybrid binary differential evolution (HBDE) algorithm, and group D uses the The band selection method of Hybrid Binary Particle Swarm Differential Evolution (HBPSODE) algorithm is compared. The four groups of experiments all use support vector machine (SVM) as the classifier and RBF kernel function. The relevant parameters of the algorithm and classifier are set as shown in Table -2-:

表-2-相关参数设置Table-2-Related parameter settings

3.实验结果对比3. Comparison of experimental results

在确定了训练样本和测试样本后,我们分别从以下两个方面对(BPSO)算法,混合二进制的粒子群(HBPSO)算法,混合二进制差分进化(HBDE)算法以及混合二进制粒子群差分进化(HBPSODE)算法的实验结果进行比较。After confirming the training samples and test samples, we analyze the (BPSO) algorithm from the following two aspects, the hybrid binary particle swarm optimization (HBPSO) algorithm, the hybrid binary differential evolution (HBDE) algorithm and the hybrid binary particle swarm differential evolution (HBPSODE ) algorithm to compare the experimental results.

①误差矩阵① Error matrix

4组实验得到的最佳波段组合参与地物分类实验得到的误差矩阵如表3~6所示。The error matrix obtained from the best band combinations obtained from the 4 groups of experiments participating in the ground object classification experiment is shown in Table 3-6.

表-3-A组BPSO-SVM误差矩阵Table-3-Group A BPSO-SVM error matrix

表-4-B组HBPSO-SVM误差矩阵Table-4-Group B HBPSO-SVM error matrix

表-5-C组HBDE-SVM误差矩阵Table-5-Group C HBDE-SVM error matrix

表-6-D组HBPSODE-SVM误差矩阵Table-6-D group HBPSODE-SVM error matrix

从表3~6可以看出,HBPSODE-SVM在生产者精度和用户精度总体上要优于其他3种算法,这就意味着HBPSODE-SVM算法产生的漏分误差和多分误差相对较小。对比HBPSO-SVM和BPSO-SVM算法的误差矩阵,虽然两者的总体分类精度仅相差0.1%,但是比较每一类地物的生产者精度和用户精度可以看出HBPSO-SVM要优于BPSO-SVM。对比HBPSO-SVM和HBDE-SVM算法的误差矩阵,DE算法在总体分类精度,生产者精度和用户精度都要优于PSO算法。符合文献39中提到的差分进化(DE)算法在总体性能上优于粒子群(PSO)算法。It can be seen from Tables 3 to 6 that HBPSODE-SVM is generally superior to the other three algorithms in terms of producer accuracy and user accuracy, which means that the omission error and multi-point error generated by the HBPSODE-SVM algorithm are relatively small. Comparing the error matrices of HBPSO-SVM and BPSO-SVM algorithms, although the overall classification accuracy of the two is only 0.1%, but comparing the producer accuracy and user accuracy of each type of ground object, it can be seen that HBPSO-SVM is better than BPSO-SVM. SVMs. Comparing the error matrix of HBPSO-SVM and HBDE-SVM algorithm, DE algorithm is better than PSO algorithm in overall classification accuracy, producer accuracy and user accuracy. According to the differential evolution (DE) algorithm mentioned in the literature 39, the overall performance is better than the particle swarm optimization (PSO) algorithm.

②Kappa分析与总体精度②Kappa analysis and overall accuracy

Kappa分析能够将误差矩阵的总体精度、生产者精度和用户精度等信息综合起来定量地评价分类结果与地面参考信息之间的一致性。表7为4组实验算法的总体精度和Kappa值。Kappa analysis can combine the overall precision, producer precision and user precision of the error matrix to quantitatively evaluate the consistency between classification results and ground reference information. Table 7 shows the overall accuracy and Kappa value of the four experimental algorithms.

表-7-总体分类精度和Kappa值Table-7- Overall classification accuracy and Kappa value

通过表-7-的Kappa值可以定量地评价出HBPSODE-SVM算法比单独使用HBDE-SVM或者HBPSO-SVM算法得到的分类性能好。HBDE-SVM性能优于HBPSO-SVM,而HBPSO-SVM又要优于一般的BPSO-SVM算法。Through the Kappa value in Table-7-, it can be quantitatively evaluated that the classification performance of the HBPSODE-SVM algorithm is better than that obtained by using the HBDE-SVM or HBPSO-SVM algorithm alone. HBDE-SVM performance is better than HBPSO-SVM, and HBPSO-SVM is better than general BPSO-SVM algorithm.

图-5-为4组实验算法在整个迭代过程中最优个体适应度值(分类精度)的变化曲线图。Figure-5- is the change curve of the optimal individual fitness value (classification accuracy) of the 4 groups of experimental algorithms in the whole iterative process.

由图-5-可以看到,d图的曲线出现“平台”的长度最短,说明HBPSODE-SVM算法在迭代过程中种群的多样性保持较好,出现进化停滞时能在较短迭代次数内逃离局部最优解。而其他3种算法都出现了进化停滞短时间内不能逃离局部最优解的情况。虽然HBPSO-SVM在最终的分类精度上高于BPSO-SVM,但是在整个进化迭代过程中HBPSO-SVM算法更易于陷入局部最优解且短时间内无法逃离,BPSO-SVM在种群进化迭代初期保持着很高的多样性,但很快就陷入早熟直到到达最大进化迭代次数。HBDE-SVM相比上述2种算法在种群多样性上保持的较好,虽然也陷入局部最优解,但在进化迭代终止前能够逃离。4组实验算法的分类结果图如图6所示。As can be seen from Figure-5-, the length of the "platform" in the curve of Figure d is the shortest, indicating that the HBPSODE-SVM algorithm maintains a good population diversity during the iteration process, and can escape within a short number of iterations when evolutionary stagnation occurs local optimal solution. However, the other three algorithms all have the situation that the evolutionary stagnation cannot escape from the local optimal solution in a short period of time. Although the final classification accuracy of HBPSO-SVM is higher than that of BPSO-SVM, the HBPSO-SVM algorithm is more likely to fall into a local optimal solution and cannot escape in a short time during the entire evolution iteration process. have high diversity, but quickly fall into precocity until reaching the maximum number of evolution iterations. Compared with the above two algorithms, HBDE-SVM maintains better population diversity. Although it is also trapped in a local optimal solution, it can escape before the evolution iteration terminates. The classification results of the four groups of experimental algorithms are shown in Figure 6.

由图-6-(a)~(d)能比较直观的看出HBPSODE-SVM算法的最佳波段组合的分类精度最好,HBPSO-SVM分类精度优于BPSO-SVM分类精度,HBDE-SVM分类又要优于HBPSO-SVM。From Figure-6-(a)~(d), it can be seen intuitively that the classification accuracy of the optimal band combination of the HBPSODE-SVM algorithm is the best, and the classification accuracy of HBPSO-SVM is better than that of BPSO-SVM, and the classification accuracy of HBDE-SVM is better than that of BPSO-SVM. It is also better than HBPSO-SVM.

Claims (2)

1.一种高光谱遥感影像波段选择方法,其特征在于:首先对原始高光谱遥感影像进行预处理,将双种群个体和算法参数初始化,然后应用混合二进制粒子群差分进化(HBPSODE)法,让双种群并行迭代并通过种群之间传递最优解信息,并利用SVM分类器计算分类精度作为适应度值,更新进化直至达到规定进化次数或达到最大精度为止;1. A hyperspectral remote sensing image band selection method, characterized in that: firstly, the original hyperspectral remote sensing image is preprocessed, the double-population individuals and algorithm parameters are initialized, and then the hybrid binary particle swarm differential evolution (HBPSODE) method is applied to allow The dual populations iterate in parallel and transmit the optimal solution information between the populations, and use the SVM classifier to calculate the classification accuracy as the fitness value, and update the evolution until it reaches the specified number of evolutions or reaches the maximum accuracy; 在种群个体和算法参数初始化过程中,采取双种群并行搜索策略,初始化2个种群,双种群并行迭代进化;每次迭代结束之后,种群之间共享各自搜索到最优解,实现信息的交流,让种群在下一次迭代进化时不仅参考自身种群的最优解也会考虑对方种群的最优解,引导种群脱离局部最优解;In the initialization process of population individuals and algorithm parameters, a dual-population parallel search strategy is adopted to initialize two populations, and the dual-population iterative evolution evolves in parallel; after each iteration, the populations share their respective searched optimal solutions to realize information exchange. Let the population not only refer to the optimal solution of its own population but also consider the optimal solution of the other population in the next iterative evolution, and guide the population to break away from the local optimal solution; 对PSO算法和DE算法做出相应的修改,提出一种混合编码的二进制差分进化算法,使其能拓展到离散域上;首先定义辅助搜索空间S’=[-a,a]d,a为正整数,解空间S={0,1}d,d为问题的维数;然后由辅助搜索空间D维实数向量X加解空间二进制D维向量B即(X,B)作为个体或变异体的混合编码表示形式;实数向量X依然按照差分进化算法执行变异操作和交叉操作,在执行选择操作之前,需要将实数向量X通过满同态演化映射成二进制向量B,满同态演化映射函数定义:Make corresponding modifications to the PSO algorithm and the DE algorithm, and propose a binary differential evolution algorithm with mixed coding, so that it can be extended to the discrete domain; firstly, define the auxiliary search space S'=[-a,a] d , where a is Positive integer, solution space S={0,1} d , d is the dimension of the problem; then the auxiliary search space D-dimensional real number vector X plus the solution space binary D-dimensional vector B (X, B) as an individual or variant The mixed encoding representation of the real number vector X still performs mutation operations and crossover operations according to the differential evolution algorithm. Before performing the selection operation, the real number vector X needs to be mapped into a binary vector B through full homomorphic evolution. The full homomorphic evolution mapping function is defined : 其中,hij(t+1)为交叉操作后变异体的每一个分量值,为模糊函数,bij(t+1)为二进制向量B的每一个分量值,调整因子μ可以控制bij(t+1)被置为1的概率大小,取μ=0.5。Among them, h ij (t+1) is each component value of the variant after the crossover operation, is a fuzzy function, b ij (t+1) is each component value of the binary vector B, the adjustment factor μ can control the probability that b ij (t+1) is set to 1, and μ=0.5. 设(Xi(t),Bi(t))和(Xi(t+1),Bi(t+1))分别表示种群的第t代和第t+1代个体i,(Hi(t+1),Ei(t+1))表示第t+1代个体i的变异体,f(x)表示适应度函数。新的选择操作如下定义:Let (X i (t),B i (t)) and (X i (t+1),B i (t+1)) denote individual i of the tth generation and the t+1th generation of the population respectively, (H i (t+1), E i (t+1)) represents the variant of individual i in the t+1th generation, and f(x) represents the fitness function. The new selection operation is defined as follows: 所述对原始高光谱遥感影像进行预处理,将双种群个体和算法参数初始化包括:The preprocessing of the original hyperspectral remote sensing images, and the initialization of dual population individuals and algorithm parameters include: 原始高光谱遥感影像预处理:剔除干扰波段,预选地物类型,以及设置搜索空间的维数D和算法最大迭代进化次数MaxDT;Preprocessing of original hyperspectral remote sensing images: removing interference bands, pre-selecting object types, and setting the dimension D of the search space and the maximum iterative evolution of the algorithm MaxDT; 初始化按HBPSO算法进化的种群Ppso以及相关参数:设置种群个数为Np,设置学习因子c1,学习因子c2,最大惯性权重系数wmax,最小惯性权重系数wmin等;为了提高粒子群算法的性能,其中惯性权重w按照如下公式更新,i表示第i次迭代;Initialize the population Ppso and related parameters evolved according to the HBPSO algorithm: set the number of populations to Np, set the learning factor c 1 , learning factor c 2 , the maximum inertia weight coefficient w max , the minimum inertia weight coefficient w min , etc.; in order to improve the particle swarm optimization algorithm The performance of , where the inertia weight w is updated according to the following formula, i represents the ith iteration; <mrow> <mi>w</mi> <mo>=</mo> <msub> <mi>w</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>-</mo> <mfrac> <mrow> <msub> <mi>w</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>w</mi> <mi>min</mi> </msub> </mrow> <mrow> <mi>M</mi> <mi>a</mi> <mi>x</mi> <mi>D</mi> <mi>T</mi> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <mi>i</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow><mi>w</mi><mo>=</mo><msub><mi>w</mi><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>-</mo><mfrac><mrow><msub><mi>w</mi><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>-</mo><msub><mi>w</mi><mi>min</mi></msub></mrow><mrow><mi>M</mi><mi>a</mi><mi>x</mi><mi>D</mi><mi>T</mi></mrow></mfrac><mo>&amp;CenterDot;</mo><mi>i</mi><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow> 初始化按HBDE算法进化的种群Pde以及相关参数:设置种群个数为Nd,缩放因子F,杂交参数CR等;为了提高差分进化(DE)算法性能,其中缩放因子F按照如下公式更新,F0是一个常数,i表示第i次迭代;Initialize the population Pde and related parameters evolved according to the HBDE algorithm: set the number of populations to Nd, the scaling factor F, the hybridization parameter CR, etc.; in order to improve the performance of the differential evolution (DE) algorithm, the scaling factor F is updated according to the following formula, and F0 is a Constant, i represents the ith iteration; <mrow> <mi>F</mi> <mo>=</mo> <mi>F</mi> <mn>0</mn> <mo>&amp;CenterDot;</mo> <msup> <mn>2</mn> <mrow> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mn>1</mn> <mo>-</mo> <mi>M</mi> <mi>a</mi> <mi>x</mi> <mi>D</mi> <mi>T</mi> </mrow> <mrow> <mi>M</mi> <mi>a</mi> <mi>x</mi> <mi>D</mi> <mi>T</mi> <mo>+</mo> <mn>1</mn> <mo>-</mo> <mi>i</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow> <mrow><mi>F</mi><mo>=</mo><mi>F</mi><mn>0</mn><mo>&amp;CenterDot;</mo><msup><mn>2</mn><mrow><mi>exp</mi><mrow><mo>(</mo><mfrac><mrow><mn>1</mn><mo>-</mo><mi>M</mi><mi>a</mi><mi>x</mi><mi>D</mi><mi>T</mi></mrow><mrow><mi>M</mi><mi>a</mi><mi>x</mi><mi>D</mi><mi>T</mi><mo>+</mo><mn>1</mn><mo>-</mo><mi>i</mi></mrow></mfrac><mo>)</mo></mrow></mrow></msup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow><mo>.</mo></mrow> 2.如权利要求1所述的高光谱遥感影像波段选择方法,其特征在于,应用混合二进制粒子群差分进化法,让双种群并行迭代并通过种群之间传递最优解信息,并利用SVM分类器计算分类精度作为适应度值,更新进化直至达到规定进化次数或达到最大精度为止,具体为:2. The hyperspectral remote sensing image band selection method as claimed in claim 1, characterized in that, using the mixed binary particle swarm differential evolution method, allowing two populations to iterate in parallel and passing optimal solution information between the populations, and using SVM classification The classifier calculates the classification accuracy as the fitness value, and updates the evolution until it reaches the specified number of evolutions or reaches the maximum accuracy, specifically: 设置进化迭代计数器t=0。Set evolution iteration counter t=0. Ppso种群按照HBPSO算法进行一次位置和速度更新,利用SVM分类器对更新后的波段组合实施分类,并计算分类精度作为适应度值,记录下第t代最佳适应度值和波段组合;The Ppso population performs a position and velocity update according to the HBPSO algorithm, uses the SVM classifier to classify the updated band combination, and calculates the classification accuracy as the fitness value, and records the best fitness value and band combination of the tth generation; Pde种群按照HBDE算法对所有个体进行变异、交叉、选择操作;利用SVM分类器计算适应度值,记录下第t代最佳适应度值和波段组合;The Pde population performs mutation, crossover, and selection operations on all individuals according to the HBDE algorithm; uses the SVM classifier to calculate the fitness value, and records the best fitness value and band combination of the tth generation; 比较Ppso和Pde第t代选择出来的最佳适应度值,调整各自种群的最优解;Compare the best fitness values selected by the tth generation of Ppso and Pde, and adjust the optimal solutions of the respective populations; 更新进化代数计数器t=t+1;如果进化代数达到最大进化次数或者满足精度要求。Update the evolutionary algebra counter t=t+1; if the evolutionary algebra reaches the maximum number of evolutions or meets the precision requirement.
CN201510129917.6A 2015-03-24 2015-03-24 A kind of target in hyperspectral remotely sensed image band selection method Active CN104751176B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510129917.6A CN104751176B (en) 2015-03-24 2015-03-24 A kind of target in hyperspectral remotely sensed image band selection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510129917.6A CN104751176B (en) 2015-03-24 2015-03-24 A kind of target in hyperspectral remotely sensed image band selection method

Publications (2)

Publication Number Publication Date
CN104751176A CN104751176A (en) 2015-07-01
CN104751176B true CN104751176B (en) 2018-05-11

Family

ID=53590829

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510129917.6A Active CN104751176B (en) 2015-03-24 2015-03-24 A kind of target in hyperspectral remotely sensed image band selection method

Country Status (1)

Country Link
CN (1) CN104751176B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106654319B (en) * 2016-12-27 2019-03-19 东南大学 A kind of PEMFC system temperature modeling method based on mutation particle swarm and differential evolution hybrid algorithm
CN107067035B (en) * 2017-04-17 2018-04-20 哈尔滨师范大学 The support vector machines Study on wetland remote sensing method of coevolution algorithm optimization
CN107798286B (en) * 2017-07-13 2021-01-26 西安电子科技大学 Hyperspectral image evolution classification method based on labeled sample position
CN109241022A (en) * 2018-09-11 2019-01-18 天津理工大学 A kind of archive management system and its ant search algorithm based on blue-ray storage
CN109670408A (en) * 2018-11-28 2019-04-23 河海大学 A kind of object-based remote sensing images Clean water withdraw method
CN109739086A (en) * 2018-12-28 2019-05-10 浙江大学 Optimal online prediction system of propylene polymerization production process based on cyclic neural network
US11120288B2 (en) * 2019-02-14 2021-09-14 Chemimage Corporation Extended particle swarm band selection
CN112414996B (en) * 2020-07-24 2022-06-17 北京工商大学 Finite difference and difference evolution algorithm-based ICP-AES spectral line overlapping interference correction method
CN112509017B (en) * 2020-11-18 2024-06-28 西北工业大学 A remote sensing image change detection method based on learnable difference algorithm
CN113988139B (en) * 2021-11-05 2024-09-13 西北工业大学 Hyperspectral band selection method and storage medium based on collaborative analysis of multiple data sets
CN115236062B (en) * 2022-07-14 2025-04-11 北京工商大学 Spectral baseline correction method based on DE algorithm and non-uniform B-spline curve
CN116959069A (en) * 2023-07-11 2023-10-27 郑州大学 Face recognition method based on dual population genetic programming algorithm
CN117935048B (en) * 2024-01-17 2025-09-26 深圳大学 Unsupervised band selection method, device, equipment and storage medium
CN118840666B (en) * 2024-09-23 2025-03-11 聊城大学 Hyperspectral band selection method, electronic device and storage medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400247A (en) * 2013-07-11 2013-11-20 南京工业大学 Logistics distribution scheduling optimization method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8571350B2 (en) * 2010-08-26 2013-10-29 Sony Corporation Image processing system with image alignment mechanism and method of operation thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400247A (en) * 2013-07-11 2013-11-20 南京工业大学 Logistics distribution scheduling optimization method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"一种具有混合编码的二进制差分演化算法";贺毅朝,等;《计算机研究与发展》;20070731;第44卷(第9期);第2节 *
"基于ETAFSVM的高光谱遥感图像自动波段选择与分类";戴宏亮,等;《计算机科学》;20090430;第36卷(第4期);第1-4节 *
"基于双层进化的多种群并行人工蜂群算法";赵丹亚,等;《计算机工程与设计》;20150131;第36卷(第1期);第1-2节 *
"差分进化粒子群混合优化算法的研究与应用";杨妍,等;《计算机工程与应用》;20101231;第46卷(第25期);全文 *

Also Published As

Publication number Publication date
CN104751176A (en) 2015-07-01

Similar Documents

Publication Publication Date Title
CN104751176B (en) A kind of target in hyperspectral remotely sensed image band selection method
Sukawattanavijit et al. GA-SVM algorithm for improving land-cover classification using SAR and optical remote sensing data
CN108093406B (en) Wireless sensor network intrusion detection method based on ensemble learning
CN104751179B (en) A kind of multiple target target in hyperspectral remotely sensed image band selection method based on game theory
Yu et al. Raisin quality classification using least squares support vector machine (LSSVM) based on combined color and texture features
CN112712049A (en) Satellite image ship model identification method under small sample condition
CN102750551A (en) Hyperspectral remote sensing classification method based on support vector machine under particle optimization
CN103366189B (en) A kind of intelligent classification method of high-spectrum remote sensing
CN108154178A (en) Semi-supervised support attack detection method based on improved SVM-KNN algorithms
CN103500450A (en) Multi-spectrum remote sensing image change detection method
CN103886334A (en) Multi-index fused hyperspectral remote sensing image dimensionality reduction method
CN103955709B (en) Weighted synthetic kernel and triple markov field (TMF) based polarimetric synthetic aperture radar (SAR) image classification method
CN104751166A (en) Spectral angle and Euclidean distance based remote-sensing image classification method
CN104484681A (en) Hyperspectral remote sensing image classification method based on space information and ensemble learning
CN104463203A (en) Hyper-spectral remote sensing image semi-supervised classification method based on ground object class membership grading
CN112070008A (en) Hyperspectral image feature identification method, device and equipment and storage medium
CN106127228A (en) Remote sensing image ship detection candidate area identification method based on decision template classifier fusion
CN114037931A (en) Multi-view discrimination method of self-adaptive weight
CN108805061A (en) Hyperspectral image classification method based on local auto-adaptive discriminant analysis
CN109117739A (en) One kind identifying projection properties extracting method based on neighborhood sample orientation
Chakraborty et al. Hyper-spectral image segmentation using an improved PSO aided with multilevel fuzzy entropy
Kim et al. Design of tobacco leaves classifier through fuzzy clustering-based neural networks with multiple histogram analyses of images
CN113111969B (en) Hyperspectral image classification method based on mixed measurement
CN112434728B (en) Data classification method based on local mean distance constraint representation
Yang et al. FSDA-DETR: Few-shot Domain Adaptive Object Detection Transformer in Remote Sensing Imagery

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant