[go: up one dir, main page]

NL2033997B1 - Method, system and computer program product for root cause analysis in an industrial machine - Google Patents

Method, system and computer program product for root cause analysis in an industrial machine Download PDF

Info

Publication number
NL2033997B1
NL2033997B1 NL2033997A NL2033997A NL2033997B1 NL 2033997 B1 NL2033997 B1 NL 2033997B1 NL 2033997 A NL2033997 A NL 2033997A NL 2033997 A NL2033997 A NL 2033997A NL 2033997 B1 NL2033997 B1 NL 2033997B1
Authority
NL
Netherlands
Prior art keywords
causality
time
logged
module
error
Prior art date
Application number
NL2033997A
Other languages
Dutch (nl)
Inventor
Smeenk Jeroen
Nusselder Robin
Wouteres Janszen Cornelis
Santana Sanz Yordie
Original Assignee
Vmi Holland Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vmi Holland Bv filed Critical Vmi Holland Bv
Priority to NL2033997A priority Critical patent/NL2033997B1/en
Priority to PCT/NL2023/050604 priority patent/WO2024155182A1/en
Priority to CN202380024761.8A priority patent/CN118805150A/en
Priority to EP23809770.3A priority patent/EP4652508A1/en
Application granted granted Critical
Publication of NL2033997B1 publication Critical patent/NL2033997B1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • General Factory Administration (AREA)
  • Debugging And Monitoring (AREA)

Abstract

The invention relates to a method for root cause analysis in an industrial machine, wherein the method comprises the steps of: a) logging errors as they occur in the industrial machine; b) assigning a first causality time window and a second causality time window to a first logged error and a second logged error, respectively; c) determining, when an output of the industrial machine has been. interrupted. during' an interruption. time window, which logged errors are still open during said interruption time window; d) classifying at least one of the first logged error and the second logged error as a possible cause for the interruption in the output of the industrial machine during the interruption time window. The invention further relates to a system and a computer program. product for root cause analysis in an industrial machine.

Description

P141712NLOO
Method, system and computer program product for root cause analysis in an industrial machine
BACKGROUND
The invention relates to a method, a system and a computer program product for root cause analysis in an industrial machine.
Industrial machines, such as tire building machines, are becoming increasingly more modular. Each module is typically configured to repeat a limited number of tasks before delivering a semi-finished product to the next module. The semi-finished product is transferred between modules when the respective modules are ready to supply and receive. On a modular level, there is no exchange of information other than ‘ready to supply’ and ‘ready to receive’. As such, the modules are not aware of each other's state and a single error in one of the modules
Can cause a chain reaction of seemingly unrelated errors in downstream modules. With several errors occurring simultaneously and/or across multiple industrial machines, it is difficult to distinguish between root causes and effects. Consequently, a human operator may spend time solving an effect, without effectively addressing the root cause.
Moreover, on a system level, there may be an interruption in an otherwise regular output of the industrial machine, having one or more root causes that may have occurred simultaneously or in succession in one or more upstream modules. Depending on the lead time of the industrial machine and the severity of the one or more root causes, the errors associated with said one or more root causes may already have been cleared prior to the occurrence of the interruption. Therefore, retroactive determination of the root cause{s) for the interruption is difficult and again requires an extensive investigation, including manually timing the processes in the various modules, studying the causality between local module errors and the output of the industrial machine and manually generating downtime reports.
In practice, at least one in five interruptions can not be traced back to a specific root cause and/or is classified as an acceptable short stoppage that does not require further investigation. In addition, if there are multiple root causes for the same interruption, it is difficult to apportion blame for the lost time during the interruption.
In summary, the known root cause analysis is time consuming, partially incomplete and not very accurate.
Consequently, lost time as a result of interruptions in the output of the industrial machine can not be addressed effectively and the efficiency of the industrial machine is not fully optimized.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a method, a system and a computer program product for root cause analysis in an industrial machine, wherein the root cause analysis and/or the efficiency of the industrial machine can be improved.
According to a first aspect, the invention provides a method for root cause analysis in an industrial machine, wherein the method comprises the steps of: a) logging a plurality of errors as they occur in the industrial machine; b) assigning a first causality time window and a second causality time window to a first logged error and a second logged error, respectively, of the plurality of errors, wherein the first logged error and the second logged error are considered open as long as the first causality time window and the second causality time window, respectively, are open; ¢) determining, when an output of the industrial machine has been interrupted during an interruption time window, which logged errors of the first logged error and the second logged error are still open during said interruption time window; and d) «classifying at least one of the first logged error and the second logged error as a possible cause for the interruption in the output of the industrial machine if it is determined in step c) that the at least one of the first logged error and the second logged error is still open during the interruption time window.
Although the embodiment above only describes steps b), c) and dg) only for two errors, it will be appreciated that there may be more than two errors occurring simultaneously and/or successively, to which the same steps may be applied.
The causality time windows can be used to determine a causal relationship between the logged errors occurring at a moment in time that does not necessarily overlap with the interruption time window. In particular, the length of the causality time windows can be chosen such that they extend at least up to a time when the effects of the logged errors on the output of the industrial machine are expected to manifest themselves. Consequently, the determination in step ¢) and classification in step d) can be automated and do not require an extensive and time consuming, manual investigation. In this manner, a greater number of root causes for the interruption in the output of the industrial machine can be determined, analyzed and/or addressed more effectively, thereby ultimately reducing downtime and improving efficiency of the industrial machine.
In one embodiment the method further comprises the steps of: - storing the first logged error and the second logged error in a buffer for as long as the first causality time window and the second causality time window, respectively, are open; - clearing the first logged error {from the buffer when the first causality time window closes; - clearing the second logged error from the buffer when the second causality time window closes; and - determining in step c) which logged errors are still open by checking which logged errors are still in the buffer during the interruption time window. In this embodiment, step c}) only requires retrieving the logged errors which are still in the buffer from said buffer as the interruption time window starts or during a time when the interruption time window is still open. The causality time windows themselves are merely used as a tool to keep the logged errors in the buffer for a certain amount of time. Once the relevant causality time window has expired, the associated logged error is cleared and can no longer be retrieved as a possible cause for the interruption in the output during the interruption time window.
Alternatively, the method further comprises the steps of: - determining in step c) which logged errors are still open by checking which causality time windows are still open during the interruption time window and looking up the associated logged errors. This alternative embodiment has the technical advantage over the previous embodiment that the logged errors may remain available, even after expiry of the assigned causality time windows, together with the assigned causality time windows, such that the causal relationship between the logged errors and the interruption in the output may also be determined later, based on a historical overlap between one of the causality time windows and the interruption time window.
In another embodiment the first logged error and the second logged error are both classified as a first possible cause and a second possible cause, respectively, 5 for the interruption in the output of the industrial machine in step dj) if it is determined in step c) that the first logged error and the second logged error are both still open during the interruption time window. Hence, both possible causes can share the blame for the interruption in the output of the industrial machine during the interruption time window.
Preferably, the method further comprises the step of: e) apportioning the interruption time window to the first possible cause and the second possible cause. The apportionment can provide additional insight into the extent in which different causes are to blame for the interruption in the output of the industrial machine.
More preferably, the interruption time window is apportioned in step e) according to a start time or an end time of one of the first causality time window and the second causality time window. Hence, the properties of the causality time windows can control the way in which the interruption time window is apportioned.
In a further embodiment the interruption time window is apportioned in step e) by assigning the first possible cause and the second possible cause to a first time section and a second time section, respectively, of the interruption time window. By actually dividing the interruption time window into time sections, the possible causes can be assigned to the respective time sections and stored as such for further analysis.
In particular when the first causality time window starts prior to the second causality time window, the interruption time window is apportioned according to one or more of the following conditions; if the first causality time window and the second causality time window overlap and the first causality time window ends before the second causality time window has ended, then the first time section ends and the second time section starts when the first causality time window ends; or if the first causality time window and the second causality time window overlap and the second causality time window ends before the first causality time window has ended, then the second time section ends and the first time section starts when the second causality time window ends; or if the first causality time window and the second causality time window do not overlap, then the first time section ends and the second time section starts when the second causality time window starts. By using one or more of the conditions specified above, the apportionment can be controlled in such a way that the time sections more or less correspond to the length of the overlap of one of the causality time windows with the interruption time window, while the remaining length of the interruption time window is assigned to possible cause associated with the other causality time window.
In another embodiment the method further comprises the steps of: - generating a first timestamp and a second timestamp for the first logged error and the second logged error, respectively; and - starting the first causality time window and the second causality time window from the first timestamp and the second timestamp, respectively. Hence, the timestamp generated at the occurrence of the respective logged errors can be used as a starting point for the respective causality time windows.
In another embodiment the first causality time window and the second causality time window have a first window length and a second window length, respectively, which are determined independently.
:
Preferably, during a normal operation of the industrial machine, the industrial machine has an overall lead time and a cycle time, wherein the method further comprises the step of: - setting the first window length to be at least equal to a first error duration plus a first time-out that is longer than the cycle time and shorter than the overall lead time; and/or - setting the second window length to be at least equal to a second error duration plus a second time- out that is longer than the cycle time and shorter than the overall lead time. Hence, the length of the causality time windows is likely to extend up to a time when the effects of the logged errors on the output of the industrial machine are expected to manifest themselves.
More preferably, the first time-out is longer than the cycle time and shorter than a remaining lead time of the overall lead time measured from a position in the industrial machine where the first logged error has occurred; and/or wherein the second time-out is longer than the cycle time and shorter than a remaining lead time of the overall lead time measured from a position in the industrial machine where the second logged error has occurred. In this way, the length of the causality time windows can be chosen such that they extend at least up to a time when the effects of the logged errors on the output of the industrial machine are expected to manifest themselves.
In another embodiment, during a normal operation of the industrial machine, the industrial machine has a cycle time, wherein the method further comprises the step of: - starting the interruption time window when the output has an output interval that deviates from the cycle time. Preferably, the output interval deviates from the cycle time when said output interval exceeds the cycle time with at least ten percent of said cycle time, and preferably at least twenty percent of said cycle time. By using a tolerance of at least ten percent or at least twenty percent, it can be prevented that minor cycle time deviations trigger the start of the interruption time window.
In another embodiment the method further comprises the steps of: - monitoring user input; - classifying a special error indicative of no operation as a possible cause for the interruption in the output of the industrial machine when no user input has been detected for a predetermined time period during the interruption time window. In this manner, it can be prevent that the interruption in the output because of ‘no operation’ is classified as ‘unknown’ or ‘undefined’ and is unnecessarily investigated.
In a further embodiment the method further comprises the step of: - ending the interruption time window when the output of the industrial machine is resumed.
In another embodiment the industrial machine comprises a plurality of modules, wherein the method further comprises the steps of: - distinguishing between errors occurring as a root cause in one of the modules and errors occurring as an effect of the root cause in one of the modules and classifying the errors accordingly; and - assigning the first causality time window and the second causality time window only to logged errors which have been classified as root causes. Hence, it can be prevented that errors that merely occur as an effect of the root cause are classified as possible causes for the interruption in the output of the industrial machine.
According to a second aspect, the invention provides a method for root cause analysis in an industrial machine, wherein the industrial machine comprises a plurality of modules, wherein the method comprises the steps of: - assigning a status to each module of the plurality of modules reflecting a first state in which no human intervention is required and a second state in which human intervention is required; - changing the status of a first module of the plurality of modules from the first state to the second state upon occurrence of an earliest error in said first module that requires human intervention in said first module; and - classifying the earliest error that requires human intervention in said first module as a root cause for the change in status of said first module from the first state to the second state.
By only classifying the earliest error as the root cause, it can be prevented that any further errors in the same module are also classified as root cause. In other words, a module that changes status from the first state to the second state can do so only because of a single root cause. Any further errors are considered effects of said root cause, even if said further errors also require human intervention. By only showing a single root cause, the amount of error data can be reduced significantly and the human operator can be directed to the single root cause quickly to take appropriate action. Solving the root cause may also automatically resolve the errors that were generated as an effect of the root cause.
Preferably, any further errors occurring in said first module, after the earliest error that requires human intervention in said first module and before a change of the status of said first module back from the second state to the first state, are ignored as root cause candidates for the change in status of said first module from the first state to the second state. More preferably, said further errors occurring in said first module are classified as effects of the root cause. For example, an error that is generated as a human operator moves through an active safety light curtain in the first module is classified as a root cause if there is no earlier error in said first module that reduires the human operator to move through the safety light curtain. However, if there is an earlier error in said first module that requires human intervention, then the error generated by the safety light curtain is only an effect of the earliest error.
In a further embodiment the first state is representative of: - a respective module of the plurality of modules running without errors; - a respective module of the plurality of modules being on hold for a reason external said respective module; or - a respective module of the plurality of modules having an error that can be resolved automatically without human intervention. It will be clear that a module running without errors does not require human intervention.
A module that is on hold for some reason external to the module, for example another module that is not supplying a semi-finished product, may resume its process once the external reason is cleared. Similarly, a module that can automatically resume its process when the relevant error (internal or external) is resolved also does not require human intervention.
Preferably, the method further comprises the step of: - using two or more substates of the first state to distinguish between the respective module running without errors, being on hold or having an error that can be resolved automatically without human intervention. The further distinction can be used to visually inform a human operator of the difference between a module that is running normally and a module that is on hold without requiring human intervention.
In another embodiment the method further comprises the steps of:
- changing the status of a second module of the plurality of modules from the first state to the second state upon occurrence of an earliest error in said second module that requires human intervention in said second module; and - classifying the earliest error that requires human intervention in said second module as a root cause for the change in status of said second module from the first state to the second state. Different modules may change status as a result of different root causes. This embodiment has the same advantages as described earlier in relation to the first module, but now applied to the second module. Hence, error information about the first module and the second module can be limited to a single root cause per module.
In another embodiment the method further comprises the steps of: - providing a human machine interface; - displaying the statuses of the plurality of modules on the human machine interface; and - displaying only errors on the human machine interface which are classified as a root cause for a change in status of any module of the plurality of modules from the first state to the second state. By only showing root causes, the amount of error data can be reduced significantly and the human operator can more quickly determine the appropriate course of action for each module.
Optionally, a human operator may choose to see more error data. Also, more detailed error data may be shown on human machine interfaces located closely to or at a respective module. Additionally or alternatively, error data may be filtered based on location or distance of the human machine interface relative to the machine, providing more detail once the human operator approaches the industrial machine.
Preferably, the method further comprises the step of: - filtering out any further errors which are classified as effects of a root cause from being displayed on the human machine interface. Hence, it can be prevented that the human operator takes action on an error that has not been classified as the root cause for the respective module, possibly causing further errors when operation is resumed without solving the root cause.
In another embodiment the method further comprises the steps of: - assigning one or more roles of a plurality of roles to one or more error messages in a list of error messages used for generating errors in the first module; - associating a human machine interface with a human operator having a first role of the plurality of roles; and - displaying, upon occurrence of one or more errors in the first module, on the human machine interface only the error messages, related to the one or more errors, that have been assigned the first role. Consequently, the human interface only displays those errors which are of interest to the human operator having the first role. This allows for a further reduction of error information and a quicker and more effective response of the human operator.
In another embodiment, that can be applied to the methods according to the first aspect and the second aspect of the invention, the industrial machine is a tire building machine. As described in the background of the invention, tire building machines are becoming increasingly more modular. The methods according to the present invention therefore can be particularly advantageous when applied to tire building machines.
According to a third aspect, the invention provides a system for root cause analysis in an industrial machine, wherein the system comprises a control unit that is connectable to the industrial machine, wherein the control unit, when connected to the industrial machine, is configured for executing the steps of the method according to any one of the embodiments of the first aspect or the second aspect of the invention.
The system according to the third aspect of the invention is used to execute the previously discussed methods and therefore has the same technical advantages, which will not be repeated hereafter.
In one embodiment the system further comprises a buffer for storing the first logged error and the second logged error for as long as the first causality time window and the second causality time window, respectively, are open, wherein the first logged error and the second logged error are cleared from the buffer when the first causality time window and the second causality time window, respectively, close, wherein the control unit is configured for determining in step c¢) which logged errors are still open by checking which logged errors are still in the buffer during the interruption time window.
Alternatively, the control unit is configured for determining in step ¢) which logged errors are still open by checking which causality time windows are still open during the interruption time window and looking up the associated logged errors.
According to a fourth aspect, the invention provides a computer program product comprising a non- transitory computer-readable medium holding instructions that, when executed by a processor, cause the system according to any one of the embodiments of the third aspect of the invention to perform the steps of the method according to any one of the embodiments of the first aspect or the second aspect of the invention.
The computer program product according to the fourth aspect of the invention is used to cause the aforementioned system to perform the steps of the previously discussed methods and therefore has the same technical advantages, which will not be repeated hereafter.
The various aspects and features described and shown in the specification can be applied, individually, wherever possible. These individual aspects, in particular the aspects and features described in the attached dependent claims, can be made subject of divisional patent applications.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will be elucidated on the basis of an exemplary embodiment shown in the attached schematic drawings, in which: figure 1 shows a schematic top view of an industrial machine with a plurality of modules and a control unit; figure 2 shows a schematic top view of the industrial machine of figure 1 supplemented with error messages; figure 3 shows a flow chart of the steps of a method for root cause analysis in the modules of the industrial machine of figures 1 and 2; figure 4 shows a schematic top view of the industrial machine of figure 1 in which only the error messages related to a root cause in a module are shown; figure 5 shows a flow chart of the steps of a method for root cause analysis of an interruption in an output of the industrial machine; and figures 6-12 show different event graphs representative of different operational scenarios and combining, at the top, statuses and buffer histories of one or more modules, and, at the bottom, the output, the overall status and an event history of the industrial machine.
DETAILED DESCRIPTION OF THE INVENTION
Figure 1 schematically shows an industrial machine M, in particular a tire building machine for manufacturing a green or unvulcanized tire or parts thereof. The invention may also be applied to another type of industrial machine.
The industrial machine M is modular or comprises a system of modules M1-M10. Each module M1-M10 is arranged, programmed and/or configured for repeating one or more tasks on a semi-finished product (not shown). The tasks may include, but are not limited to: supplying, positioning, cutting, splicing, joining, assembling and transferring.
In this example, there are ten modules M1-M10 arranged in two parallel lines MI1-M3, M4-M6 and a third line M7-M9 that receives and assembles semi-finished products from the two parallel lines M1-M3, M4-M6, which assembly is ultimately delivered to an output module M10.
It will be apparent to one skilled in the art that many variations in the configuration of the plurality of modules
M1-M10 are encompassed by the scope of the present invention.
The industrial machine M has a lead time or an overall lead time that is to be interpreted as a duration from the start of a process, i.e. at the first module MI,
M4 of each parallel line M1-M3, M4-M6, to the completion of the process, i.e. at the output module M10. In addition, the industrial machine M has a cycle time which is to be interpreted as the average duration or a regular interval between completion times at the output module M10.
As further shown in figure 1, the industrial machine M and/or the system of modules M1-M10 comprises a control unit U that is functionally, electronically and/or operationally connected to the plurality of modules M1-M10 to control their respective operations and/or processes.
The control unit U is provided with a processor and a computer readable medium. The computer readable medium is preferably non-transitory or tangible, e.g. a physical data carrier such as a hard-drive, a USB-drive, a RAM memory or the like. The computer readable member stores, carries or loads instructions that, when executed by the processor,
cause the industrial machine M and/or the system of modules
M1-M10 to operate and/or perform a process or task. It will be appreciated that each module M1-M10 may also have its own control unit and associated components (not shown).
Although the control unit U is shown as a central unit, it may also comprise several decentralized units in the respective modules M1-M10.
The control unit U is arranged, programmed and/or configured to assign a module state G1-G10 to each module
M1-M10. In addition, the control unit U is arranged, programmed and/or configured to assign a machine status G to the industrial machine M.
The industrial machine M further includes a buffer B for storing relevant process data, such as process information, the module statuses G1-G10, the machine status
G, alerts, error messages and/or events that occur in the industrial machine M and/or the plurality of modules MIl-
M10. Like the control unit U, the buffer B is shown as a centralized unit, but it may be decentralized as well, for example one local buffer (not shown) for each module MI1-
M10. The control unit U is functionally, electronically and/or operationally connected to the buffer B to access data stored therein.
Figures 6-12 show exemplary event graphs representative of different operational scenarios, including the module statuses Gl, G4, G8 of several modules
M1, M4, M8 and the machine status G.
The module statuses G1-G10 may include a first state in which no human intervention is required and a second state in which human intervention is required.
The first state may include one or more substates distinguishing between: - a respective module M1-M10 of the plurality of modules M1-M10 running normally, i.e. without errors, as represented schematically in figures 6-12 with a check mark symbol; - a respective module M1-M10 of the plurality of modules M1-M10 being on hold for a reason external said respective module M1-M10 or having an error that can be resolved automatically without human intervention, as represented schematically in figures 6-12 with a triangle shape pointing right (‘play’ symbol), surrounded by a circular arrow (\‘automation’ symbol).
The second state may be a single state, as represented schematically in figures 6-12 with an exclamation mark surrounded by a triangle shape.
Note that the machine status G uses similar symbols to represent the different machine states.
The event graphs in figures 6-12 further include a buffer history Bl, B4, B8 for the respective modules Ml,
M4, M8 and an event history E for the industrial machine M.
All information in the event graphs of figures 6- 12 is plotted along a time axis T. In this example, the time axis T includes information about the output P of the industrial machine M. In particular, the time axis includes times T1, T2, T3, T4 at which a product is completed (hereafter referred to as ‘completion times’), i.e. the times when a product is discharged from the industrial machine M at the output module M10. These completion times
Tl, T2, T3, T4 may be represented by grid lines, labels or ticks on or intersecting with the time axis T. The event graphs may optionally show the cycle time C of the industrial machine M.
Note that figure 6 includes a special moment in time T3’ when, based on the cycle time C and/or a regular interval between the completion times Tl, T2, T3, T4, a product was expected to be completed, yet the product did not arrive at the output module M10. Hence, the output P of the industrial machine M is interrupted until the actual completion time T3 of the product. The time during which the output P has been interrupted can be considered as
Most time’ in the output P of the industrial machine M, as represented with the lost time window L. The interruption in the output P of the industrial machine M may therefore be expressed in the aforementioned ‘lost time’, or alternatively in a ‘lost amount’ of products compared to an optimal amount of products to be manufactured during a time period, for example compared to a production target for a day.
The interruption in the output P of the industrial machine M may have various causes, one or more of which can be identified as a root cause. The present invention provides a method for root cause analysis in the industrial machine M, in particular on a modular level, as will be detailed below with reference to figures 1-4.
Figure 1 shows a situation in which the industrial machine M is running ‘normally’, i.e. without any errors.
Figure 2 shows a situation in which several faults or errors Al-A6 occur in the modules Ml1-M10 of the industrial machine M. The errors Al-A6 may occur simultaneously or successively. Upon occurrence of said errors Al-A6, corresponding alerts, warnings or error messages are generated, either at a module level or at a system level, as represented schematically with rectangular text balloons.
Figure 3 shows, on the left side, the steps $S1-56 for root cause analysis in the first module Ml. Step S1 starts the root cause analysis. At the start of the root cause analysis, the module state Gl of the first module M1 is set or reset to the first state, representative of the first module M1 running normally, i.e. without requiring human intervention. Step S2 involves collecting errors Al, as they occur, from the first module Ml. In step S3, it is determined, for each error Al in the first module Ml, if the collected error Al is the earliest error in the first module M1 that requires human intervention. If ‘yes’ (represented with \Y’ in figure 3), then the collected error Al is considered a root cause. If ‘no’ (represented with WN’ in figure 3), then the collected error Al is considered an effect rather than a root cause. In both cases, the collected error(s) is/are stored in the buffer
B. In addition, when the collected error Al is a root cause, the status of the first module M1 is changed in step
S5 from the first state to the second state, and the root cause analysis for the first module Ml is terminated in step S6.
The same or a similar root cause analysis is performed for any further modules that have generated error messages. Figure 3 shows, on the right side, an exemplary root cause analysis for the errors A2, A3, A4 occurring in the fourth module M4, with steps S11-S16 corresponding to steps S1-S6. Note that of the three errors A2, A3, Ad, only the earliest error A2 that requires human intervention in the fourth module M4 is considered a root cause and the other errors A3, A4 are considered effects of the earliest error AZ.
The method optionally further includes assigning a role Rl, R2, schematically represented as a human operator, to the errors Al, A2 which are considered to be a root cause, which roles Rl, R2 may be used to selectively distribute or display certain errors Al, A2 only to human operators subscribed to or having the respective role, for example ‘maintenance’, ‘loader’, ‘quality’ or ‘process’.
As further shown in figure 3, the method includes a root cause analysis on a system level in the industrial machine M, starting with step S521. In step S22, the earliest errors Al, A2 that require human intervention are collected from the modules Ml, M4. In step S23, said earliest errors Al, A2 are classified as root causes. In step S524, the errors Al, A2 that have been classified as root cause are displayed on a human machine interface MMI, optionally filtered based on the roles Rl, R2 assigned to said errors Al, AZ.
Figure 4 shows the system of modules M1-M10 and their module statuses G1-G10 as they are being displayed on the human machine interface HMI. Note that, compared to the errors Al-A6 generated in the situation of figure 2, the amount of error data that is ultimately displayed on the human machine interface HMI is significantly reduced by only displaying the errors Al, A2 that have been classified as root cause for the respective modules M1, M4. In addition, a human operator can easily determine based on the module statuses G1-G10 which modules M1, M4 have a second state that requires human intervention and which modules M2, M3, M5-M10 have a first state in which they can automatically resume their processes when the root causes are cleared.
The human machine interface HMI may be a fixed screen or a wearable, such as a smart watch, a mobile phone, a tablet, virtual reality glasses or any other form of human-machine interface.
Optionally, the method may further include the steps of ignoring an error in a module as a root cause when the error is caused by a reason external to said module, even if the error is the earliest error in said module that requires human intervention. For example, as shown in figure 2, the sixth module M6 has a fifth error A5 which is the earliest error in said sixth module Mé& that requires human intervention. However, in this scenario, the fifth error A5 itself may be caused by the errors A2, A3, A4 in the fourth module M4. Hence, the reason for the fifth error
Ab lies external to the sixth module M6, in the fourth module M4. Consequently, the control unit U may be adapted, arranged, programmed and/or configured to ignore the fifth error A5 as a root cause in the sixth module M6.
Figure 5 shows the steps S101-5108, $201, S202 of another method for root cause analysis in the industrial machine (M), in particular on a system level, based on various operational scenarios as further detailed below with reference to figures 6-12.
Step S101 is the start of the root cause analysis of lost time L in the output P of the industrial machine M in any of the operational scenarios as shown in figures 6, 7 and 9-12.
In step S102 a plurality of errors Al-A5 are logged as they occur in the industrial machine M. A timestamp is generated for each error Al-A5.
In step S103, a distinction is made between root causes and effects, for example based on the steps of the method in figure 3. Preferably, only the errors Al, A2 that have been classified as a root cause are sent to a buffer
B.
In step S201, causality time windows Wl, W2, represented schematically with stopwatches, are assigned to the errors Al, AZ that have been classified as root cause.
Specifically, the causality time windows Wl, W2 are started from the timestamps of the respective errors Al, A2. The errors Al, A2 are stored in the buffer B for as long as the respective causality time windows Wl, W2 are open. When one of the causality time windows Wl, W2 expires, the corresponding error Al, A2 is cleared from the buffer B.
Alternatively, the causality time windows Wl, W2 themselves may be stored in the buffer B, optionally together with the respective errors Al, A2. In that case, the causality time windows Wl, W2 and their associated errors Al, A2 may be retained in the buffer B for a period longer than the respective causality time windows Wl, WZ, for later reference and look-up purposes.
Meanwhile, in step S104, the interval between completion times Tl, T2, T3, T4 of the products are received or monitored.
In step S105 the interval is compared with the cycle time C of the industrial machine M. If the interval corresponds or substantially corresponds to the cycle C of the industrial machine M, then the monitoring is continued, as represented with “N%. If it is determined that the interval exceeds the cycle time C, then an interruption time window X is opened and the next step in the method is initiated, as represented with ò\Y/.
Preferably, the opening of the interruption time window X is delayed with a time delay D, as shown in figure
6, corresponding to a tolerance of at least ten percent or at least twenty percent of said cycle time C. By using said tolerance, it can be prevented that minor cycle time deviations trigger the start of the interruption time window X. Note that, for example in figure 6, the lost time
L in the output P of the industrial machine M already starts at the expected time of completion T3' of one of the products. However, the interruption time window X is started with a time delay D after said expected time of completion T3'.
In step S106, a request is sent to the buffer B to return all errors Al, A2 which are still open, as represented with the arrow from step 5106 to step S202. In response, in step 5202, it is determined which errors Al,
A2 are still open. Depending on how the errors Al, A2 and/or their respective causality time windows Wl, W2 are stored in the buffer B, the determination in step S202 may either be based on: - the errors Al, A2 which are still in the buffer B at the start of the interruption time window X or the errors Al, A2 which are entered into the buffer B during the interruption time window X; or - the errors Al, A2 for which the causality time windows Wl, W2 at least partially overlap with the interruption time window X, as determined at the start of the interruption time window XxX, during the interruption time window X or even after expiry of the interruption time window X, provided that the causality time windows Wl, W2 are kept in the buffer B for a longer period of time.
The errors Al, A2 which are still open are subsequently received in step S106, as represented with the arrow from step S202 to step S106.
In step S107, the logged errors Al, A2 which were open during the interruption time window X are classified as possible causes for the interruption in the output P of the industrial machine M.
The interruption time window X lasts until or ends when the output P is resumed.
In step S108, the possible causes for the interruption in the output P of the industrial machine M are presented, for example on the human machine interface
HMI of the industrial machine M.
The method of figure 5 can be applied to the various operational scenarios as specified in more detail below.
Figure 6 shows an operational scenario in which the module status Gl of the first module Ml changes from the first state (checkmark symbol) to the second state (exclamation mark) upon occurrence of a earliest error Al (hereafter ‘the first error Al’) that requires human intervention. The first error Al is classified as the root cause for the change in the module status G1 of the first module Ml, in accordance with the method of figure 3. A first causality time window Wl 1s assigned to the first error Al.
Note that the first causality time window Wl extends beyond the duration of the first error Al, i.e. beyond the point where the module status G1 of the first module M1 returns to the first state (checkmark symbol). In particular, the length of the first causality time window
Wl is set to be at least equal to a duration of the first error Al plus a first time-out Vl that is longer than the cycle time C and shorter than the overall lead time of the industrial machine M. In particular, the first time-out V1 is shorter than a remaining lead time of the overall lead time at and including the first module M1. In this way, the length of the first causality time window Wl can be chosen such that it extends at least up to a time when the effects of the first error Al on the output P of the industrial machine M are expected to manifest itself.
The first error Al is stored in the buffer history Bl associated with the first module M1 for as long as the causality time window Wl is open. Note that the output P of the industrial machine M initially continues uninterrupted until the effect of the error Al manifests itself in the form of the output interval exceeding the cycle time C. The interruption time window X is opened and the buffer history Bl of the first module Ml is accessed to ascertain which errors are still open. In this example, only the first error Al is open. Hence, the first error Al is recorded and/or presented as possible cause or root cause for the lost time L during the interruption time window X. When no further errors are open or entered into the buffer B during the interruption time window Xx, the first error Al remains the possible cause or root cause for said lost time L. Hence, the first error Al is recorded as possible cause or root cause for the entire length of the interruption time window X.
Figure 7 shows an alternative operational scenario that differs from the operational scenario of figure 6 in a further error A6 occurs, in this example in the eighth module M8. However, this further error A6 does not change the module status G8 of the eighth module M8 to the second state (exclamation mark). Instead, the eighth module M8 remains in the first state (checkmark) or only changes to a substate of the first state (triangle pointing right surrounded by a circular arrow) indicating that the eighth module M8 is ready to automatically resume its operation when a root cause external to said eighth module
M8 is resolved. Hence, the further error A6 is not classified as a root cause and is ignored as a root cause candidate for the lost time L during the interruption time window X. Hence, despite the first error Al and the further error A6 occurring simultaneously, only the first error Al is recorded and/or presented as a possible cause or root cause for the lost time L during the interruption time window X.
Figure 8 shows a further alternative operational scenario that differs from the previously discussed operational scenarios in that the first causality time window Wl expires before an interruption in the output P of the industrial machine M occurs or no interruption occurs at all. In this scenario, the first error Al is cleared from the buffer history Bl of the first module M1 without any further action.
Figure 9 shows a further alternative operational scenario in which a first error Al occurs in the first module M1 and a second error A2 occurs in the fourth module
M4. Both errors Al, AZ are determined to be root causes in accordance with the method of figure 3 and both errors Al,
AZ are assigned causality time windows Wl, WZ. The time window lengths of both causality time windows Wl, WZ are determined independently, based on the actual duration of the respective errors Al, A2 and/or different time-outs Vl,
V2, for example depending on the severity of the respective error Al, A2 and/or the remaining lead time from the respective modules M1, M4 to the output module M10. Hence, the window lengths of the respective causality time windows
Wl, W2 may vary considerably.
As both errors Al, A2 are still open during the interruption time window X, both errors Al, A2 are recorded and/or presented as possible causes or root causes for the lost time L during the interruption time window X. In particular, the interruption time window X is split up or divided into two time sections Kl, K2 which are apportioned to the errors Al, AZ.
In the example of figure 9, the causality time windows Wl, WZ do not overlap. Since the first causality time window Wl is ends before the second causality time window W2 starts, the first error Al associated with the first causality time window Wl is recorded as possible cause or root cause for the first time section Kl. The first time section Kl ends and the second time section K2 starts at the start of the second causality time window W2.
Figure 10 shows a further alternative operational scenario that differs from the further alternative operational scenario in figure 9 in that the causality time windows Wl, W2 overlap and the first causality time window
Wl ends before the second causality time window W2. Again, the first error Al associated with the first causality time window Wl is recorded as possible cause or root cause for the first time section Kl and the second error A2 associated with the second causality time window WZ is recorded as possible cause or root cause for the second time section K2. However, in this case, the first time section Kl ends and the second time section K2 starts when first causality time window Wl ends.
Figure 11 shows a further alternative operational scenario, again with overlapping causality time windows Wl,
W2. However, the further alternative operational scenario of figure 11 differs from the further alternative operational scenario in figure 10 in that the second causality time window W2 ends before the first causality time window Wl. In this case, the second error A2 associated with the second causality time window W2 is recorded as possible cause or root cause for the first time section Kl and the first error Al associated with the first causality time window Wl is recorded as possible cause or root cause for the second time section K2. The first time section Kl ends and the second time section K2 starts when second causality time window W2 ends.
Figure 12 shows a further alternative operational scenario that differs from the previously discussed scenarios in that it monitors user inputs I of the human operator plotted against the time axis T. When, at the expected time of completion T3' of a product, no output P is detected at the output module M10, and for a predetermined time period F from the expected time of completion T3’ no user inputs I are received, it is assumed that the industrial machine M is not being operated, for example because the human operator is absent, and classifying, recording and/or presenting a special error Z indicative as ‘no operation’ as possible cause or root cause for the interruption in the output P during the interruption time window X. In this manner, it can be prevent that the interruption in the output P because of ‘no operation’ 1s classified as ‘unknown’ or ‘undefined’ and is unnecessarily investigated.
In a further alternative operational scenario, the control unit may be adapted, arranged, programmed or configured to «classify a ‘specification change’ or a ‘manual mode’ in which manual operations, such as an specification change’ can take place, as a special root cause to the interruption time window XxX if the configuration of the industrial machine M is being changed, for example, a tire size change in a tire building machine or changeover to a different compound for the green tire that is being made in said tire building machine. Although such a specification change or manual mode is not an error, it may be useful to include them as a root cause because it can provide insight into how long the industrial machine M is down as a result of the specification change or the manual mode. In particular, if the specification change takes longer than expected, an investigation can be launched into the reasons for the delay.
It is to be understood that the above description is included to illustrate the operation of the preferred embodiments and is not meant to limit the scope of the invention. From the above discussion, many variations will be apparent to one skilled in the art that would yet be encompassed by the scope of the present invention.
LIST OF REFERENCE NUMERALS
Al-A6 Errors
B buffer
B3 third buffer history
B4 fourth buffer history
C cycle time
D delay
E root cause history
F predetermined time period
G machine status
G1-G10 module statuses
HMI human machine interface 1 input
K1 first time section
K2 second time section
L lost time window
M industrial machine
M1-M10 modules
P output
R1 first role
R2 second role
S1 start of first module root cause analysis
S2 collecting errors from the first module 53 is this the earliest error in the first module that requires human intervention? 54 store error in (module) buffer
Sh change module status
S6 end of first module root cause analysis
S11 start of fourth module root cause analysis
S512 collecting errors from the fourth module
S13 is this the earliest error in the fourth module that requires human intervention?
S14 store error in (module) buffer 515 change module status 516 end of fourth module root cause analysis
S21 start of root cause analysis in the industrial machine
S22 collect the earliest errors that require human intervention from the modules 523 classify earliest errors that require human intervention as root causes 524 generate human machine interface with root causes
S101 start of root cause analysis of an interruption in the output of the industrial machine
S102 logging a plurality of errors
S103 distinguishing between root causes and effects 5104 monitoring the output interval 5105 does the output interval exceed the cycle time? 5106 receiving one or more logged errors which are still open 5107 classifying the one or more logged errors as possible cause for the interruption in the output of the industrial machine 5108 presenting the possible causes for the interruption in the output of the industrial machine 5201 assigning causality time windows to the logged errors 5202 determining which logged errors of the first logged error and the second logged error are still open
T time axis
T1 time of completion of first product
T2 time of completion of second product
T3' expected time of completion of third product
T3 actual time of completion of third product
T4 time of completion of fourth product
U control unit v1 first time-out
V2 second time-out
Wl first causality time window
W2 second causality time window
X interruption time window
Z special error ‘no operation’

Claims (31)

CONCLUSIESCONCLUSIONS 1. Werkwijze voor bron oorzaak analyse in een industriële machine (M), waarbij de werkwijze de stappen omvat van: a) het loggen (S102) van een meervoud van fouten (Al-A6) terwijl deze optreden in de industriële machine; b) het toewijzen (S201) van een eerste causaliteitstijdvak (Wl) en een tweede causaliteitstijdvak (W2) aan respectievelijk een eerste fout (Al) en een tweede fout (A2) van het meervoud van fouten (Al-A6}, waarbij de eerste gelogde fout (Al) en de tweede gelogde fout (A2) als open beschouwd worden zolang als respectievelijk het eerste causaliteitstijdvak (Wl) en het tweede causaliteitstijdvak (W2) open zijn; c) het bepalen (35202), wanneer een uitvoer (P) van de industriële machine (M) onderbroken is gedurende een onderbrekingstijdvak (X), welke gelogde fouten (Al, A2) van de eerste gelogde fout (Al) en de tweede gelogde fout (A2) nog open zijn gedurende het onderbrekingstijdvak (X); en d) het classificeren (S107) van ten minste één van de eerste gelogde fout (Al) en de tweede gelogde fout (A2) als een mogelijke oorzaak voor de onderbreking in de uitvoer (P) van de industriële machine (M) als in stap c) is bepaald dat de ten minste ene van de eerste gelogde fout {Al} en de tweede gelogde fout (A2) nog open is gedurende het onderbrekingstijdvak (X).1. A method for source cause analysis in an industrial machine (M), the method comprising the steps of: a) logging (S102) a plurality of faults (Al-A6) as they occur in the industrial machine; b) assigning (S201) a first causality period (Wl) and a second causality period (W2) to a first fault (Al) and a second fault (A2) of the plurality of faults (Al-A6}, respectively, the first logged fault (Al) and the second logged fault (A2) being considered open as long as the first causality period (Wl) and the second causality period (W2) are open, respectively; c) determining (35202), when an output (P) of the industrial machine (M) is interrupted during an interruption period (X), which logged faults (Al, A2) of the first logged fault (Al) and the second logged fault (A2) are still open during the interruption period (X); and d) classifying (S107) at least one of the first logged fault (Al) and the second logged fault (A2) as a possible cause for the interruption in the output (P) of the industrial machine (M) if it is determined in step c) that the at least one of the first logged fault {Al} and the second logged fault (A2) is still open during the interruption period (X). 2. Werkwijze volgens conclusie 1, waarbij de werkwijze verder de stappen omvat van: - het opslaan van de eerste gelogde fout (Al) en de tweede gelogde fout (A2) in een buffer (B) zolang als respectievelijk het eerste causaliteitstijdvak (Wl) en het tweede causaliteitstijdvak (W2) open zijn; - het wissen van de eerste gelogde fout (Al) uit de buffer {B} wanneer het eerste causaliteitstijdvak2. The method of claim 1, wherein the method further comprises the steps of: - storing the first logged error (A1) and the second logged error (A2) in a buffer (B) as long as the first causality time slot (W1) and the second causality time slot (W2), respectively, are open; - clearing the first logged error (A1) from the buffer {B} when the first causality time slot (Wl) sluit; - het wissen van de tweede gelogde fout (A2) uit de buffer (B) wanneer het tweede causaliteitstijdvak (W2) sluit; en - het bepalen (S202) in stap c¢) welke gelogde fouten (Al, A2) nog open zijn door het checken welke gelogde fouten nog in de buffer (B) zijn gedurende het onderbrekingstijdvak (X}.(Wl) closes; - clearing the second logged error (A2) from the buffer (B) when the second causality time slot (W2) closes; and - determining (S202) in step c¢) which logged errors (Al, A2) are still open by checking which logged errors are still in the buffer (B) during the interrupt time slot (X}. 3. Werkwijze volgens conclusie 1, waarbij de werkwijze verder de stap omvat van: - het bepalen (S202) in stap c) welke gelogde fouten (Al, A2) nog open zijn door het checken welke causaliteitstijdvakken (Wl, WZ) nog open zijn gedurende het onderbrekingstijdvak (X) and het opzoeken van de bijbehorende gelogde fouten (Al, A2).The method of claim 1, wherein the method further comprises the step of: - determining (S202) in step c) which logged errors (A1, A2) are still open by checking which causality time slots (W1, WZ) are still open during the interrupt time slot (X) and looking up the corresponding logged errors (A1, A2). 4. Werkwijze volgens een der voorgaande conclusies, waarbij de eerste gelogde fout (Al) en de tweede gelogde {fout (A2) beiden geclassificeerd (S107) worden als respectievelijk een eerste mogelijke oorzaak en een tweede mogelijke oorzaak voor de onderbreking in de uitvoer (P) van de industriële machine (M) in stap d}) als bepaald wordt (5202) in stap c¢) dat de eerste gelogde fout (Al) en de tweede gelogde fout (A2) beiden nog open zijn gedurende het onderbrekingstijdvak (X).4. A method according to any preceding claim, wherein the first logged error (A1) and the second logged error (A2) are both classified (S107) as a first possible cause and a second possible cause, respectively, for the interruption in the output (P) of the industrial machine (M) in step d) if it is determined (5202) in step c¢) that the first logged error (A1) and the second logged error (A2) are both still open during the interruption period (X). 5. Werkwijze volgens conclusie 4, waarbij de werkwijze verder de stap omvat van: eg) het verdelen van het onderbrekingstijdvak (X) over de eerste mogelijke oorzaak en de tweede mogelijke oorzaak.5. A method according to claim 4, wherein the method further comprises the step of: eg) dividing the interruption period (X) between the first possible cause and the second possible cause. 6. Werkwijze volgens conclusie 5, waarbij het onderbrekingstijdvak (X) verdeeld wordt in stap e) op basis van een starttijd of een eindtijd van een van het eerste causaliteitstijdvak (Wl) en het tweede causaliteitstijdvak (W2) .6. A method according to claim 5, wherein the interruption period (X) is divided in step e) based on a start time or an end time of one of the first causality period (W1) and the second causality period (W2). 7. Werkwijze volgens conclusie 5 of 6, waarbij het onderbrekingstijdvak (X) in stap e) verdeeld wordt door het toewijzen van de eerste mogelijke oorzaak en de tweede mogelijke oorzaak aan respectievelijk een eerste tijdsectie (K1) en een tweede tijdsectie (K2) van het onderbrekingstijdvak (X).7. Method according to claim 5 or 6, wherein the interruption period (X) in step e) is divided by assigning the first possible cause and the second possible cause to a first time section (K1) and a second time section (K2) of the interruption period (X), respectively. 8. Werkwijze volgens conclusie 7, waarbij het eerste causaliteitstijdvak (Wl) start voorafgaand aan het tweede causaliteitstijdvak (W2), waarbij het onderbrekingstijdvak (X) wordt verdeeld volgens een of meer van de volgende voorwaarden: als het eerste causaliteitstijdvak (Wl) en het tweede causaliteitstijdvak (WZ) overlappen en het eerste causaliteitstijdvak (W1) eindigt voordat het tweede causaliteitstijdvak (W2) geëindigd is, dan eindigt de eerste tijdsectie (Kl) en start de tweede tijdsectie (K2) wanneer het eerste causaliteitstijdvak (Wl) eindigt; of als het eerste causaliteitstijdvak (Wl) en het tweede causaliteitstijdvak (W2) overlappen en het tweede causaliteitstijdvak (W2) eindigt voordat het eerste causaliteitstijdvak (Wl) geëindigd is, dan eindigt de tweede tijdsectie (K2) en start de eerste tijdsectie (K1) wanneer het tweede causaliteitstijdvak (W2) eindigt; of als het eerste causaliteitstijdvak (Wl) en het tweede causaliteitstijdvak (W2) niet overlappen, dan eindigt de eerste tijdsectie (Kl) en start de tweede tijdsectie (K2) wanneer het tweede causaliteitstijdvak (W2) start.8. The method of claim 7, wherein the first causality period (Wl) starts before the second causality period (W2), the interruption period (X) being divided according to one or more of the following conditions: if the first causality period (Wl) and the second causality period (WZ) overlap and the first causality period (W1) ends before the second causality period (W2) has ended, then the first time section (K1) ends and the second time section (K2) starts when the first causality period (Wl) ends; or if the first causality period (Wl) and the second causality period (W2) overlap and the second causality period (W2) ends before the first causality period (Wl) has ended, then the second time section (K2) ends and the first time section (K1) starts when the second causality period (W2) ends; or if the first causality period (Wl) and the second causality period (W2) do not overlap, then the first time section (Kl) ends and the second time section (K2) starts when the second causality period (W2) starts. 9. Werkwijze volgens een der voorgaande conclusies, waarbij de werkwijze verder de stappen omvat van: - het genereren van een eerste tijdstempel en een tweede tijdstempel voor respectievelijk de eerste gelogde fout (Al) en de tweede gelogde fout (AZ); en - het starten van het eerste causaliteitstijdvak (Wl) en het tweede causaliteitstijdvak (W2) vanaf respectievelijk de eerste tijdstempel en de tweede tijdstempel.9. A method according to any preceding claim, wherein the method further comprises the steps of: - generating a first timestamp and a second timestamp for the first logged error (Al) and the second logged error (AZ), respectively; and - starting the first causality epoch (W1) and the second causality epoch (W2) from the first timestamp and the second timestamp, respectively. 10. Werkwijze volgens een der voorgaande conclusies, waarbij het eerste causaliteitstijdvak (Wl) en het tweede causaliteitstijdvak (W2) respectievelijk een eerste vaklengte en een tweede wvaklengte hebben die onafhankelijk bepaald worden.10. A method according to any preceding claim, wherein the first causality period (W1) and the second causality period (W2) have a first slot length and a second slot length, respectively, which are determined independently. 11. Werkwijze volgens conclusie 10, waarbij, gedurende een normaal bedrijf van de industriële machine (M), de industriële machine (M) een algehele doorlooptijd en een cyclustijd (C) heeft, waarbij de werkwijze verder de stap omvat van: - het instellen van de eerste vaklengte teneinde ten minste gelijk te zijn aan een eerste foutduur plus een eerste time-out (V1) die langer is dan de cyclustijd (C) en korter dan de algehele doorlooptijd: en/of - het instellen van de tweede vaklengte teneinde ten minste gelijk te zijn aan een tweede foutduur plus een tweede time-out (V2) die langer is dan de cyclustijd (C) en korter dan de algehele doorlooptijd.A method according to claim 10, wherein, during normal operation of the industrial machine (M), the industrial machine (M) has an overall throughput time and a cycle time (C), the method further comprising the step of: - setting the first slot length to be at least equal to a first error duration plus a first time-out (V1) that is longer than the cycle time (C) and shorter than the overall throughput time; and/or - setting the second slot length to be at least equal to a second error duration plus a second time-out (V2) that is longer than the cycle time (C) and shorter than the overall throughput time. 12. Werkwijze volgens conclusie 11, waarbij de eerste time-out (V1) langer is dan de cyclustijd (C) en korter dan een resterende doorlooptijd van de algehele doorlooptijd gemeten vanaf een positie in de industriële machine (M) waar de eerste gelogde fout (Al) plaats heeft gevonden; en/of waarbij de tweede time-out (V2) langer is dan de cyclustijd (C) en korter dan een resterende doorlooptijd van de algehele doorlooptijd gemeten vanaf een positie in de industriële machine (M) waar de tweede gelogde fout (AZ) plaats heeft gevonden.A method according to claim 11, wherein the first time-out (V1) is longer than the cycle time (C) and shorter than a remaining lead time of the overall lead time measured from a position in the industrial machine (M) where the first logged error (A1) occurred; and/or wherein the second time-out (V2) is longer than the cycle time (C) and shorter than a remaining lead time of the overall lead time measured from a position in the industrial machine (M) where the second logged error (A1) occurred. 13. Werkwijze volgens een der voorgaande conclusies, waarbij, gedurende een normaal bedrijf van de industriële machine (M), de industriële machine (M) een cyclustijd (C) heeft, waarbij de werkwijze verder de stap omvat van: - het starten van het onderbrekingstijdvak (X) wanneer de uitvoer (P) een uitvoerinterval heeft dat afwijkt van de cyclustijd (C).13. A method according to any preceding claim, wherein, during normal operation of the industrial machine (M), the industrial machine (M) has a cycle time (C), the method further comprising the step of: - starting the interruption period (X) when the output (P) has an output interval that deviates from the cycle time (C). 14. Werkwijze volgens conclusie 13, waarbij de uitvoerinterval afwijkt van de cyclustijd (C) wanneer de uitvoerinterval de cyclustijd {C) overschrijdt met ten minste tien procent van de cyclustijd {C}), en bij voorkeur ten minste twintig procent van de cyclustijd (Cj.14. A method according to claim 13, wherein the output interval deviates from the cycle time (C) when the output interval exceeds the cycle time (C) by at least ten percent of the cycle time (C) and preferably at least twenty percent of the cycle time (Cj). 15. Werkwijze volgens een der voorgaande conclusies, waarbij de werkwijze verder de stappen omvat van: - het bewaken van een gebruikersinput (I); - het classificeren van een speciale fout (2) die indicatief is voor geen bediening als een mogelijke oorzaak voor de onderbreking in de uitvoer (P) van de industriële machine (M) wanneer er geen gebruikersinput (I) wordt gedetecteerd gedurende een vooraf bepaalde tijdsduur (F) gedurende het onderbrekingstijdvak (X).15. A method according to any preceding claim, wherein the method further comprises the steps of: - monitoring a user input (I); - classifying a special fault (2) indicative of no operation as a possible cause for the interruption in the output (P) of the industrial machine (M) when no user input (I) is detected for a predetermined period of time (F) during the interruption period (X). 16. Werkwijze volgens een der voorgaande conclusies, waarbij de werkwijze verder de stap omvat van: - het beëindigen van het onderbrekingstijdvak (X) wanneer de uitvoer (P) van de industriële machine (M) wordt hervat.16. A method according to any preceding claim, wherein the method further comprises the step of: - terminating the interruption period (X) when the output (P) of the industrial machine (M) is resumed. 17. Werkwijze volgens een der voorgaande conclusies, waarbij de industriële machine (M) een meervoud van modules (M1-M10) omvat, waarbij de werkwijze verder de stappen omvat van: - het maken van onderscheid (S53, S13) tussen fouten (Al, AZ) die optreden als een bron oorzaak in één van de modules (M1-M10) en fouten (A3-A6) die optreden als een effect van de bron oorzaak in een van de modules (M1- M10) en het als zodanig classificeren van de fouten (Al- A6); en - het alleen toewijzen (5201) van het eerste causaliteitstijdvak (Wl) en het tweede causaliteitstijdvak (W2) aan gelogde fouten (Al, AZ) die geclassificeerd zijn als bron oorzaken.17. A method according to any preceding claim, wherein the industrial machine (M) comprises a plurality of modules (M1-M10), the method further comprising the steps of: - distinguishing (S53, S13) between faults (A1, AZ) occurring as a source cause in one of the modules (M1-M10) and faults (A3-A6) occurring as an effect of the source cause in one of the modules (M1-M10) and classifying the faults (A1-A6) as such; and - allocating (5201) only the first causality time slot (W1) and the second causality time slot (W2) to logged faults (A1, AZ) classified as source causes. 18. Werkwijze voor bron oorzaak analyse in een industriële machine (M), waarbij de industriële machine (M) een meervoud van modules (M1-M10) omvat, waarbij de werkwijze de stappen omvat van:18. Method for source cause analysis in an industrial machine (M), the industrial machine (M) comprising a plurality of modules (M1-M10), the method comprising the steps of: - het toewijzen van een status (G1-G10) aan elke module (M1-M10) van het meervoud van modules (M1-M10) die een eerste toestand vertegenwoordigen waarin geen menselijke interventie noodzakelijk is en een tweede toestand waarin menselijke interventie noodzakelijk is; - het veranderen (35) van de status {G1-G10) van een eerste module (M1) van het meervoud van modules (M1-M10) van de eerste toestand naar de tweede toestand bij het optreden van een vroegste fout (Al) in de eerste module (M1) dat menselijke interventie vereist in de eerste module (M1); en - het classificeren (S13) van de vroegste fout (Al) die menselijke interventie vereist in de eerste module (M1) als een bron oorzaak voor de verandering in status (Gl) van de eerste module (Ml) van de eerste toestand naar de tweede toestand. 19, Werkwijze volgens conclusie 18, waarbij enige verdere fouten die optreden in de eerste module {Ml}, na de vroegste fout (Al) die menselijke interventie vereist in de eerste module (M1) en voordat de status (Gl) van de eerste module {Ml} terug verandert van de tweede toestand naar de eerste toestand, worden genegeerd als kandidaten voor de bron oorzaak voor de verandering in status (Gl) van de eerste module (M1) van de eerste toestand naar de tweede toestand.- assigning a status (G1-G10) to each module (M1-M10) of the plurality of modules (M1-M10) representing a first state in which no human intervention is necessary and a second state in which human intervention is necessary; - changing (35) the status (G1-G10) of a first module (M1) of the plurality of modules (M1-M10) from the first state to the second state upon the occurrence of an earliest fault (Al) in the first module (M1) requiring human intervention in the first module (M1); and - classifying (S13) the earliest fault (Al) requiring human intervention in the first module (M1) as a source cause for the change in status (Gl) of the first module (Ml) from the first state to the second state. 19. The method of claim 18, wherein any further faults occurring in the first module {M1} after the earliest fault (A1) requiring human intervention in the first module (M1) and before the state (Gl) of the first module {M1} changes back from the second state to the first state are ignored as candidates for the source cause for the change in state (Gl) of the first module (M1) from the first state to the second state. 20. Werkwijze volgens conclusie 19, waarbij de verdere fouten die optreden in de eerste module (M1) als effect van de bron oorzaak geclassificeerd worden.20. The method of claim 19, wherein the further errors occurring in the first module (M1) are classified as an effect of the source cause. 21. Werkwijze volgens een der conclusies 18-20, waarbij de eerste toestand representatief is voor: - een respectievelijke module (M1-M10) van het meervoud van modules (M1-M10) die zonder fouten opereert; - een respectievelijke module (M1-M10}) van het meervoud van modules (M1-M10) die in de wacht staat voor een reden extern aan de respectievelijke module (M1-M10); of - een respectievelijke module (M1-M10) van het meervoud van modules (M1-M10) die een fout heeft die automatisch kan worden verholpen zonder menselijke interventie.21. A method according to any one of claims 18 to 20, wherein the first state is representative of: - a respective module (M1-M10) of the plurality of modules (M1-M10) operating without fault; - a respective module (M1-M10) of the plurality of modules (M1-M10) waiting for a reason external to the respective module (M1-M10); or - a respective module (M1-M10) of the plurality of modules (M1-M10) having a fault that can be automatically corrected without human intervention. 22. Werkwijze volgens conclusie 21, waarbij de werkwijze verder de stap omvat van: - het gebruiken van een of meer subtoestanden van de eerste toestand teneinde onderscheid te maken tussen de respectievelijk module (M1-M10) die zonder fouten opereert, in de wacht staat of een fout heeft die automatisch kan worden verholpen zonder menselijke interventie.22. A method according to claim 21, wherein the method further comprises the step of: - using one or more substates of the first state to distinguish between the respective module (M1-M10) that is operating without fault, is waiting or has a fault that can be automatically corrected without human intervention. 23. Werkwijze volgens een der conclusies 18-22, waarbij de werkwijze verder de stappen omvat van: - het veranderen (S15) van de status (G4) van een tweede module (M4) van het meervoud van modules (M1- M10} van de eerste toestand naar de tweede toestand bij het optreden van een vroegste fout (AZ) in de tweede module (M4) die menselijke interventie vereist in de tweede module (M4); en - het classificeren (S523) van de vroegste fout (AZ) die menselijke interventie vereist in de tweede module (M4) als een bron oorzaak voor de verandering in status (G4) van de tweede module (M4) van de eerste toestand naar de tweede toestand. 23. A method according to any one of claims 18 to 22, wherein the method further comprises the steps of: - changing (S15) the status (G4) of a second module (M4) of the plurality of modules (M1-M10} from the first state to the second state upon the occurrence of an earliest fault (AZ) in the second module (M4) requiring human intervention in the second module (M4); and - classifying (S523) the earliest fault (AZ) requiring human intervention in the second module (M4) as a source cause for the change in status (G4) of the second module (M4) from the first state to the second state. 24, Werkwijze volgens een der conclusies 18-23, waarbij de werkwijze verder de stappen omvat van: - het verschaffen van een mens-machine interface (HMI); en - het weergeven (524) van de statussen (G1-G10) van het meervoud van modules (M1-M10) op de mens-machine interface (HMI); en - het alleen weergeven (S24) van fouten (Al, A2) op de mens-machine interface (HMI) die geclassificeerd zijn als een bron oorzaak voor een verandering in status (Gl, G4) van een module (M1, M4) van het meervoud van modules (M1-M10) van de eerste toestand naar de tweede toestand.24. A method according to any one of claims 18 to 23, wherein the method further comprises the steps of: - providing a human-machine interface (HMI); and - displaying (524) the statuses (G1-G10) of the plurality of modules (M1-M10) on the human-machine interface (HMI); and - displaying (S24) only faults (A1, A2) on the human-machine interface (HMI) that are classified as a source cause for a change in status (G1, G4) of a module (M1, M4) of the plurality of modules (M1-M10) from the first state to the second state. 25, Werkwijze volgens conclusie 24, waarbij de werkwijze verder de stap omvat van: - het wegfilteren van verdere {fouten (A3-A6) die geclassificeerd zijn als effecten van een bron oorzaak van weergave op de mens-machine interface (HMI).25. The method of claim 24, wherein the method further comprises the step of: - filtering out further errors (A3-A6) classified as effects of a source cause of display on the human-machine interface (HMI). 26. Werkwijze volgens een der conclusies 18-25, waarbij de werkwijze verder de stappen omvat van: - het toewijzen van één of meer rollen (R1, R2) van een meervoud van rollen (Rl, R2}) aan één of meer foutberichten in een lijst van foutberichten die gebruikt worden voor het genereren van fouten in de eerste module (M1); - het associëren van een mens-machine interface (HMI) met een menselijke operator die een eerste rol (R1) heeft van het meervoud van rollen (R1, RZ); en - het weergeven (S24), bij het optreden van één of meer fouten (Al-A6) in de eerste module (Ml), van alleen de foutberichten op de mens-machine interface (HMT), gerelateerd aan de een of meer fouten (Al), die zijn toegewezen aan de eerste rol (R1).26. A method according to any one of claims 18 to 25, wherein the method further comprises the steps of: - assigning one or more roles (R1, R2) of a plurality of roles (R1, R2}) to one or more error messages in a list of error messages used to generate errors in the first module (M1); - associating a human-machine interface (HMI) with a human operator having a first role (R1) of the plurality of roles (R1, RZ); and - displaying (S24), upon the occurrence of one or more errors (A1-A6) in the first module (M1), only the error messages on the human-machine interface (HMT) related to the one or more errors (A1) assigned to the first role (R1). 27. Werkwijze volgens een der voorgaande conclusies, waarbij de industriële machine (M) een bandenbouwmachine is.27. Method according to any one of the preceding claims, wherein the industrial machine (M) is a tire building machine. 28. Systeem voor bron oorzaak analyse in een industriële machine (M), waarbij het systeem een regeleenheid (U) omvat die verbindbaar is met de industriële machine (M), waarbij de regeleenheid (U), wanneer verbonden met de industriële machine (M), is geconfigureerd voor het uitvoeren van de stappen (S1-56, S11-S16, S21-524, 5101-5108, S201, S202) van de werkwijze volgens een der conclusies 1-27.28. A system for root cause analysis in an industrial machine (M), the system comprising a control unit (U) connectable to the industrial machine (M), the control unit (U), when connected to the industrial machine (M), being configured to perform the steps (S1-56, S11-S16, S21-524, 5101-5108, S201, S202) of the method according to any one of claims 1-27. 29. Systeem volgens conclusie 28, waarbij het systeem verder een buffer (B) omvat voor het opslaan van de eerste gelogde fout (Al) en de tweede gelogde fout (A2) voor zolang als respectievelijk het eerste causaliteitstijdvak (Wl) en het tweede causaliteitstijdvak (W2) open zijn, waarbij de eerste gelogde fout (Al) en de tweede gelogde fout (A2) uit de buffer (B) gewist worden wanneer respectievelijk het eerste causaliteitstijdvak (W1) en het tweede causaliteitstijdvak (W2) sluiten, waarbij de regeleenheid (U) geconfigureerd is voor het bepalen (S202) in stap c¢) welke gelogde fouten (Al, A2) nog open zijn door het checken welke gelogde fouten (Al, A2} nog in de buffer (B) zijn gedurende het onderbrekingstijdvak (X).29. The system of claim 28, wherein the system further comprises a buffer (B) for storing the first logged error (A1) and the second logged error (A2) for as long as the first causality time slot (W1) and the second causality time slot (W2), respectively, are open, the first logged error (A1) and the second logged error (A2) being cleared from the buffer (B) when the first causality time slot (W1) and the second causality time slot (W2), respectively, close, the control unit (U) being configured to determine (S202) in step c¢) which logged errors (A1, A2) are still open by checking which logged errors (A1, A2) are still in the buffer (B) during the interrupt time slot (X). 30. Systeem volgens conclusie 28, waarbij de regeleenheid (U) geconfigureerd is voor het bepalen (5202) in stap c}) welke gelogde fouten (Al, A2) nog open zijn door het checken welke causaliteitstijdvakken (Wl, W2) nog open zijn gedurende het onderbrekingstijdvak (XX) and het opzoeken van de bijbehorende gelogde fouten (Al, A2).The system of claim 28, wherein the control unit (U) is configured to determine (5202) in step c}) which logged faults (A1, A2) are still open by checking which causality time slots (W1, W2) are still open during the interrupt time slot (XX) and looking up the corresponding logged faults (A1, A2). 31. Computer programma product dat een onvergankelijk computer leesbaar medium omvat dat instructies bevat die, wanneer uitgevoerd door een processor, veroorzaken dat een system volgens een der conclusies 28-30 de stappen (S1-S6, 511-816, S21-524, S101- 5108, 5201, 5202) van de werkwijze volgens een der conclusies 1-27 uitvoert. -070-0-70-70-0-0-0-31. A computer program product comprising an immortal computer readable medium containing instructions which, when executed by a processor, cause a system according to any of claims 28-30 to perform the steps (S1-S6, 511-816, S21-524, S101-5108, 5201, 5202) of the method according to any of claims 1-27. -070-0-70-70-0-0-0-
NL2033997A 2023-01-20 2023-01-20 Method, system and computer program product for root cause analysis in an industrial machine NL2033997B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
NL2033997A NL2033997B1 (en) 2023-01-20 2023-01-20 Method, system and computer program product for root cause analysis in an industrial machine
PCT/NL2023/050604 WO2024155182A1 (en) 2023-01-20 2023-11-16 Method, system and computer program product for root cause analysis in an industrial machine
CN202380024761.8A CN118805150A (en) 2023-01-20 2023-11-16 Method, system and computer program product for root cause analysis in industrial machines
EP23809770.3A EP4652508A1 (en) 2023-01-20 2023-11-16 Method, system and computer program product for root cause analysis in an industrial machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2033997A NL2033997B1 (en) 2023-01-20 2023-01-20 Method, system and computer program product for root cause analysis in an industrial machine

Publications (1)

Publication Number Publication Date
NL2033997B1 true NL2033997B1 (en) 2024-07-30

Family

ID=86007190

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2033997A NL2033997B1 (en) 2023-01-20 2023-01-20 Method, system and computer program product for root cause analysis in an industrial machine

Country Status (4)

Country Link
EP (1) EP4652508A1 (en)
CN (1) CN118805150A (en)
NL (1) NL2033997B1 (en)
WO (1) WO2024155182A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190086911A1 (en) * 2017-09-15 2019-03-21 General Electric Company Machine health monitoring, failure detection and prediction using non-parametric data
US20200201699A1 (en) * 2018-12-19 2020-06-25 Microsoft Technology Licensing, Llc Unified error monitoring, alerting, and debugging of distributed systems

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3979479A1 (en) * 2020-09-30 2022-04-06 Siemens Aktiengesellschaft Event monitoring in a power converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190086911A1 (en) * 2017-09-15 2019-03-21 General Electric Company Machine health monitoring, failure detection and prediction using non-parametric data
US20200201699A1 (en) * 2018-12-19 2020-06-25 Microsoft Technology Licensing, Llc Unified error monitoring, alerting, and debugging of distributed systems

Also Published As

Publication number Publication date
WO2024155182A4 (en) 2024-08-29
EP4652508A1 (en) 2025-11-26
WO2024155182A1 (en) 2024-07-25
CN118805150A (en) 2024-10-18

Similar Documents

Publication Publication Date Title
US6856845B2 (en) Monitoring and reporting incremental job status system and method
JP6443312B2 (en) Management system
US7218974B2 (en) Industrial process data acquisition and analysis
US7139629B2 (en) Planning and scheduling for failure recovery system and method
US20060224434A1 (en) Human data acquisition and analysis for industrial processes
US20080103715A1 (en) Operating condition monitoring apparatus, method for monitoring operating condition and program
CN114625088A (en) Efficiency optimization method, system, equipment and storage medium of automatic production line
JPH0519829A (en) Numerical control device
Rahim et al. Integrated models in production planning, inventory, quality, and maintenance
US7966151B2 (en) Method for analyzing operation of a machine
US11774949B2 (en) Production system and production method
US6662066B1 (en) Dynamic adjustment and auto generation of water per hour (WPH) in capacity check system (CCS) by tool performance tracking platform (TP2)
WO2017056749A1 (en) Management system and management method
NL2033997B1 (en) Method, system and computer program product for root cause analysis in an industrial machine
CN116894544A (en) Data collection device, recording medium and method
CN120669660A (en) Multi-agent collaborative production optimization method and system based on industrial large model
CN120087834A (en) Agent-based product production method, device and computer program product
CN118519399B (en) Factory production line production virtual debugging method, system and storage medium
CN119204343A (en) A flexible reconstruction method for component assembly lines with flexible capacity matching
CN113344477B (en) Task synchronization control method and device, electronic equipment and computer storage medium
EP3001361A1 (en) Collecting by a MES system time-stamps of working-statuses
Laroque et al. Experimental Analysis of a Stochastic Backward Simulation Approach Under the Specifics of Semiconductor Manufacturing
EP2551802A1 (en) Processing a technical system
Öhlinger et al. An approach for AI-based forecasting of maintenance orders for MRO scheduling
CN118898115A (en) An online simulation method for aircraft assembly line based on working condition data drive