CN104462244B - A kind of smart city isomeric data sharing method based on meta-model - Google Patents
A kind of smart city isomeric data sharing method based on meta-model Download PDFInfo
- Publication number
- CN104462244B CN104462244B CN201410664605.0A CN201410664605A CN104462244B CN 104462244 B CN104462244 B CN 104462244B CN 201410664605 A CN201410664605 A CN 201410664605A CN 104462244 B CN104462244 B CN 104462244B
- Authority
- CN
- China
- Prior art keywords
- data
- meta
- model
- urban
- element set
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/25—Integrating or interfacing systems involving database management systems
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/21—Design, administration or maintenance of databases
- G06F16/211—Schema design and management
- G06F16/212—Schema design and management with details for data modelling support
Landscapes
- Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Stored Programmes (AREA)
Abstract
本发明公开了一种基于元模型的智慧城市异构数据共享方法,包括1:基于MOF元建模理论,构建城市数据元模型建模框架;2:根据城市数据特征及描述需求,构建城市数据元模型通用元素集;3:根据城市数据基本分类和专用元素集扩展模式,发展数据元模型专用元素集;4:基于XML模板建模,形成元模型通用元素集和专用元素集形式化方法;5:实现网络目录服务、数据服务,建立开放式城市数据元模型注册和管理平台;6:根据用户实际应用需求,设计城市数据细粒度发现接口并获得数据。本发明为用户提供了一种开放式、标准化城市异构数据共享的解决方案,为城市异构数据在线访问、后续处理及协同应用提供了支持,是城市异构数据共享中高效实用可靠的方法。
The invention discloses a metamodel-based heterogeneous data sharing method for smart cities, including 1: constructing a meta-model modeling framework for urban data based on the MOF meta-modeling theory; 2: constructing urban data according to urban data characteristics and description requirements Meta-model general element set; 3: According to the basic classification of urban data and the expansion mode of special element set, develop the special element set of data meta-model; 4: Based on XML template modeling, form the formal method of meta-model general element set and special element set; 5: Realize network directory service and data service, and establish an open urban data meta-model registration and management platform; 6: According to the actual application needs of users, design an urban data fine-grained discovery interface and obtain data. The present invention provides users with an open and standardized urban heterogeneous data sharing solution, provides support for online access, subsequent processing and collaborative application of urban heterogeneous data, and is an efficient, practical and reliable method for urban heterogeneous data sharing .
Description
技术领域technical field
本发明属于智慧城市信息共享与互操作技术领域,涉及一种城市异构数据共享的方法,尤其涉及一种基于元模型的智慧城市异构数据共享方法。The invention belongs to the technical field of smart city information sharing and interoperability, and relates to a method for sharing urban heterogeneous data, in particular to a metamodel-based smart city heterogeneous data sharing method.
背景技术Background technique
随着城市的不断发展,人口膨胀、交通堵塞、环境污染、能源短缺等城市问题不断增加,智慧城市概念应运而生。智慧城市是按照科学的城市发展理念,利用新一代信息技术,在泛在信息全面感知和互联的基础上,实现人、物、城市功能系统之间无缝连接与协同联动的智能自感知、自适应、自优化,从而对民生、环保、公共安全、城市功能、商务活动等多种城市需求做出智能的响应,形成具备可持续发展的内生动力的安全、便捷、高效、绿色的城市形态。With the continuous development of cities, urban problems such as population expansion, traffic congestion, environmental pollution, and energy shortages continue to increase, and the concept of smart cities has emerged as the times require. Smart city is based on the scientific concept of urban development, using a new generation of information technology, based on the comprehensive perception and interconnection of ubiquitous information, to realize the seamless connection and collaborative linkage between people, things and urban functional systems. Adaptation and self-optimization, so as to make intelligent responses to various urban needs such as people's livelihood, environmental protection, public safety, urban functions, business activities, etc., and form a safe, convenient, efficient and green urban form with endogenous power for sustainable development .
现阶段,随着我国智慧城市建设的快速发展,城市数据容量和类型呈现爆发式增长,数据来源丰富多样、异构数据特征显著,尤其是大量的流媒体数据(如交通视频、安保监控等数据)以及实时动态城市实时观测数据(如气象、环保、定位等传感器数据)涌现,有效管理和利用这些数据成为一大挑战。同时,由于我国城市运行和管理的信息化是一个逐步完善的过程,针对不同的应用领域在不同时期分散实施的系统,由于在运行环境、数据库系统、服务方式、信息编码规则、业务流程定义等方面执行不同的标准,系统无法互联互通、信息不能广泛共享。当面对具体城市跨领域、多数据协同应用时,城市数据资源呈现出既多又少的局面:城市拥有大体量的以各种方式存在的存档数据以及源源不断产生的运行状态实时数据,由于数据来源不同、数据格式各异、数据内容描述模糊、数据质量参差不齐、数据获取方式差别巨大等等原因,造成在针对具体跨领域、多数据协同应用时,数据不能被充分的了解、广泛的获取、以及有效的利用。At this stage, with the rapid development of my country's smart city construction, the volume and types of urban data have shown explosive growth, the data sources are rich and diverse, and the characteristics of heterogeneous data are obvious, especially a large amount of streaming media data (such as traffic video, security monitoring, etc. ) and real-time dynamic urban real-time observation data (such as weather, environmental protection, positioning and other sensor data) are emerging, and effective management and utilization of these data has become a major challenge. At the same time, since the informatization of urban operation and management in our country is a process of gradual improvement, systems that are implemented in different periods for different application fields, due to the operating environment, database system, service mode, information coding rules, business process definition, etc. Different standards are implemented in different aspects, systems cannot be interconnected, and information cannot be widely shared. When faced with the cross-field and multi-data collaborative application of specific cities, urban data resources present a situation of both more and less: cities have a large amount of archived data in various ways and real-time data of operating status continuously generated. Due to different data sources, different data formats, vague descriptions of data content, uneven data quality, and huge differences in data acquisition methods, etc., data cannot be fully understood and widely used for specific cross-domain and multi-data collaborative applications. acquisition and effective use.
因此,面对如此海量、异构、分散的城市数据,如何将巨大而复杂的异构数据统一、全面地描述并进行开放的集成管理,提供用户准确、便捷、有效的数据发现与获取接口,促使城市数据的广泛共享与互操作,成为现阶段智慧城市建设亟待解决的核心问题。Therefore, in the face of such massive, heterogeneous, and scattered urban data, how to uniformly and comprehensively describe the huge and complex heterogeneous data and conduct open integrated management to provide users with accurate, convenient, and effective data discovery and acquisition interfaces, Promoting the extensive sharing and interoperability of urban data has become the core problem to be solved urgently in the construction of smart cities at this stage.
在互联网数据共享方面,传统的数据共享技术主要包括语义标注和Web API技术,语义标注技术的标准主要包括Microformat、RDFa,Microdata等,然而语义标注技术具有使用范围较窄、描述能力有限的缺点,Web API技术是当前数据共享应用采用最多的形式,缺点是开放接口不一致,返回的数据没有关联性,因而不能实现数据之间的互联。此外,TimBerners-Lee于2006年首次提出互联数据(Linked Data)的概念,它是语义网的主题之一,描述了通过可链接的URI方式来发布、分享、连接Web中各类资源的方法。互联数据(LinkedData)是语义网中的数据描述框架的实现,它是一种通过发布结构化数据使数据互联进而提高数据应用价值的框架。它对数据的描述比较简单,技术复杂、维护困难。Fan等人提出了一种扩展物联网的思想——IOD(Internet of Data)将数据类比为物联网中的实体,利用数据标签进行数据关联,是实现数据共享的一种新的思路。但它主要限制用于多媒体数据且存在内容失真、算法复杂等问题。In terms of Internet data sharing, traditional data sharing technologies mainly include semantic annotation and Web API technology. The standards of semantic annotation technology mainly include Microformat, RDFa, Microdata, etc. However, semantic annotation technology has the disadvantages of narrow application range and limited description ability. Web API technology is currently the most widely used form of data sharing applications. The disadvantage is that the open interface is inconsistent, and the returned data is not related, so the interconnection between data cannot be realized. In addition, Tim Berners-Lee first proposed the concept of Linked Data in 2006. It is one of the themes of the Semantic Web and describes methods for publishing, sharing, and connecting various resources on the Web through linkable URIs. LinkedData is the implementation of the data description framework in the Semantic Web. It is a framework that interconnects data by publishing structured data to improve the value of data applications. Its description of data is relatively simple, but its technology is complex and difficult to maintain. Fan et al. proposed an idea of expanding the Internet of Things - IOD (Internet of Data) compares data to entities in the Internet of Things, and uses data tags for data association, which is a new idea for data sharing. However, it is mainly limited to multimedia data and has problems such as content distortion and complex algorithms.
在地理信息服务共享方面,OGC(开放式地理信息系统协会)提出了Web 地图服务(WMS)、Web 要素服务(WFS),Web地理覆盖服务(WCS)、切片地图Web服务(WMTS)等地理信息服务标准。WMS能够根据用户的请求返回相应的地图(包括PNG,GIF,JPEG等栅格形式,或者是SVG和WEB CGM等矢量形式);WFS支持对地理要素的插入,更新,删除,检索和发现服务;WCS提供的是包含了地理位置信息或属性的空间栅格图层,而不是静态地图的访问。WMTS对应着切片数据访问形式,如实现天地图无级缩放操作就需要调用WMTS服务。微软提供了Internet Information Services(IIS,互联网信息服务),通过建立网络站点的形式来发布本地资源,提供对本地静态数据,如多媒体数据,如视频、图片、文本的快捷访问。这些网络服务只是单个存在或者某几个一起存在,在访问中只能局限于一种或者几种数据形式,缺少针对多类型数据统一发现、访问。In terms of geographic information service sharing, OGC (Open GIS Consortium) proposed geographic information services such as Web Map Service (WMS), Web Feature Service (WFS), Web Geographic Coverage Service (WCS), and Tile Map Web Service (WMTS). Service standards. WMS can return corresponding maps (including raster forms such as PNG, GIF, JPEG, etc., or vector forms such as SVG and WEB CGM) according to user requests; WFS supports insertion, update, deletion, retrieval and discovery services for geographic elements; WCS provides a spatial raster layer containing geographic location information or attributes, rather than static map access. WMTS corresponds to the slice data access form. For example, to realize Tiandi stepless zoom operation, it is necessary to call WMTS service. Microsoft provides Internet Information Services (IIS, Internet Information Services), which publishes local resources in the form of network sites and provides quick access to local static data, such as multimedia data, such as videos, pictures, and texts. These network services only exist individually or together, and access can only be limited to one or several data forms, lacking unified discovery and access for multiple types of data.
在实时观测数据共享方面,2006年开放地理空间联盟(OGC)发布了SOS(传感器观测服务)1.0版本,2012年开放地理空间联盟发布了SOS 2.0版本。SOS提供了管理传感器注册和发现传感器数据的API,通过这个服务,客户能够以SOS的标准接口来获取一个或多个传感器的观测数据。传感器观测服务适合于记录观测属性-观测值格式的数据,不支持其他数据类型。In terms of real-time observation data sharing, the Open Geospatial Consortium (OGC) released the SOS (Sensor Observation Service) version 1.0 in 2006, and the Open Geospatial Consortium released the SOS 2.0 version in 2012. SOS provides an API for managing sensor registration and discovering sensor data. Through this service, customers can obtain the observation data of one or more sensors through the standard interface of SOS. The sensor observation service is suitable for recording data in the observation attribute-observation value format, and does not support other data types.
综合分析,目前面向城市异构数据共享方法存在以下问题:Based on comprehensive analysis, the current methods for urban heterogeneous data sharing have the following problems:
1)现有缺乏顶层设计及对多类型数据的多方面详细描述,各种数据容易形成信息孤岛,各种数据源无法被全面了解、发现;1) There is a lack of top-level design and multi-faceted detailed descriptions of multiple types of data. Various data tend to form information islands, and various data sources cannot be fully understood and discovered;
2)缺乏一种跨平台、通用的数据发现和获取接口,不能满足用户对数据细粒度精确发现,各种数据不能够被充分、有效利用;2) There is a lack of a cross-platform, universal data discovery and acquisition interface, which cannot satisfy users' fine-grained and precise discovery of data, and various data cannot be fully and effectively utilized;
3)缺乏统一的信息化集成管理平台,各数据信息化系统之间不能实现互联互通,无法形成协同行动能力。3) There is a lack of a unified information integration management platform, and the interconnection and intercommunication between various data information systems cannot be realized, and the ability to coordinate actions cannot be formed.
发明内容Contents of the invention
为了解决上述技术问题,本发明提出了一种基于元模型的智慧城市异构数据共享方法。In order to solve the above technical problems, the present invention proposes a method for sharing heterogeneous data in a smart city based on a meta-model.
本发明所采用的技术方案是:一种基于元模型的智慧城市异构数据共享方法,其特征在于,包括以下步骤:The technical solution adopted in the present invention is: a method for sharing heterogeneous data in a smart city based on a meta-model, characterized in that it includes the following steps:
步骤1:基于MOF(meta object facility)元建模理论,构建城市数据元模型建模框架;Step 1: Based on the meta-modeling theory of MOF (meta object facility), construct the urban data meta-model modeling framework;
步骤2:根据城市数据特征及描述需求,构建城市数据元模型通用元素集;Step 2: According to the characteristics and description requirements of urban data, construct the general element set of urban data meta-model;
步骤3:根据城市数据基本分类和专用元素集扩展模式,发展数据元模型专用元素集;Step 3: According to the basic classification of urban data and the expansion mode of the special element set, develop the special element set of the data meta model;
步骤4:基于XML模板建模,形成元模型通用元素集和专用元素集形式化方法;Step 4: Based on XML template modeling, form a formal method of meta-model general element set and special element set;
步骤5:实现网络目录服务、数据服务,建立开放式城市数据元模型注册和管理平台;Step 5: Realize network directory service and data service, and establish an open urban data meta-model registration and management platform;
步骤6:根据用户实际应用需求,设计城市数据细粒度发现接口并获得数据。Step 6: According to the user's actual application requirements, design the city data fine-grained discovery interface and obtain the data.
作为优选,所述的步骤1的具体实现包括以下子步骤:As preferably, the specific realization of described step 1 includes the following sub-steps:
步骤1.1:基于MOF元建模理论,根据城市数据建模实际特点,采用归纳、抽象方法,构建统一的抽象语法与标准的四层数据元模型建模框架;Step 1.1: Based on the MOF meta-modeling theory and according to the actual characteristics of urban data modeling, adopt induction and abstraction methods to construct a unified abstract syntax and a standard four-layer data meta-model modeling framework;
步骤1.2:根据智慧城市背景下城市数据共享需求及数据本质特征,构建信息描述元模型中“标签”、“内容”、“质量”、“分发”以及“参考”五大元模块类。Step 1.2: According to the urban data sharing requirements and the essential characteristics of data in the context of smart cities, construct five meta-module classes of "label", "content", "quality", "distribution" and "reference" in the information description meta-model.
作为优选,所述的步骤2的具体实现包括以下子步骤:As preferably, the specific realization of described step 2 includes the following sub-steps:
步骤2.1:根据数据特征及描述需求,在五大元模块类的基础上,发展DMM_identifacation、DMM_producteTag、DMM_distrubutionFormat、DMM_dataQuality、DMM_transferType、DMM_distrubutorContact、DMM_spatialDimension、DMM_temporalDimension、DMM_ contentType、DMM_metaReference十大元模型构件;Step 2.1: According to data characteristics and description requirements, on the basis of the five meta-module classes, develop ten meta-model components: DMM_identifacation, DMM_productTag, DMM_distrubutionFormat, DMM_dataQuality, DMM_transferType, DMM_distrubutorContact, DMM_spatialDimension, DMM_temporalDimension, DMM_contentType, DMM_metaReference;
步骤2.2:参考引用或者扩展现有地理信息标准中的元数据元素,在十大元模型构件基础上发展数据元模型通用元素集合。Step 2.2: Refer to or expand the metadata elements in the existing geographic information standards, and develop a set of common elements of the data metadata model on the basis of the ten metamodel components.
作为优选,所述的步骤3的具体实现包括以下子步骤:As preferably, the specific realization of described step 3 includes the following sub-steps:
步骤3.1:根据现有数据分类,考虑城市数据特性,构建智慧城市下数据分类,具体包括矢量、影像、地形、三维模型、专题属性、实时监测、流媒体、文档数据八大类型城市数据;Step 3.1: According to the existing data classification, considering the characteristics of urban data, construct data classification under smart city, specifically including eight types of urban data: vector, image, terrain, 3D model, thematic attribute, real-time monitoring, streaming media, and document data;
步骤3.2:规定元模型专用元素集扩展模式,考察各类型数据特性,以元模型“五元组”框架为核心,以“十大元模型构件”为边界,在通用元素集的基础上构建数据元模型专用元素集,形成八大类型数据元模型专用元素集。Step 3.2: Specify the expansion mode of meta-model-specific element sets, investigate the characteristics of various types of data, take the meta-model "five-tuple" framework as the core, and take the "ten meta-model components" as the boundary to construct data on the basis of general element sets Metamodel special element sets, forming eight types of data metamodel special element sets.
作为优选,所述的步骤4的具体实现包括以下子步骤:As preferably, the specific realization of described step 4 includes the following sub-steps:
步骤4.1:基于元模型框架及各元素集,建立UML类图,采用XML编码技术,设计通用元素集和专用元素集形式化模板;Step 4.1: Based on the meta-model framework and each element set, establish a UML class diagram, and use XML coding technology to design a formal template for a general element set and a special element set;
步骤4.2:加载相对应类型元模型形式化模板,根据具体数据集各方面特点,通过向导式建模形式化流程分块、分层次建立数据元模型实例。Step 4.2: Load the formalized template of the corresponding type of meta-model, and according to the characteristics of various aspects of the specific data set, establish the instance of the data meta-model through the block-by-block and hierarchical establishment of the formalized process of wizard-style modeling.
作为优选,所述的步骤5的具体实现包括以下子步骤:As preferably, the specific realization of described step 5 includes the following sub-steps:
步骤5.1:实现网络目录服务、数据服务,将完成的元模型实例进行注册并发布数据服务;Step 5.1: Realize network directory service and data service, register the completed metamodel instance and publish data service;
步骤5.2:对已注册的元模型实例管理,进行增加、删除、修改、更新操作。Step 5.2: Add, delete, modify, and update operations on the registered meta-model instance management.
作为优选,所述的步骤6的具体实现包括以下子步骤:As preferably, the specific realization of described step 6 includes the following sub-steps:
步骤6.1:根据用户实际应用需求,设计包含“数据标签”、“数据内容”、“数据质量”、“数据分发”、“数据参考”五大方面不同层次的组合细粒度发现接口;Step 6.1: According to the actual application needs of users, design a combined fine-grained discovery interface including five aspects of "data label", "data content", "data quality", "data distribution" and "data reference" at different levels;
步骤6.2:对检索返回提供的数据元模型进行解析,得到数据各方面信息,通过数据服务获得所需数据。Step 6.2: Analyze the data meta-model provided by the search and return, obtain information on various aspects of the data, and obtain the required data through data services.
本发明具有以下优点和积极效果:The present invention has the following advantages and positive effects:
(1)实现城市异构数据统一全面描述,便于网络共享。通过对多源异构城市数据建模,全面反映了数据标识、内容、质量、分发、参考等方面的信息,对数据的公共属性进行全面表达和统一描述;设计了专用元素集扩展模式,支持对多种数据类型的差异性信息的表达。实现对异构、海量城市数据各个方面统一表达,同时满足多样化表征需求;(1) Realize a unified and comprehensive description of urban heterogeneous data, which is convenient for network sharing. By modeling multi-source heterogeneous urban data, it fully reflects the information on data identification, content, quality, distribution, reference, etc., and fully expresses and uniformly describes the public attributes of the data; it designs a dedicated element set expansion mode to support Expression of differential information of various data types. Realize the unified expression of various aspects of heterogeneous and massive urban data, while meeting the needs of diverse representations;
(2)实现城市异构数据细粒度发现,提高数据使用效率。基于数据元模型多角度多层次检索,能够获得满足特定数据需求的可用数据集合,实现了数据集高效精确发现。对数据的溯源、评估、分析及应用都有重大的贡献。(2) Realize the fine-grained discovery of urban heterogeneous data and improve the efficiency of data use. Based on the multi-angle and multi-level retrieval of the data meta-model, available data sets that meet specific data requirements can be obtained, and efficient and accurate discovery of data sets can be realized. He has made significant contributions to the traceability, evaluation, analysis and application of data.
附图说明Description of drawings
图1:是本发明的流程图。Fig. 1: is flow chart of the present invention.
图2:是本发明实施例中步骤1.1建立的基于MOF元建模的城市数据元模型建模框架。Fig. 2: is the urban data meta-model modeling framework based on MOF meta-modeling established in step 1.1 in the embodiment of the present invention.
图3:是本发明实施例中步骤1.2建立的数据元模型通用框架。Fig. 3: is the general framework of the data meta-model established in step 1.2 in the embodiment of the present invention.
图4:是本发明实施例中步骤3.1建立的城市数据分类。Fig. 4: is the city data classification established in step 3.1 in the embodiment of the present invention.
图5:是本发明实施例中步骤3.2建立的数据元模型专用元素集扩展模式。Fig. 5: It is the data metamodel-specific element set extension mode established in step 3.2 of the embodiment of the present invention.
图6:是本发明实施例中步骤4.1建立的数据元模型UML图。Fig. 6 is a UML diagram of the data meta-model established in step 4.1 in the embodiment of the present invention.
图7:是本发明实施例中步骤4.2建立的数据元模型实例。Fig. 7 is an example of the data metamodel established in step 4.2 in the embodiment of the present invention.
具体实施方式detailed description
为了便于本领域普通技术人员理解和实施本发明,下面结合附图及实施例对本发明作进一步的详细描述,应当理解,此处所描述的实施示例仅用于说明和解释本发明,并不用于限定本发明。In order to facilitate those of ordinary skill in the art to understand and implement the present invention, the present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the implementation examples described here are only used to illustrate and explain the present invention, and are not intended to limit this invention.
在智慧城市背景下,本发明较全面地支持对所有城市异构数据的描述,为用户提供了一种城市异构数据共享和互操作的途经,为城市异构数据在线访问、后续处理及协同应用提供了支持,是城市异构数据共享中高效率的比较实用可靠的方法。In the context of smart cities, the present invention more comprehensively supports the description of all urban heterogeneous data, provides users with a way for urban heterogeneous data sharing and interoperability, and facilitates online access, subsequent processing and collaboration of urban heterogeneous data. The application provides support, and it is a more efficient, practical and reliable method for urban heterogeneous data sharing.
请见图1,本实施例针对智慧城市中燃气管道泄漏爆炸应急响应处置涉及的城市数据建立共享机制,实施例的具体实现流程如下:Please see Figure 1. This embodiment establishes a sharing mechanism for city data involved in emergency response to gas pipeline leakage and explosion in a smart city. The specific implementation process of the embodiment is as follows:
步骤1:基于MOF元建模理论,构建城市数据元模型建模框架。Step 1: Based on the MOF meta-modeling theory, construct the urban data meta-model modeling framework.
步骤1.1:基于MOF(meta object facility)元建模理论,抽象、归纳城市异构数据基本概念、基本对象,自上而下建立城市异构数据元建模的元元模型层、元模型层、模型层以及实例层的建模框架(如图2)。Step 1.1: Based on the meta-modeling theory of MOF (meta object facility), abstract and summarize the basic concepts and basic objects of urban heterogeneous data, and establish the meta-metamodel layer, meta-model layer, The modeling framework of the model layer and the instance layer (as shown in Figure 2).
步骤1.2:根据智慧城市背景下城市数据集成管理、协同调用等共享需求,分析数据本质特征,重点构建包含“标签(Tag)”、“内容(Content)”、“质量(Quality)”、“分发(Distribution)”以及“参考(Reference)”等五大元模块类的信息描述元模型。这五大元模块类基本涵盖数据共享涉及的各个方面,通过后续继承、扩展能够满足智慧城市管理如综合应急响应处置等对数据共享的需求。Step 1.2: According to the sharing requirements of urban data integration management and collaborative call in the context of smart cities, analyze the essential characteristics of data, and focus on building (Distribution)" and "Reference (Reference)" and other information description meta-models of the five meta-module classes. These five meta-module classes basically cover all aspects of data sharing, and through subsequent inheritance and expansion, they can meet the needs of smart city management such as comprehensive emergency response and disposal for data sharing.
步骤2:根据城市数据特征及描述需求,构建城市数据元模型通用元素集。Step 2: According to the characteristics and description requirements of urban data, construct the general element set of urban data meta-model.
步骤2.1:根据数据特征及描述需求,在五大元模块类的基础上,发展基本标识(DMM_identifacation)、生产标志(DMM_producteTag)、内容类型(DMM_contentType)、空间维度(DMM_spatialDimension)、时间维度(DMM_temporalDimension)、数据质量(DMM_dataQuality)、分发格式(DMM_distrubutionFormat)、分发联系(DMM_distrubutorContact)、分发方式(DMM_transferType)、参考信息(DMM_metaReference)等十大元模型构件(如图3);Step 2.1: According to data characteristics and description requirements, on the basis of the five meta-module classes, develop basic identification (DMM_identifacation), production identification (DMM_productTag), content type (DMM_contentType), spatial dimension (DMM_spatialDimension), temporal dimension (DMM_temporalDimension), Data quality (DMM_dataQuality), distribution format (DMM_distrubutionFormat), distribution contact (DMM_distrubutorContact), distribution method (DMM_transferType), reference information (DMM_metaReference) and other ten meta-model components (as shown in Figure 3);
步骤2.2:参考引用或者扩展现有地理信息标准(如地理空间数据集元数据内容标准、ISO地理信息元数据标准、科学数据库元数据标准、中国可持续发展信息共享元数据标准等等)中的元数据元素,在十大元模型构件基础上发展数据元模型通用元素集合,它包含更加不同城市数据类型所共有的元数据描述项,如基本的名称、关键词、日期等等;Step 2.2: Reference or expand existing geographic information standards (such as geospatial dataset metadata content standards, ISO geographic information metadata standards, scientific database metadata standards, China sustainable development information sharing metadata standards, etc.) Metadata elements, based on the top ten metamodel components, develop a set of common elements of data metamodels, which contain metadata description items common to different city data types, such as basic names, keywords, dates, etc.;
步骤3:根据城市数据基本分类和专用元素集扩展模式,发展数据元模型专用元素集。Step 3: According to the basic classification of urban data and the expansion mode of the special element set, develop the special element set of the data meta model.
步骤3.1:根据现有数据分类,考虑城市数据的特性,构建智慧城市应用下数据分类,具体包括矢量、影像、地形、三维模型、专题属性、实时监测、流媒体、文档数据等八大类型城市数据(如图4);Step 3.1: According to the existing data classification, considering the characteristics of urban data, construct data classification under smart city applications, including eight types of urban data, including vector, image, terrain, 3D model, thematic attributes, real-time monitoring, streaming media, and document data (as shown in Figure 4);
步骤3.2:规定元模型专用元素集扩展模式,图5展示了数据元模型专用元素集扩展模式,以元模型“五元组”框架为核心,以“十大元模型构件”为边界,在通用元素集的基础上构建数据元模型专用元素集,形成八大类型数据元模型专用元素集。Step 3.2: Specify the expansion mode of the special element set of the metamodel. Figure 5 shows the expansion mode of the special element set of the data metamodel, with the metamodel "five-tuple" framework as the core and the "ten metamodel components" as the boundary. On the basis of the element set, the special element set of data meta model is constructed to form eight types of special element sets of data meta model.
步骤4:基于XML模板建模,形成元模型通用元素集和专用元素集形式化方法。Step 4: Based on XML template modeling, form the meta-model general element set and special element set formalization method.
步骤4.1:基于元模型框架及各元素集,建立UML类图(如图6),据此采用XML编码技术,设计通用元素集和八大类型数据专用元素集形式化模板,存储于系统的模板库中,该模板便于系统加载模板快速、标准化地建立所需要的数据元模型实例;Step 4.1: Based on the meta-model framework and each element set, establish a UML class diagram (as shown in Figure 6), and then use XML coding technology to design a formal template for the general element set and the eight types of data-specific element sets, and store them in the template library of the system In , the template is convenient for the system to load the template to quickly and standardize the establishment of the required data meta-model instance;
步骤4.2:根据具体的数据类型,系统加载相对应类型元模型形式化模板,根据具体数据集各方面特点,通过向导式建模形式化流程分块、分层次建立数据元模型实例。针对智慧城市燃气管道泄漏爆炸应急响应处置的具体应用,可以预先创建广泛的城市数据集元模型实例,如城市地下燃气管道监测数据,选择“实时监测数据”类型加载对应专用元素集模板,填写元素集模板的各项信息,形成燃气管道监测数据的元模型实例(如图7为公交线路矢量数据元模型),以此类推,可以建立包含城市正射影像、地形图、三维模型、管线等各种类型数据的元模型实例库。这些标准形式化的模型实例不但记录了数据各个方面的信息,还包括数据获取方式。Step 4.2: According to the specific data type, the system loads the formalized template of the corresponding type of meta-model, and according to the characteristics of various aspects of the specific data set, the data meta-model instance is established in blocks and layers through the formalized process of wizard-style modeling. For the specific application of smart city gas pipeline leakage and explosion emergency response, you can pre-create a wide range of urban data set meta-model instances, such as urban underground gas pipeline monitoring data, select the "real-time monitoring data" type to load the corresponding special element set template, and fill in the elements Collect all the information of the template to form a meta-model instance of gas pipeline monitoring data (as shown in Figure 7 is the vector data meta-model of bus lines), and so on, it is possible to establish a model that includes urban orthophotos, topographic maps, 3D models, pipelines, etc. Metamodel instance library for various types of data. These standard formalized model instances not only record information about various aspects of the data, but also include data acquisition methods.
步骤5:实现网络目录服务、数据服务,建立开放式城市数据元模型注册和管理平台。Step 5: Realize network directory service and data service, and establish an open urban data meta-model registration and management platform.
步骤5.1:将建立的模型实例注册到系统的目录服务中心,可实现分布式数据元模型实例集中注册管理。根据数据类型和具体对外获取方式,建立数据获取服务。如针对实时监测的数据建立传感器观测服务(SOS);针对矢量数据可发布网络要素服务WFS;针对栅格数据可发布网络覆盖服务(WCS)等等;Step 5.1: Register the established model instance to the directory service center of the system, which can realize centralized registration management of distributed data meta-model instances. According to the data type and the specific external acquisition method, establish a data acquisition service. For example, sensor observation service (SOS) can be established for real-time monitoring data; network element service WFS can be released for vector data; network coverage service (WCS) can be released for raster data, etc.;
步骤5.2:对已注册的城市异构数据元模型实例,可对其进行综合管理,系统提供增加、删除、修改、更新等操作,同时也提供对数据服务的关联、更新操作,使管理这可以对物理上分布的各种城市数据进行逻辑上的综合管理。Step 5.2: For the registered urban heterogeneous data meta-model instance, it can be managed comprehensively. The system provides operations such as adding, deleting, modifying, updating, etc., and also provides association and updating operations for data services, so that management can Logically manage all kinds of city data that are physically distributed.
步骤6:根据用户实际应用需求,设计城市数据细粒度发现接口并获得数据。Step 6: According to the user's actual application requirements, design the city data fine-grained discovery interface and obtain the data.
步骤6.1:根据用户实际应用需求,设计包含“数据标签”、“数据内容”、“数据质量”、“数据分发”、“数据参考”等五大方面不同层次的组合细粒度发现接口,并在系统显示交互界面,使用户能够针对特定需求获得理想的数据。如燃气泄漏应急响应过程中需要一定空间范围、时间范围的不同主题、不同类型的数据集合,可以通过数据发现接口来精确检索;Step 6.1: According to the user's actual application requirements, design a combined fine-grained discovery interface at different levels including "data label", "data content", "data quality", "data distribution", and "data reference", and implement it in the system Display an interactive interface that enables users to obtain ideal data for specific needs. For example, in the emergency response process of gas leakage, different topics and different types of data collections that require a certain space and time range can be accurately retrieved through the data discovery interface;
步骤6.2:对检索返回提供的数据元模型进行解析,得到数据标识、内容、质量、格式、负责人等多方面信息,通过包含的数据服务可以获得数据,如通过燃气管道监测数据元模型记录的传感器观测服务(SOS)可以获得实时的以及历史的监测数据,通过记录的矢量数据服务方式可以获得对应的矢量数据等。Step 6.2: Analyze the data metamodel provided by the search and return to obtain data identification, content, quality, format, person in charge, etc., and obtain data through the included data services, such as those recorded by the gas pipeline monitoring data metamodel The Sensor Observation Service (SOS) can obtain real-time and historical monitoring data, and the corresponding vector data can be obtained through the recorded vector data service.
至此,即完成智慧城市中基于元模型的城市异构数据共享全过程,涉及元模型提出、模型实例建立、模型实例管理、模型实例发现和数据获取。提出的数据元模型此涵盖了数据各个方面信息,并通过XML编码统一形式化表达,实现了对城市异构数据信息的全面表征、统一表达,同时基于网络注册服务、传感器观测服务以及其他多种服务的异构数据管理和共享平台的实现为智慧城市各领域应用涉及的数据集成、协同应用提供高效的工具。总之,是城市异构数据共享中高效率的比较实用可靠的方法。So far, the whole process of urban heterogeneous data sharing based on meta-model in smart city has been completed, involving meta-model proposal, model instance establishment, model instance management, model instance discovery and data acquisition. The proposed data meta-model covers all aspects of data information, and unified and formalized expression through XML coding, which realizes the comprehensive representation and unified expression of urban heterogeneous data information. At the same time, based on network registration service, sensor observation service and other The implementation of heterogeneous data management and sharing platform for services provides efficient tools for data integration and collaborative applications involved in various fields of smart city applications. In short, it is a more practical and reliable method with high efficiency in urban heterogeneous data sharing.
应当理解的是,本说明书未详细阐述的部分均属于现有技术。It should be understood that the parts not described in detail in this specification belong to the prior art.
应当理解的是,上述针对较佳实施例的描述较为详细,并不能因此而认为是对本发明专利保护范围的限制,本领域的普通技术人员在本发明的启示下,在不脱离本发明权利要求所保护的范围情况下,还可以做出替换或变形,均落入本发明的保护范围之内,本发明的请求保护范围应以所附权利要求为准。It should be understood that the above-mentioned descriptions for the preferred embodiments are relatively detailed, and should not therefore be considered as limiting the scope of the patent protection of the present invention. Within the scope of protection, replacements or modifications can also be made, all of which fall within the protection scope of the present invention, and the scope of protection of the present invention should be based on the appended claims.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410664605.0A CN104462244B (en) | 2014-11-19 | 2014-11-19 | A kind of smart city isomeric data sharing method based on meta-model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410664605.0A CN104462244B (en) | 2014-11-19 | 2014-11-19 | A kind of smart city isomeric data sharing method based on meta-model |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104462244A CN104462244A (en) | 2015-03-25 |
CN104462244B true CN104462244B (en) | 2017-10-03 |
Family
ID=52908280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410664605.0A Active CN104462244B (en) | 2014-11-19 | 2014-11-19 | A kind of smart city isomeric data sharing method based on meta-model |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104462244B (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107515866B (en) * | 2016-06-15 | 2021-01-29 | 阿里巴巴集团控股有限公司 | Data operation method, device and system |
CN106780255A (en) * | 2016-12-13 | 2017-05-31 | 上海仪电(集团)有限公司中央研究院 | Smart city application based on Unikernel increases method and device |
CN107038257A (en) * | 2017-05-10 | 2017-08-11 | 浙江大学 | A kind of city Internet of Things data analytical framework of knowledge based collection of illustrative plates |
CN107766949A (en) * | 2017-09-19 | 2018-03-06 | 河海大学 | Failure rapid rush-repair commander's business information exchange method based on meta-model |
CN108052618B (en) * | 2017-12-15 | 2020-06-30 | 北京搜狐新媒体信息技术有限公司 | Data management method and device |
CN108133318A (en) * | 2017-12-20 | 2018-06-08 | 中国电子科技集团公司信息科学研究院 | A kind of smart city data model frame |
CN108446293B (en) * | 2018-01-22 | 2020-12-15 | 中电海康集团有限公司 | Method for constructing city portrait based on city multi-source heterogeneous data |
CN109242259B (en) * | 2018-08-10 | 2020-12-11 | 华迪计算机集团有限公司 | Data integration method and system based on basic data resource library |
CN109446281B (en) * | 2018-09-05 | 2020-11-24 | 广州市城市规划勘测设计研究院 | Construction method, system and mapping method of online intelligent mapping system based on ArcGIS |
CN109471957B (en) * | 2018-09-19 | 2020-08-04 | 北京悦图数据科技发展有限公司 | Metadata conversion method and device based on uniform tags |
CN109508378B (en) * | 2018-11-26 | 2023-07-14 | 平安科技(深圳)有限公司 | Sample data processing method and device |
CN109635062B (en) * | 2018-11-30 | 2023-02-21 | 南京市城市规划编制研究中心 | Fusion construction method for urban surveying and mapping geographic information standard system |
CN112214483B (en) * | 2019-07-11 | 2024-08-06 | 广联达科技股份有限公司 | Method and device for analyzing, associating, storing and accessing data in city information model |
CN110740160B (en) * | 2019-08-29 | 2022-08-05 | 武汉烽火众智数字技术有限责任公司 | Multi-source data map gridding and data state real-time pushing system |
CN111404905B (en) * | 2020-03-10 | 2022-04-08 | 南京三眼精灵信息技术有限公司 | Cross-domain data security calculation and model cooperation method |
CN113032353A (en) * | 2020-12-30 | 2021-06-25 | 北京市农林科学院 | Data sharing method, system, electronic device and medium |
CN112527687A (en) * | 2020-12-31 | 2021-03-19 | 武汉烽火富华电气有限责任公司 | Intelligent city management system test case design method based on UML activity diagram |
CN113344334A (en) * | 2021-05-11 | 2021-09-03 | 武汉大学 | City multi-scale comprehensive perception index system construction and query method based on ontology |
CN116304220B (en) * | 2022-12-05 | 2025-07-04 | 东北大学 | A multi-granularity traceability method for data integration |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103198137A (en) * | 2013-04-15 | 2013-07-10 | 武汉大学 | Access protocol transfer method and system for multi-source heterogeneous remote sensing data system |
CN103235855A (en) * | 2013-04-27 | 2013-08-07 | 武汉大学 | Construction method of sensor network heterogeneous node element model |
CN103279344A (en) * | 2013-05-27 | 2013-09-04 | 武汉大学 | Method and system for supporting isomeric sensor semantic registration |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003083610A2 (en) * | 2002-03-25 | 2003-10-09 | Myriagon Corporation | Information management structure |
US8949175B2 (en) * | 2012-04-17 | 2015-02-03 | Turn Inc. | Meta-data driven data ingestion using MapReduce framework |
-
2014
- 2014-11-19 CN CN201410664605.0A patent/CN104462244B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103198137A (en) * | 2013-04-15 | 2013-07-10 | 武汉大学 | Access protocol transfer method and system for multi-source heterogeneous remote sensing data system |
CN103235855A (en) * | 2013-04-27 | 2013-08-07 | 武汉大学 | Construction method of sensor network heterogeneous node element model |
CN103279344A (en) * | 2013-05-27 | 2013-09-04 | 武汉大学 | Method and system for supporting isomeric sensor semantic registration |
Non-Patent Citations (1)
Title |
---|
对地观测网传感器资源共享管理模型与方法研究;胡楚丽;《中国优秀博士学位论文全文数据库》;20130915;第A008-2页 * |
Also Published As
Publication number | Publication date |
---|---|
CN104462244A (en) | 2015-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104462244B (en) | A kind of smart city isomeric data sharing method based on meta-model | |
Hamilton et al. | Urban information model for city planning | |
Janowicz et al. | Semantic enablement for spatial data infrastructures | |
US9336332B2 (en) | Programmatic data discovery platforms for computing applications | |
Wiemann et al. | Spatial data fusion in spatial data infrastructures using linked data | |
Pauwels et al. | Buildings and semantics: Data models and web technologies for the built environment | |
CN107506393B (en) | An agricultural big data model and its application in agriculture | |
CN103699572B (en) | A method for integrating and sharing digital media content resources in a cloud environment | |
Aien et al. | Utilising data modelling to understand the structure of 3D cadastres | |
Schandl et al. | Linked Data and multimedia: the state of affairs | |
Masó et al. | Tuning the second-generation SDI: theoretical aspects and real use cases | |
CN105740385A (en) | Intangible cultural heritage resource library integration method | |
CN103279344A (en) | Method and system for supporting isomeric sensor semantic registration | |
Ding et al. | Integrating 3D city data through knowledge graphs | |
CN102063666A (en) | Platform system for water conservancy information integration and comprehensive data processing | |
d'Aquin et al. | Dealing with diversity in a smart-city datahub | |
Knezevic et al. | Managing urban digital twins with an extended catalog service | |
Charles et al. | Achieving interoperability between the CARARE schema for monuments and sites and the Europeana Data Model | |
Jobst et al. | Accessing spatial knowledge networks with maps | |
Mignard et al. | SIGA3D: a semantic bim extension to represent urban environment | |
Roxin et al. | Semantic interoperability between BIM and GIS–review of existing standards and depiction of a novel approach | |
CN104391921A (en) | Method and system for establishing geographic space decision element model for isomeric model management | |
Rosser et al. | Full Meta Object profiling for flexible geoprocessing workflows | |
Kettouch et al. | Semantic data management in smart cities | |
Sjekavica et al. | Advantages of semantic web technologies usage in the multimedia annotation and retrieval |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |