[go: up one dir, main page]

CN104061934A - Pedestrian indoor position tracking method based on inertial sensor - Google Patents

Pedestrian indoor position tracking method based on inertial sensor Download PDF

Info

Publication number
CN104061934A
CN104061934A CN201410255619.7A CN201410255619A CN104061934A CN 104061934 A CN104061934 A CN 104061934A CN 201410255619 A CN201410255619 A CN 201410255619A CN 104061934 A CN104061934 A CN 104061934A
Authority
CN
China
Prior art keywords
mrow
msub
mtd
mtr
mtable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410255619.7A
Other languages
Chinese (zh)
Other versions
CN104061934B (en
Inventor
马琳
邓仲哲
秦丹阳
何晨光
徐玉滨
崔扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hit Robot Group Co ltd
Original Assignee
Harbin Institute of Technology Shenzhen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology Shenzhen filed Critical Harbin Institute of Technology Shenzhen
Priority to CN201410255619.7A priority Critical patent/CN104061934B/en
Publication of CN104061934A publication Critical patent/CN104061934A/en
Application granted granted Critical
Publication of CN104061934B publication Critical patent/CN104061934B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)

Abstract

基于惯性传感器的行人室内位置跟踪方法,本发明涉及一种行人室内位置跟踪方法,具体涉及基于惯性传感器的PDR方法和PF融合地图信息算法。本发明是要解决单纯使用PDR对行人位置跟踪时,因为惯性传感器自身所具有的长时漂移性而造成位置估计误差大甚至错误估计等情况。一、根据加速度传感器进行检步及步长估计;二、根据陀螺仪测量数据中的三轴角速度变化进行航向角估计,对航向角进行校正,然后根据校正后的航向角与第一步步长进行航迹推算,最后根据步长、航向角通过PDR方法估计位置:三、通过粒子滤波将地图信息和PDR估计结果融合,即完成了基于惯性传感器的行人室内位置跟踪方法。本发明应用于室内定位技术领域。

Indoor pedestrian position tracking method based on inertial sensor. The invention relates to a pedestrian indoor position tracking method, in particular to a PDR method based on an inertial sensor and a PF fusion map information algorithm. The present invention aims to solve the situation that the position estimation error is large or even wrongly estimated due to the long-term drift of the inertial sensor itself when the PDR is only used to track the position of pedestrians. 1. Step detection and step estimation based on the acceleration sensor; 2. Estimation of the heading angle according to the change of the three-axis angular velocity in the gyroscope measurement data, correcting the heading angle, and then according to the corrected heading angle and the step length of the first step Carry out dead reckoning, and finally estimate the position through the PDR method according to the step size and heading angle: 3. The map information and the PDR estimation result are fused through particle filtering, that is, the indoor position tracking method for pedestrians based on inertial sensors is completed. The invention is applied to the technical field of indoor positioning.

Description

Pedestrian indoor position tracking method based on inertial sensor
Technical Field
The invention relates to a pedestrian indoor position tracking method, in particular to a PDR method and a PF fusion map information algorithm based on an inertial sensor.
Background
In recent years, the development of Micro-electro mechanical Systems (MEMS) has led to the popularization of the application of inertial sensors in smart mobile terminals. An inertial sensor-based pedestrian indoor navigation system is becoming popular for research due to its low cost advantage of not needing to lay external facilities. The basic principle of the system is that a Pedestrian track deduction algorithm (PDR) is adopted, and technologies such as Step detection, Step length estimation, Heading angle estimation and the like are mainly involved according to measurement data of an inertial sensor (such as an accelerometer and a gyroscope), so that the system is sometimes called SHSs (Step-and-Heading Systems). The early wearable equipment that adopts, install the sensor in shoes, helmet, place pocket, waist etc. in, the foot can more reflect motion characteristics in the walking, so can be better examine step based on foot sensor, nevertheless need additionally to purchase professional equipment and inconvenient carrying, be not suitable for ordinary pedestrian's indoor navigation. In the walking process, the acceleration sensor can output certain walking characteristics, peak detection, zero-crossing detection, autocorrelation matching, spectrum analysis and the like are carried out on the measured data, one or more of the peak detection, the zero-crossing detection, the autocorrelation matching, the spectrum analysis and the like are combined to identify each step, and the real-time performance of the last two steps is poor due to long time consumption. For the step length estimation, the most rough is to directly set the step length as a constant, because a pedestrian has an average step length under the constant-speed walking, but in reality, the step length cannot be generally the average value because the step length is influenced by the height, the body type, the step-changing frequency and other factors of a person. Researchers generally accept a formula calculation of a quartic root of a maximum and minimum acceleration difference value, but other step length estimation methods such as Zero-velocity UPdaTe (ZUPT) based on linear relation between step frequency and step length, Zero-velocity UPdaTe (Zero-velocity UPdaTe) based on height of a pedestrian and the like are also proposed. In course estimation, the simplest estimation method is to fix the sensor to the pedestrian, so that the coordinate system of the sensor coincides with three axes of a terrestrial coordinate system (compass coordinate system, N-E coordinate system), and thus the azimuth angle measured by the sensor is the course angle of the pedestrian, which is often calculated by using the Components of gravity on the three axes of the acceleration sensor and a magnetometer (electronic compass), while generally, the sensor is placed without a fixed attitude (i.e., attitude randomness), which is needed to estimate the course by using other methods, such as Principal Component Analysis (PCA) to estimate the course angle.
Particle Filtering (PF), a Filter tracking algorithm developed in the case where gaussian, linear assumptions of the Kalman filtered state model are not satisfied, approximates the bayesian optimal estimate by sampling the maximum posterior estimate using the monte carlo method. At present, various indoor positioning such as WLAN indoor positioning, ultra-wideband indoor positioning, vision-based indoor positioning, inertial sensor indoor positioning and the like adopt particle filtering to improve positioning accuracy and solve the problem of multi-target tracking, and the particle filtering is used for fusing data of different positioning systems, so that the positioning results are mutually assisted and improved. The particle filtering is often adopted to add the map information into the position estimation, and the parameters in the particle filtering are adjusted according to the map information, so that the precision is improved, and the tracking target is prevented from passing through the wall and other special conditions.
Disclosure of Invention
The invention provides a pedestrian indoor position tracking method based on an inertial sensor, aiming at solving the problems of large position estimation error, even error estimation and the like caused by long-term drift of the inertial sensor when a pedestrian position is tracked by using PDR (pulse width modulation) only.
The pedestrian indoor position tracking method based on the inertial sensor is realized by the following steps:
firstly, detecting steps and estimating step length according to an acceleration sensor;
estimating a course angle according to the three-axis angular speed change in the gyroscope measurement data, correcting the course angle, carrying out track calculation according to the corrected course angle and the first step length, and estimating the position according to the step length and the course angle by a PDR method:
<math><mrow> <msubsup> <mi>pos</mi> <mi>k</mi> <mi>PDR</mi> </msubsup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mi>k</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <msub> <mi>sLen</mi> <mi>k</mi> </msub> <mo>&CenterDot;</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>h</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>h</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow></math>
wherein,representing the estimated location of the PDR for the k-th stephkRepresenting the heading angle, sLen, estimated at step kkRepresents the step size of the k step;
and thirdly, fusing the map information and the PDR estimation result through particle filtering, thus completing the pedestrian indoor position tracking method based on the inertial sensor.
The invention has the following effects:
the pedestrian position tracking method based on the inertial sensor initially estimates the position by means of an inertial sensor module in a smart phone and a pedestrian track pushing algorithm, and then provides real-time position information for a user by fusing map information through a particle filter algorithm. In the implementation of a pedestrian track estimation algorithm, a PZVT step detection algorithm based on an acceleration value and time is provided, the characteristic that the angular integral of a gyroscope has long-term drift is estimated through step length, the three-axis angle change is mutually corrected, the test is carried out in an experimental environment, and the position estimation error is relatively reduced. The estimated position is filtered by using particle filtering and combining map information, so that the position estimation accuracy is improved to a certain extent.
Drawings
FIG. 1 is a schematic block diagram of an inertial sensor based PDR;
FIG. 2 is a diagram of a mobile phone sensor coordinate system, an electronic compass coordinate system;
FIG. 3 is a schematic diagram of an experimental environment for pedestrian position tracking based on inertial sensors;
FIG. 4 is a Z-axis acceleration value and a step detection result;
FIG. 5 is a chart comparing uncorrected and corrected course angles;
fig. 6 is a position tracking comparison graph using PF and DR only.
Detailed Description
The first embodiment is as follows: the pedestrian indoor position tracking method based on the inertial sensor is realized by the following steps:
firstly, detecting steps and estimating step length according to an acceleration sensor;
estimating a course angle according to the three-axis angular speed change in the gyroscope measurement data, correcting the course angle, carrying out track calculation according to the corrected course angle and the first step length, and estimating the position according to the step length and the course angle by a PDR method:
<math><mrow> <msubsup> <mi>pos</mi> <mi>k</mi> <mi>PDR</mi> </msubsup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mi>k</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <msub> <mi>sLen</mi> <mi>k</mi> </msub> <mo>&CenterDot;</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>h</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>h</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow></math>
wherein,representing the estimated location of the PDR for the k-th stephkRepresenting the heading angle, sLen, estimated at step kkRepresents the step size of the k step;
and thirdly, fusing the map information and the PDR estimation result through particle filtering, thus completing the pedestrian indoor position tracking method based on the inertial sensor.
The second embodiment is as follows: the first difference between the present embodiment and the specific embodiment is: the specific process of the step one is as follows:
detecting steps by adopting a peak value-zero value-valley value-time interval method, namely, each step of walking comprises 1 maximum acceleration, 2 zero values and 1 minimum acceleration, the time interval is reasonable, the lower limit of the time interval is set to be 250 milliseconds and S is set to be S according to the walking speed of the adult at the normal speed of 2-4 steps per second0Indicating start, SiI-1 … 9 denotes the ith step, and the step size estimate is obtained by the following equation
<math><mrow> <mi>sLen</mi> <mo>=</mo> <mn>1.07</mn> <mo>&CenterDot;</mo> <mroot> <msub> <mi>acc</mi> <mi>Ave</mi> </msub> <mn>3</mn> </mroot> <mo>,</mo> <msub> <mi>acc</mi> <mi>Ave</mi> </msub> <mo>=</mo> <mfrac> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mo>|</mo> <msub> <mi>acc</mi> <mi>i</mi> </msub> <mo>|</mo> </mrow> <mi>N</mi> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow></math>
Where sLen is the estimated step size, acci、accAveRespectively representing the acceleration value and the average acceleration value in each step, wherein N represents the number of the data collected in each step.
Other steps and parameters are the same as those in the first embodiment.
The third concrete implementation mode: the present embodiment differs from the first or second embodiment in that: the course angle estimation method in the second step comprises the following steps:
firstly, time integration is carried out on the three-axis angular velocity around x, y and z to respectively obtain a Pitch angle, a Roll angle and an Azimuth angle which are recorded as Pitch, Roll and Azimuth;
and (3) correcting the course angle in the first step:
heading=c1·Pitch+c2·Roll+c3·Azimuth
(3) wherein Pitch angle Pitch represents the amount of rotation about the x-axis, Roll angle Roll represents the amount of rotation about the y-axis, and Azimuth angle Azimuth represents the amount of rotation about the z-axis, where c1,c2,c3Is the corresponding weighting coefficient;
and performing a second step of correction on the course angle after the first step of correction, namely performing successive smoothing, and specifically calculating by the following formula:
<math><mrow> <msub> <mi>heading</mi> <mi>i</mi> </msub> <mo>=</mo> <mi>mean</mi> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>i</mi> </munderover> <msub> <mi>heading</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow></math>
mean (-) indicates the mean.
Other steps and parameters are the same as those in the first or second embodiment.
The fourth concrete implementation mode: the difference between this embodiment mode and one of the first to third embodiment modes is: the method for fusing the map information and the PDR estimation result through particle filtering in the third step is as follows:
particle filtering is a bayesian filtering method that approximates the posterior probability by using the monte carlo method, without requiring the motion system to be linear or gaussian;
firstly, the state equation of the adopted particle filter is as follows:
<math><mrow> <msub> <mi>s</mi> <mi>k</mi> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mi>k</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mi>k</mi> </msub> <mo>+</mo> <msubsup> <mi>n</mi> <mi>k</mi> <mi>l</mi> </msubsup> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mo>&CenterDot;</mo> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mi>k</mi> </msub> <mo>+</mo> <msubsup> <mi>n</mi> <mi>k</mi> <mi>l</mi> </msubsup> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mo>&CenterDot;</mo> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mtable> </mtable> <mfenced open='' close=''> <mrow> <mtable> </mtable> </mrow> </mfenced> <mrow> <mo>(</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open='' close=''> <mtable> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>n</mi> <mi>k</mi> <mi>h</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow></math>
wherein x isk,ykDenotes the position coordinate at step k, xk-1,yk-1Position coordinates representing the k-1 st step, hkIs the estimated heading angle of the vehicle,in order to estimate the error for the step size,for course angle estimation error, lkIs the representation? Sin (·), cos (·) respectively represents solving sine value and cosine value of corresponding angle;
secondly, weighting values w for all the particles in the k stepiAnd (3) calculating:
<math><mrow> <msub> <mi>w</mi> <mi>i</mi> </msub> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msup> <mrow> <mo>|</mo> <mo>|</mo> <msubsup> <mi>pos</mi> <mi>k</mi> <mi>PDR</mi> </msubsup> <mo>-</mo> <msubsup> <mi>pos</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>,</mo> <mi>condition</mi> <mo>_</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> <mi>condition</mi> <mo>_</mo> <mn>2</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow></math>
whereinRepresenting the estimated location of the PDR for the k-th step Denotes the position of the ith particle in the k-th step, σ denotes the standard deviation of the PDR position estimate, and w is the position of the particle generated in the k-th step when it is not within the valid position rangeiTaking a value of 0, otherwise, calculating a weight according to condition _ 1;
thirdly, fusing the map information and the PDR estimation result through particle filtering:
obtaining all the weight values w of the particles in the k stepiThen according to wiThe estimated position of the k-th step using particle filtering is calculated:
<math><mrow> <msubsup> <mi>pos</mi> <mi>k</mi> <mi>PF</mi> </msubsup> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>Np</mi> </munderover> <msub> <mover> <mi>w</mi> <mo>~</mo> </mover> <mi>i</mi> </msub> <mo>&CenterDot;</mo> <msubsup> <mi>pos</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow></math>
wherein Np represents the number of particles in the k-th step,representing the estimated position of the ith particle in the k stepCalculated according to equation (5), to normalize the weight values, by the following equation:
<math><mrow> <msub> <mover> <mi>w</mi> <mo>~</mo> </mover> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>w</mi> <mi>i</mi> </msub> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>Np</mi> </munderover> <msub> <mi>w</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow></math>
and continuously carrying out particle filtering on the position estimated by the PDR to obtain a new estimated position.
The state estimation of a dynamic system is generally described by two equations, respectively: sk=F(sk-1,nk-1) (9)
The observation equation: m isk=G(sk,vk) (10)
Wherein F (-), G (-) are the system states sk-1,skFunction of skIs a state variable at time k, mkIs s iskOf the observed value, system noise nkAnd observation noise vkRandom variables with known probability density, which are independent of each other and the system state;
other steps and parameters are the same as those in one of the first to third embodiments.
In the following detailed description of the embodiments, the pedestrian position tracking method based on the inertial sensor is implemented by the following steps:
firstly, step detection and step length estimation are carried out according to an acceleration sensor:
the first embodiment will be described in detail with reference to fig. 2 and 3. Fig. 2 is a plan view illustration of 12 levels of a 2A campus of harbin university of industry, experimented in an inertial sensor based pedestrian location tracking in a corridor (dark filled area in the figure) of the floor, the corridor being about 3 meters wide and about 90 meters long. In fig. 3 is shown the posture of the tester holding the handset in the experimental test, as well as the Sensor coordinate system (Sensor coordinate system), the navigation coordinate system (E-N coordinate system) in the handset.
In the walking process of a person, different parts of the body can change at different accelerated speeds, but the different parts are regular, so that information can be extracted from the acceleration, and whether the person walks or stops and other actions can be identified. The step is detected by adopting a peak-zero value-valley value-time interval (PZVT) method, namely, each step of walking comprises 1 maximum acceleration, 2 zero values and 1 minimum acceleration (as shown in figure 4), the time interval is reasonable, the walking speed at the constant speed of the adult is 2-4 steps per second, and the lower limit of the time interval is set to be 250 milliseconds. The apex box of the waveform represents the detected valid step, S0Indicating start, SiAnd i is 1 … 9, indicating the ith step.
The actual measurement PZVT step detection algorithm shows that the accuracy of the step detection algorithm adopted by the embodiment is basically 100%, namely the situations of false detection, missed detection and multiple detection rarely occur.
The step length is not only related to the height of a person, but also related to factors such as the step frequency in walking, and the like, and the same person has a difference in each step in walking, so that the step length estimation is a very challenging problem. This patent uses the formula
<math><mrow> <mi>sLen</mi> <mo>=</mo> <mi>k</mi> <mo>&CenterDot;</mo> <mroot> <msub> <mi>acc</mi> <mi>Ave</mi> </msub> <mn>3</mn> </mroot> <mo>,</mo> <msub> <mi>acc</mi> <mi>Ave</mi> </msub> <mo>=</mo> <mfrac> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mo>|</mo> <msub> <mi>acc</mi> <mi>i</mi> </msub> <mo>|</mo> </mrow> <mi>N</mi> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow></math>
Where sLen is the estimated step size, acci、accAveThe method respectively represents an acceleration value and an average acceleration value in each step, k is a coefficient corresponding to each method, the value of the method is 1.07, and N represents the number of data acquired in one step.
And secondly, estimating a course angle according to the data measured by the gyroscope. Considering that the mobile phone is not always in the aforementioned basic posture during actual walking, such as slight left-right swing along with the alternation of the steps of the pedestrian during walking, and angular disturbance caused by the up-down fluctuation of the center of gravity, etc., the first step of correction is performed by using (3):
heading=c1·Pitch+c2·Roll+c3·Azimuth (2)
wherein Pitch, Roll, Azimuth correspond to FIG. 2, wherein the rotation amounts around the three axes x, y, z are Pitch angle, Roll angle, Azimuth angle, respectively, and are denoted as Pitch, Roll, Azimuth, c1,c2,c3The corresponding weighting coefficients are obtained by testing in an actual scene, and are assigned as c in the experiment1=1,c2=0.3,c30.1. On the basis, the obtained angle is subjected to second-step correction, namely successive smoothing, mainly to prevent a burr value from appearing to influence the course angle precision in a certain step, but the smoothing is only limited to a straight line walking or a relatively stable process, such as a horizontal segment of a curve in fig. 5, and the calculation is specifically carried out by the following formula
<math><mrow> <msub> <mi>heading</mi> <mi>i</mi> </msub> <mo>=</mo> <mi>mean</mi> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>i</mi> </munderover> <msub> <mi>heading</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow></math>
Where mean (-) means taking the average.
And thirdly, fusing the map information and the PDR estimation result through particle filtering. And simplifying the motion model relative to Kalman Filtering (KF, Kalman Filtering) so as to obtain an optimal solution, wherein the particle Filtering does not simplify the model but directly calculates a suboptimal solution of the complex motion model so as to gradually approach the optimal solution. The particle filtering is a Bayes filtering method for approximating the posterior probability by adopting a Monte Carlo method, and initial conditions such as setting a motion model as a linear model and the like are not needed.
The state estimation of a dynamic system is generally described by two equations, one for each
The state equation is as follows: sk=F(sk-1,nk-1) (9)
The observation equation: m isk=G(sk,vk) (10)
Wherein F (-), G (-) are the system states sk-1,skFunction of skIs a state variable at time k, mkIs s iskOf the observed value, system noise nkAnd observation noise vkAre random variables whose probability densities are known, independent of each other, and independent of the system state.
The state equation of the particle filter adopted in the present embodiment is
<math><mrow> <msub> <mi>s</mi> <mi>k</mi> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mi>k</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mi>k</mi> </msub> <mo>+</mo> <msubsup> <mi>n</mi> <mi>k</mi> <mi>l</mi> </msubsup> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mo>&CenterDot;</mo> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mi>k</mi> </msub> <mo>+</mo> <msubsup> <mi>n</mi> <mi>k</mi> <mi>l</mi> </msubsup> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mo>&CenterDot;</mo> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mtable> </mtable> <mfenced open='' close=''> <mrow> <mtable> </mtable> </mrow> </mfenced> <mrow> <mo>(</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open='' close=''> <mtable> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>n</mi> <mi>k</mi> <mi>h</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow></math>
Wherein x isk,ykDenotes the position coordinates at step k, hkIs the estimated heading angle according to embodiment two,in order to estimate the error for the step size,and (3) estimating an error, sin (·), cos (·) for the course angle, wherein the sin value and the cosine value of the corresponding angle are solved respectively.
<math><mrow> <msub> <mi>w</mi> <mi>i</mi> </msub> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msup> <mrow> <mo>|</mo> <mo>|</mo> <msubsup> <mi>pos</mi> <mi>k</mi> <mi>PDR</mi> </msubsup> <mo>-</mo> <msubsup> <mi>pos</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>,</mo> <mi>condition</mi> <mo>_</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> <mi>condition</mi> <mo>_</mo> <mn>2</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow></math>
WhereinRepresenting the estimated location of the PDR for the k-th stepDenotes the position of the ith particle at step k, and σ denotes the standard deviation of the PDR position estimate. When a particle generated in the k step is not in the effective position range (such as wall penetration, etc.), wiAnd taking a value of 0, otherwise, calculating the weight according to condition _ 1.
The specific implementation process is as follows: firstly, an initial position (0, 0) is given, whether an effective step is detected, if yes, the step length and the course angle are estimated, a rough position is estimated through PDR according to the step length and the course angle, the positions of the particles are calculated by combining 100 randomly generated particles (regeneration is needed in each step), then the weight of each particle is calculated according to the condition (8), the positions of all the particles are weighted and summed to obtain the position after PF filtering, then the next position estimation is carried out by repeating the above process, and thus, the position tracking of the pedestrian is realized.
And fourthly, finally, acquiring data through a NEXUS5 smart phone in the experimental environment shown in the figure 3 (according to the posture of the mobile phone in the figure 2, a tester holds the mobile phone to walk around the experimental corridor to record the data), wherein the acquired data comprise acceleration values, angular velocity values and sampling time, then performing simulation calculation in MATLAB2012b, and finally obtaining a curve shown in the figure 6 according to the proposed algorithm. It can be seen that the pedestrian position estimation method through the PZVT step detection, the course angle correction and the PF fusion map information improves the estimation accuracy compared with the method of estimating the position only by using the PDR.
Firstly, an initial position (0, 0) is given, whether an effective step is detected, if yes, the step length and the course angle are estimated, a rough position is estimated through PDR according to the step length and the course angle, the positions of the particles are calculated by combining 100 randomly generated particles (regeneration is needed in each step), then the weight of each particle is calculated according to conditions, the positions of all the particles are weighted and summed to obtain the position after PF filtering, then the process is repeated to carry out next position estimation, and therefore the position of each step is repeatedly calculated, and the position tracking of pedestrians is achieved.

Claims (4)

1. The pedestrian indoor position tracking method based on the inertial sensor is characterized by comprising the following steps of:
firstly, detecting steps and estimating step length according to an acceleration sensor;
estimating a course angle according to the three-axis angular speed change in the gyroscope measurement data, correcting the course angle, carrying out track calculation according to the corrected course angle and the first step length, and estimating the position according to the step length and the course angle by a PDR method:
<math> <mrow> <msubsup> <mi>pos</mi> <mi>k</mi> <mi>PDR</mi> </msubsup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mi>k</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <msub> <mi>sLen</mi> <mi>k</mi> </msub> <mo>&CenterDot;</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>h</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>h</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,representing the estimated location of the PDR for the k-th stephkRepresenting the heading angle, sLen, estimated at step kkRepresents the step size of the k step;
and thirdly, fusing the map information and the PDR estimation result through particle filtering, thus completing the pedestrian indoor position tracking method based on the inertial sensor.
2. The inertial sensor-based pedestrian position tracking method according to claim 1, characterized in that said step one is as follows:
detecting steps by adopting a peak value-zero value-valley value-time interval method, namely, each step of walking comprises 1 maximum acceleration, 2 zero values and 1 minimum acceleration, the time interval is reasonable, the lower limit of the time interval is set to be 250 milliseconds and S is set to be S according to the walking speed of the adult at the normal speed of 2-4 steps per second0Indicating start, SiI-1 … 9 denotes the ith step, and the step size estimate is obtained by the following equation
<math> <mrow> <mi>sLen</mi> <mo>=</mo> <mn>1.07</mn> <mo>&CenterDot;</mo> <mroot> <msub> <mi>acc</mi> <mi>Ave</mi> </msub> <mn>3</mn> </mroot> <mo>,</mo> <msub> <mi>acc</mi> <mi>Ave</mi> </msub> <mo>=</mo> <mfrac> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mo>|</mo> <msub> <mi>acc</mi> <mi>i</mi> </msub> <mo>|</mo> </mrow> <mi>N</mi> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
Where sLen is the estimated step size, acci、accAveRespectively representing the acceleration value and the average acceleration value in each step, wherein N represents the number of the data collected in each step.
3. The inertial sensor-based pedestrian position tracking method according to claim 2, wherein the second heading angle estimation method is:
firstly, time integration is carried out on the three-axis angular velocity around x, y and z to respectively obtain a Pitch angle, a Roll angle and an Azimuth angle which are recorded as Pitch, Roll and Azimuth;
and (3) correcting the course angle in the first step:
heading=c1·Pitch+c2·Roll+c3·Azimuth (3)
wherein Pitch angle Pitch represents the amount of rotation about the x-axis, Roll angle Roll represents the amount of rotation about the y-axis, and Azimuth angle Azimuth represents the amount of rotation about the z-axis, where c1,c2,c3Is the corresponding weighting coefficient;
and performing a second step of correction on the course angle after the first step of correction, namely performing successive smoothing, and specifically calculating by the following formula:
<math> <mrow> <msub> <mi>heading</mi> <mi>i</mi> </msub> <mo>=</mo> <mi>mean</mi> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>i</mi> </munderover> <msub> <mi>heading</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
mean (-) indicates the mean.
4. The inertial sensor-based pedestrian position tracking method according to claim 3, wherein the fusing of the map information and the PDR estimation result by particle filtering in step three is as follows:
particle filtering is a bayesian filtering method that approximates the posterior probability by using the monte carlo method, without requiring the motion system to be linear or gaussian;
firstly, the state equation of the adopted particle filter is as follows:
<math> <mrow> <msub> <mi>s</mi> <mi>k</mi> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mi>k</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mi>k</mi> </msub> <mo>+</mo> <msubsup> <mi>n</mi> <mi>k</mi> <mi>l</mi> </msubsup> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mo>&CenterDot;</mo> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mi>k</mi> </msub> <mo>+</mo> <msubsup> <mi>n</mi> <mi>k</mi> <mi>l</mi> </msubsup> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mo>&CenterDot;</mo> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>n</mi> <mi>k</mi> <mi>h</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein x isk,ykDenotes the position coordinate at step k, xk-1,yk-1Position coordinates representing the k-1 st step, hkIs the estimated heading angle of the vehicle,in order to estimate the error for the step size,for course angle estimation error, lkIs the representation? Sin (·), cos (·) respectively represents solving sine value and cosine value of corresponding angle;
secondly, weighting values w for all the particles in the k stepiAnd (3) calculating:
<math> <mrow> <msub> <mi>w</mi> <mi>i</mi> </msub> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msup> <mrow> <mo>|</mo> <mo>|</mo> <msubsup> <mi>pos</mi> <mi>k</mi> <mi>PDR</mi> </msubsup> <mo>-</mo> <msubsup> <mi>pos</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>,</mo> <mi>condition</mi> <mo>_</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> <mi>condition</mi> <mo>_</mo> <mn>2</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
whereinRepresenting the estimated location of the PDR for the k-th stepDenotes the position of the ith particle in the k-th step, σ denotes the standard deviation of the PDR position estimate, and w is the position of the particle generated in the k-th step when it is not within the valid position rangeiTaking a value of 0, otherwise, calculating a weight according to condition _ 1;
thirdly, fusing the map information and the PDR estimation result through particle filtering:
obtaining all the weight values w of the particles in the k stepiThen according to wiThe estimated position of the k-th step using particle filtering is calculated:
<math> <mrow> <msubsup> <mi>pos</mi> <mi>k</mi> <mi>PF</mi> </msubsup> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>Np</mi> </munderover> <msub> <mover> <mi>w</mi> <mo>~</mo> </mover> <mi>i</mi> </msub> <mo>&CenterDot;</mo> <msubsup> <mi>pos</mi> <mi>k</mi> <mi>i</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein Np represents the number of particles in the k-th step,representing the estimated position of the ith particle in the k stepCalculated according to equation (5), to normalize the weight values, by the following equation:
<math> <mrow> <msub> <mover> <mi>w</mi> <mo>~</mo> </mover> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>w</mi> <mi>i</mi> </msub> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>Np</mi> </munderover> <msub> <mi>w</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
and continuously carrying out particle filtering on the position estimated by the PDR to obtain a new estimated position.
CN201410255619.7A 2014-06-10 2014-06-10 Pedestrian indoor position tracking method based on inertial sensor Active CN104061934B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410255619.7A CN104061934B (en) 2014-06-10 2014-06-10 Pedestrian indoor position tracking method based on inertial sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410255619.7A CN104061934B (en) 2014-06-10 2014-06-10 Pedestrian indoor position tracking method based on inertial sensor

Publications (2)

Publication Number Publication Date
CN104061934A true CN104061934A (en) 2014-09-24
CN104061934B CN104061934B (en) 2017-04-26

Family

ID=51549762

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410255619.7A Active CN104061934B (en) 2014-06-10 2014-06-10 Pedestrian indoor position tracking method based on inertial sensor

Country Status (1)

Country Link
CN (1) CN104061934B (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104613964A (en) * 2015-01-30 2015-05-13 中国科学院上海高等研究院 Pedestrian positioning method and system for tracking foot motion features
CN104634345A (en) * 2015-01-28 2015-05-20 华侨大学 Indoor trajectory tracking method with self-adaptive step length
CN105043393A (en) * 2015-08-19 2015-11-11 厦门大学 Sensor-based indoor pedestrian positioning method
CN105115487A (en) * 2015-05-18 2015-12-02 陈希 Positioning and navigation method in supermarket based on information fusion
CN105674984A (en) * 2016-01-18 2016-06-15 上海交通大学 Method for acquiring advancing directions of pedestrians by aid of mobile terminals without constraints
CN105737826A (en) * 2016-02-24 2016-07-06 中国地质大学(武汉) Indoor positioning method for pedestrian
CN105791379A (en) * 2015-01-08 2016-07-20 波音公司 Systems and methods for managing factory production using an internet of things network
CN105865450A (en) * 2016-04-19 2016-08-17 武汉理工大学 Zero-speed update method and system based on gait
CN105865448A (en) * 2016-03-18 2016-08-17 常州大学 Indoor positioning method based on IMU
CN105865445A (en) * 2016-03-29 2016-08-17 全感(苏州)智能技术有限公司 Inertial navigation indoor positioning system and use method thereof
CN105959919A (en) * 2016-06-29 2016-09-21 宁波市由乐讯通讯科技有限公司 Position acquisition method and system for use in wireless communication
CN106131783A (en) * 2016-06-29 2016-11-16 宁波市由乐讯通讯科技有限公司 Location acquiring method and system in a kind of modified model radio communication
CN106170124A (en) * 2016-06-29 2016-11-30 宁波市由乐讯通讯科技有限公司 Location acquiring method and system in a kind of radio communication based on multiple location technology
CN106168485A (en) * 2016-07-18 2016-11-30 北京方位捷讯科技有限公司 Walking track data projectional technique and device
WO2016206119A1 (en) * 2015-06-26 2016-12-29 Intel Corporation Technologies for pedestrian dead reckoning
CN106289282A (en) * 2016-07-18 2017-01-04 北京方位捷讯科技有限公司 A kind of indoor map pedestrian's track matching method
CN106412826A (en) * 2016-09-07 2017-02-15 清华大学 Indoor positioning method and positioning device based on multi-source information fusion
CN106412827A (en) * 2016-09-09 2017-02-15 北京小米移动软件有限公司 Positioning method and device
CN106767821A (en) * 2016-12-09 2017-05-31 北京羲和科技有限公司 A kind of map match localization method and system based on particle filter
CN106840147A (en) * 2016-12-22 2017-06-13 武汉船舶通信研究所 A kind of long range positioning method and system
CN106895835A (en) * 2015-12-17 2017-06-27 阿里巴巴集团控股有限公司 Localization method and device
CN107179079A (en) * 2017-05-29 2017-09-19 桂林电子科技大学 The indoor orientation method merged based on PDR with earth magnetism
CN107289966A (en) * 2016-03-30 2017-10-24 日本电气株式会社 Method and apparatus for counting step number
CN107302754A (en) * 2017-05-10 2017-10-27 广东工业大学 A kind of indoor positioning simple and easy method based on WiFi and PDR
CN107339989A (en) * 2017-06-23 2017-11-10 江苏信息职业技术学院 A kind of pedestrian's indoor orientation method based on particle filter
CN107421559A (en) * 2017-07-19 2017-12-01 河南神州数码索贝科技有限公司 A kind of step-recording method based on three-axis gyroscope
CN107517499A (en) * 2016-06-16 2017-12-26 千寻位置网络有限公司 The localization method and its device of mobile terminal
CN107966151A (en) * 2017-11-22 2018-04-27 合肥工业大学 A kind of indoor pedestrian's dead reckoning method based on multi-sensor fusion technology
CN108072371A (en) * 2016-11-18 2018-05-25 富士通株式会社 Localization method, positioner and electronic equipment
CN108120450A (en) * 2016-11-29 2018-06-05 华为技术有限公司 The determination methods and device of a kind of stationary state
CN108354524A (en) * 2017-01-26 2018-08-03 好样科技有限公司 Automatic cleaning machine and control method thereof
CN108845588A (en) * 2018-06-22 2018-11-20 哈尔滨工业大学 A kind of quadrotor Trajectory Tracking Control method based on Nonlinear Guidance
CN108984562A (en) * 2017-06-02 2018-12-11 四川理工学院 A sports data statistics system and method based on Android platform
CN109001677A (en) * 2018-06-05 2018-12-14 佛山市南海区广工大数控装备协同创新研究院 A kind of mobile robot visible light localization method based on reckoning
CN109241900A (en) * 2018-08-30 2019-01-18 Oppo广东移动通信有限公司 Wearable device control method and device, storage medium and wearable device
CN109470238A (en) * 2017-09-08 2019-03-15 中兴通讯股份有限公司 A positioning method, device and mobile terminal
CN109697844A (en) * 2017-10-20 2019-04-30 北京嘀嘀无限科技发展有限公司 State information processing method and device
WO2019084918A1 (en) * 2017-11-03 2019-05-09 Beijing Didi Infinity Technology And Development Co., Ltd. System and method for determining a trajectory
CN109883431A (en) * 2019-02-21 2019-06-14 北京方位捷讯科技有限公司 One kind walking appearance judgment method and system
CN110207692A (en) * 2019-05-13 2019-09-06 南京航空航天大学 A kind of inertia pre-integration pedestrian navigation method of map auxiliary
CN110487270A (en) * 2019-08-26 2019-11-22 中国计量大学 A kind of indoor human body localization method based on wearable Inertial Measurement Unit and infrared sensor network
CN110579212A (en) * 2019-08-13 2019-12-17 湘潭大学 Indoor positioning method and device
CN111197983A (en) * 2020-01-15 2020-05-26 重庆邮电大学 3D pose measurement method based on human body distributed inertial node vector ranging
CN111895997A (en) * 2020-02-25 2020-11-06 哈尔滨工业大学 Human body action acquisition method based on inertial sensor without standard posture correction
CN112562077A (en) * 2020-11-25 2021-03-26 西北工业大学 Pedestrian indoor positioning method integrating PDR and prior map
CN113203416A (en) * 2021-03-19 2021-08-03 电子科技大学 Pedestrian dead reckoning method for swing arm pedestrian
CN114623825A (en) * 2022-02-23 2022-06-14 武汉大学 A quality control method for pedestrian dead reckoning

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120003578A (en) * 2010-07-05 2012-01-11 아주대학교산학협력단 Indoor positioning system and method
CN102927980A (en) * 2012-10-12 2013-02-13 深圳市宇恒互动科技开发有限公司 Indoor positioning system and indoor positioning method based on three-dimensional multipoint wireless and micro-inertia navigation
CN102932742A (en) * 2012-10-12 2013-02-13 上海交通大学 Method and system for indoor positioning based on inertial sensor and wireless signal characteristics
WO2013186347A1 (en) * 2012-06-15 2013-12-19 Dekermendjian Johnny Method of interior positioning of a mobile terminal and mobile terminals implementing this method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120003578A (en) * 2010-07-05 2012-01-11 아주대학교산학협력단 Indoor positioning system and method
WO2013186347A1 (en) * 2012-06-15 2013-12-19 Dekermendjian Johnny Method of interior positioning of a mobile terminal and mobile terminals implementing this method
CN102927980A (en) * 2012-10-12 2013-02-13 深圳市宇恒互动科技开发有限公司 Indoor positioning system and indoor positioning method based on three-dimensional multipoint wireless and micro-inertia navigation
CN102932742A (en) * 2012-10-12 2013-02-13 上海交通大学 Method and system for indoor positioning based on inertial sensor and wireless signal characteristics

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
DENG ZHONGLIANG等: ""Situation and Development Tendency of Indoor Positioning"", 《CHINA COMMUNICATIONS》 *
FAN LI等: ""A reliable and accurate indoor localization method using phone inertial sensors"", 《PROCEEDINGS OF THE 2012 ACM CONFERENCE ON UBIQUITOUS COMPUTING》 *
MOHAMED ATTIA等: ""Map Aided Pedestrian Dead Reckoning Using Buildings Information for Indoor Navigation Applications"", 《SCIENTIFIC RESEARCH》 *
冯成涛等: ""基于粒子滤波的室内地图匹配算法"", 《第五届中国卫星导航学术年会电子文集-S9组合导航与导航新方法》 *
宣秀彬: ""基于Wi-Fi和航位推算的室内定位方法研究"", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
张世哲: ""基于惯性传感器和WiFi的室内定位系统的设计与实现"", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
张共愿: ""粒子滤波算法及其在惯性导航系统中的应用"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *
陈伟: ""基于GPS和自包含传感器的行人室内外无缝定位算法研究"", 《中国博士学位论文全文数据库 信息科技辑》 *

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105791379B (en) * 2015-01-08 2020-06-30 波音公司 System and method for managing plant production using an internet of things network
CN105791379A (en) * 2015-01-08 2016-07-20 波音公司 Systems and methods for managing factory production using an internet of things network
CN104634345A (en) * 2015-01-28 2015-05-20 华侨大学 Indoor trajectory tracking method with self-adaptive step length
CN104613964A (en) * 2015-01-30 2015-05-13 中国科学院上海高等研究院 Pedestrian positioning method and system for tracking foot motion features
CN105115487A (en) * 2015-05-18 2015-12-02 陈希 Positioning and navigation method in supermarket based on information fusion
CN105115487B (en) * 2015-05-18 2017-09-01 陈希 Positioning navigation method in a kind of supermarket based on information fusion
WO2016206119A1 (en) * 2015-06-26 2016-12-29 Intel Corporation Technologies for pedestrian dead reckoning
US10393540B2 (en) 2015-06-26 2019-08-27 Intel Corporation Technologies for pedestrian dead reckoning
US11199421B2 (en) 2015-06-26 2021-12-14 Intel Corporation Technologies for pedestrian dead reckoning
CN105043393B (en) * 2015-08-19 2017-10-10 厦门大学 A kind of sensor-based pedestrian's indoor orientation method
CN105043393A (en) * 2015-08-19 2015-11-11 厦门大学 Sensor-based indoor pedestrian positioning method
US10579037B1 (en) 2015-12-17 2020-03-03 Alibaba Group Holding Limited Positioning method and apparatus
CN106895835A (en) * 2015-12-17 2017-06-27 阿里巴巴集团控股有限公司 Localization method and device
CN105674984A (en) * 2016-01-18 2016-06-15 上海交通大学 Method for acquiring advancing directions of pedestrians by aid of mobile terminals without constraints
CN105737826A (en) * 2016-02-24 2016-07-06 中国地质大学(武汉) Indoor positioning method for pedestrian
CN105865448A (en) * 2016-03-18 2016-08-17 常州大学 Indoor positioning method based on IMU
CN105865445A (en) * 2016-03-29 2016-08-17 全感(苏州)智能技术有限公司 Inertial navigation indoor positioning system and use method thereof
CN107289966A (en) * 2016-03-30 2017-10-24 日本电气株式会社 Method and apparatus for counting step number
CN105865450A (en) * 2016-04-19 2016-08-17 武汉理工大学 Zero-speed update method and system based on gait
CN107517499A (en) * 2016-06-16 2017-12-26 千寻位置网络有限公司 The localization method and its device of mobile terminal
CN106131783A (en) * 2016-06-29 2016-11-16 宁波市由乐讯通讯科技有限公司 Location acquiring method and system in a kind of modified model radio communication
CN105959919A (en) * 2016-06-29 2016-09-21 宁波市由乐讯通讯科技有限公司 Position acquisition method and system for use in wireless communication
CN106170124A (en) * 2016-06-29 2016-11-30 宁波市由乐讯通讯科技有限公司 Location acquiring method and system in a kind of radio communication based on multiple location technology
CN106289282A (en) * 2016-07-18 2017-01-04 北京方位捷讯科技有限公司 A kind of indoor map pedestrian's track matching method
CN106168485B (en) * 2016-07-18 2019-09-10 北京方位捷讯科技有限公司 Walking track data projectional technique and device
CN106168485A (en) * 2016-07-18 2016-11-30 北京方位捷讯科技有限公司 Walking track data projectional technique and device
CN106412826A (en) * 2016-09-07 2017-02-15 清华大学 Indoor positioning method and positioning device based on multi-source information fusion
CN106412826B (en) * 2016-09-07 2019-09-17 清华大学 Indoor orientation method and positioning device based on Multi-source Information Fusion
CN106412827A (en) * 2016-09-09 2017-02-15 北京小米移动软件有限公司 Positioning method and device
CN108072371B (en) * 2016-11-18 2021-05-11 富士通株式会社 Positioning method, positioning device and electronic device
CN108072371A (en) * 2016-11-18 2018-05-25 富士通株式会社 Localization method, positioner and electronic equipment
CN108120450A (en) * 2016-11-29 2018-06-05 华为技术有限公司 The determination methods and device of a kind of stationary state
CN106767821A (en) * 2016-12-09 2017-05-31 北京羲和科技有限公司 A kind of map match localization method and system based on particle filter
CN106840147A (en) * 2016-12-22 2017-06-13 武汉船舶通信研究所 A kind of long range positioning method and system
CN108354524A (en) * 2017-01-26 2018-08-03 好样科技有限公司 Automatic cleaning machine and control method thereof
CN108354524B (en) * 2017-01-26 2020-08-14 好样科技有限公司 Automatic cleaning machine and control method thereof
CN107302754A (en) * 2017-05-10 2017-10-27 广东工业大学 A kind of indoor positioning simple and easy method based on WiFi and PDR
CN107179079A (en) * 2017-05-29 2017-09-19 桂林电子科技大学 The indoor orientation method merged based on PDR with earth magnetism
CN108984562B (en) * 2017-06-02 2022-03-08 四川理工学院 Motion data statistical system and method based on Android platform
CN108984562A (en) * 2017-06-02 2018-12-11 四川理工学院 A sports data statistics system and method based on Android platform
CN107339989A (en) * 2017-06-23 2017-11-10 江苏信息职业技术学院 A kind of pedestrian's indoor orientation method based on particle filter
CN107421559A (en) * 2017-07-19 2017-12-01 河南神州数码索贝科技有限公司 A kind of step-recording method based on three-axis gyroscope
CN109470238A (en) * 2017-09-08 2019-03-15 中兴通讯股份有限公司 A positioning method, device and mobile terminal
CN109470238B (en) * 2017-09-08 2023-09-01 中兴通讯股份有限公司 A positioning method, device and mobile terminal
CN109697844A (en) * 2017-10-20 2019-04-30 北京嘀嘀无限科技发展有限公司 State information processing method and device
US11532063B2 (en) 2017-10-20 2022-12-20 Beijing Didi Infinity Technology And Development Co., Ltd. Systems and methods for online to offline service
WO2019084918A1 (en) * 2017-11-03 2019-05-09 Beijing Didi Infinity Technology And Development Co., Ltd. System and method for determining a trajectory
US11692829B2 (en) 2017-11-03 2023-07-04 Beijing Didi Infinity Technology And Development Co., Ltd. System and method for determining a trajectory of a subject using motion data
CN107966151A (en) * 2017-11-22 2018-04-27 合肥工业大学 A kind of indoor pedestrian's dead reckoning method based on multi-sensor fusion technology
CN109001677A (en) * 2018-06-05 2018-12-14 佛山市南海区广工大数控装备协同创新研究院 A kind of mobile robot visible light localization method based on reckoning
CN108845588B (en) * 2018-06-22 2021-05-07 哈尔滨工业大学 A Trajectory Tracking Control Method for Quadrotor Aircraft Based on Nonlinear Guidance
CN108845588A (en) * 2018-06-22 2018-11-20 哈尔滨工业大学 A kind of quadrotor Trajectory Tracking Control method based on Nonlinear Guidance
CN109241900A (en) * 2018-08-30 2019-01-18 Oppo广东移动通信有限公司 Wearable device control method and device, storage medium and wearable device
CN109883431A (en) * 2019-02-21 2019-06-14 北京方位捷讯科技有限公司 One kind walking appearance judgment method and system
CN110207692A (en) * 2019-05-13 2019-09-06 南京航空航天大学 A kind of inertia pre-integration pedestrian navigation method of map auxiliary
CN110579212A (en) * 2019-08-13 2019-12-17 湘潭大学 Indoor positioning method and device
CN110579212B (en) * 2019-08-13 2022-11-29 湘潭大学 Indoor positioning method and device
CN110487270A (en) * 2019-08-26 2019-11-22 中国计量大学 A kind of indoor human body localization method based on wearable Inertial Measurement Unit and infrared sensor network
CN111197983A (en) * 2020-01-15 2020-05-26 重庆邮电大学 3D pose measurement method based on human body distributed inertial node vector ranging
CN111197983B (en) * 2020-01-15 2022-12-27 重庆邮电大学 Three-dimensional pose measurement method based on human body distribution inertia node vector distance measurement
CN111895997A (en) * 2020-02-25 2020-11-06 哈尔滨工业大学 Human body action acquisition method based on inertial sensor without standard posture correction
CN112562077A (en) * 2020-11-25 2021-03-26 西北工业大学 Pedestrian indoor positioning method integrating PDR and prior map
CN112562077B (en) * 2020-11-25 2024-01-09 西北工业大学 A pedestrian indoor positioning method that combines PDR and prior maps
CN113203416A (en) * 2021-03-19 2021-08-03 电子科技大学 Pedestrian dead reckoning method for swing arm pedestrian
CN114623825A (en) * 2022-02-23 2022-06-14 武汉大学 A quality control method for pedestrian dead reckoning

Also Published As

Publication number Publication date
CN104061934B (en) 2017-04-26

Similar Documents

Publication Publication Date Title
CN104061934B (en) Pedestrian indoor position tracking method based on inertial sensor
Qiu et al. Inertial/magnetic sensors based pedestrian dead reckoning by means of multi-sensor fusion
Huang et al. Synergism of INS and PDR in self-contained pedestrian tracking with a miniature sensor module
Kappi et al. MEMS-IMU based pedestrian navigator for handheld devices
Gusenbauer et al. Self-contained indoor positioning on off-the-shelf mobile devices
CN104296750B (en) A zero-speed detection method and device, and a pedestrian navigation method and system
CN103411607B (en) Pedestrian&#39;s step-size estimation and dead reckoning method
US9127947B2 (en) State estimator for rejecting noise and tracking and updating bias in inertial sensors and associated methods
CN103776446B (en) A kind of pedestrian&#39;s independent navigation computation based on double MEMS-IMU
CN111024075B (en) Pedestrian navigation error correction filtering method combining Bluetooth beacon and map
Hajati et al. A wearable pedestrian localization and gait identification system using Kalman filtered inertial data
US20040064286A1 (en) Navigation device for personnel on foot
CN104132662A (en) Closed-loop Kalman filter inertial positioning method based on zero velocity update
Wu et al. A pedestrian dead-reckoning system for walking and marking time mixed movement using an SHSs scheme and a foot-mounted IMU
CN107084718A (en) Indoor Positioning Method Based on Pedestrian Dead Reckoning
CN106643715A (en) Indoor inertial navigation method based on bp neural network improvement
CN109459028A (en) A kind of adaptive step estimation method based on gradient decline
CN106153069A (en) Attitude rectification apparatus and method in autonomous navigation system
CN109612463A (en) A Pedestrian Navigation and Positioning Method Based on Lateral Velocity Constraint Optimization
CN103499354B (en) Neyman-Pearson criterion-based zero speed detection method
US10466054B2 (en) Method and system for estimating relative angle between headings
KR101301462B1 (en) Pedestiran dead-reckoning apparatus using low cost inertial measurement unit and method thereof
Do et al. Design of an infrastructureless in-door localization device using an IMU sensor
CN109084765B (en) A pedestrian indoor walking positioning method, device and storage medium
Bravo et al. Comparison of step length and heading estimation methods for indoor environments

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20190618

Address after: 150000 Heilongjiang Harbin Dalian economic and Trade Zone, the North Road and Xingkai Road intersection

Patentee after: HIT ROBOT GROUP Co.,Ltd.

Address before: 150001 No. 92 West straight street, Nangang District, Heilongjiang, Harbin

Patentee before: Harbin Institute of Technology

TR01 Transfer of patent right
PP01 Preservation of patent right

Effective date of registration: 20240626

Granted publication date: 20170426

PP01 Preservation of patent right