MX2018013242A - Metodo, aparato y programa de computadora para generar sistemas de aprendizaje automatizados, robustos y sistemas de aprendizaje automatizados formados de prueba. - Google Patents
Metodo, aparato y programa de computadora para generar sistemas de aprendizaje automatizados, robustos y sistemas de aprendizaje automatizados formados de prueba.Info
- Publication number
- MX2018013242A MX2018013242A MX2018013242A MX2018013242A MX2018013242A MX 2018013242 A MX2018013242 A MX 2018013242A MX 2018013242 A MX2018013242 A MX 2018013242A MX 2018013242 A MX2018013242 A MX 2018013242A MX 2018013242 A MX2018013242 A MX 2018013242A
- Authority
- MX
- Mexico
- Prior art keywords
- learning systems
- automated
- neural network
- computer program
- robust
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/0265—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
- G05B13/027—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/047—Probabilistic or stochastic networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0499—Feedforward networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/082—Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/094—Adversarial learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/088—Non-supervised learning, e.g. competitive learning
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Artificial Intelligence (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Automation & Control Theory (AREA)
- Probability & Statistics with Applications (AREA)
- Image Analysis (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- Feedback Control In General (AREA)
Abstract
La presente invención pertenece a un método para entrenar la red neural 100, un método para probar la red neuronal 100 así como un método para detectar ejemplos adversos, los cuales pueden engañar a la red neural 100, una clasificación superpuesta es propagada hacia atrás a través de la segunda red neural 500, Maryland el valor de salida de la segunda red neural 500 es utilizado para determinar si la entrada de la red neuronal 100 es un ejemplo adverso; los métodos establecidos de la presente invención se basan en esta utilización de la segunda red neural 500; la presente invención además pertenece a un programa de computadora y un aparato los cuales están configurados para llevar a cabo dichos métodos.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201862677896P | 2018-05-30 | 2018-05-30 | |
| US201862736858P | 2018-09-26 | 2018-09-26 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| MX2018013242A true MX2018013242A (es) | 2019-12-02 |
Family
ID=66589347
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| MX2018013242A MX2018013242A (es) | 2018-05-30 | 2018-10-29 | Metodo, aparato y programa de computadora para generar sistemas de aprendizaje automatizados, robustos y sistemas de aprendizaje automatizados formados de prueba. |
Country Status (9)
| Country | Link |
|---|---|
| US (2) | US11676025B2 (es) |
| EP (1) | EP3576021B1 (es) |
| KR (1) | KR102790856B1 (es) |
| CN (1) | CN110554602B (es) |
| AU (1) | AU2018256516A1 (es) |
| BR (1) | BR102019001258A2 (es) |
| CA (1) | CA3022728A1 (es) |
| DE (1) | DE102018218586A1 (es) |
| MX (1) | MX2018013242A (es) |
Families Citing this family (48)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11547052B1 (en) * | 2018-10-10 | 2023-01-10 | Hydro-Gear Limited Partnership | Audible operator feedback for riding lawn mower applications |
| US11200438B2 (en) | 2018-12-07 | 2021-12-14 | Dus Operating Inc. | Sequential training method for heterogeneous convolutional neural network |
| US11200318B2 (en) * | 2018-12-28 | 2021-12-14 | Mcafee, Llc | Methods and apparatus to detect adversarial malware |
| EP3906508B1 (en) * | 2018-12-31 | 2024-03-13 | Intel Corporation | Securing systems employing artificial intelligence |
| JP7073286B2 (ja) * | 2019-01-10 | 2022-05-23 | 株式会社日立製作所 | データ生成装置、予測器学習装置、データ生成方法、及び学習方法 |
| US11625487B2 (en) * | 2019-01-24 | 2023-04-11 | International Business Machines Corporation | Framework for certifying a lower bound on a robustness level of convolutional neural networks |
| US11068069B2 (en) * | 2019-02-04 | 2021-07-20 | Dus Operating Inc. | Vehicle control with facial and gesture recognition using a convolutional neural network |
| US12456030B2 (en) * | 2019-11-14 | 2025-10-28 | Qualcomm Incorporated | Phase selective convolution with dynamic weight selection |
| CN111027628B (zh) * | 2019-12-12 | 2022-03-11 | 支付宝(杭州)信息技术有限公司 | 一种模型确定方法和系统 |
| EP3859598B1 (en) * | 2020-02-03 | 2025-07-16 | Robert Bosch GmbH | Training method for a generator neural network imposing data equivariances |
| US10846407B1 (en) | 2020-02-11 | 2020-11-24 | Calypso Ai Corp | Machine learning model robustness characterization |
| US11568021B2 (en) | 2020-02-21 | 2023-01-31 | Alibaba Group Holding Limited | Vector-vector multiplication techniques for processing systems |
| CN111368886B (zh) * | 2020-02-25 | 2023-03-21 | 华南理工大学 | 一种基于样本筛选的无标注车辆图片分类方法 |
| DE102020202870A1 (de) * | 2020-03-06 | 2021-09-09 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zur Validierung und Auswahl auf maschinellem Lernen basierender Modelle zur Zustandsüberwachung einer Maschine |
| CN111401292B (zh) * | 2020-03-25 | 2023-05-26 | 成都东方天呈智能科技有限公司 | 一种融合红外图像训练的人脸识别网络构建方法 |
| CN111461307B (zh) * | 2020-04-02 | 2022-04-29 | 武汉大学 | 一种基于生成对抗网络的通用扰动生成方法 |
| EP3896613B1 (en) * | 2020-04-14 | 2024-06-05 | Robert Bosch GmbH | Device and method for training a classifier and assessing the robustness of a classifier |
| US20210334646A1 (en) * | 2020-04-28 | 2021-10-28 | International Business Machines Corporation | Robustness-aware quantization for neural networks against weight perturbations |
| DE102020114339A1 (de) * | 2020-05-28 | 2021-12-02 | Ebm-Papst Mulfingen Gmbh & Co. Kg | Verfahren zum Betreiben eines Ventilatorsystems und Ventilatorsystem mit einem rückwärtsgekrümmten Radialventilator |
| US12020166B2 (en) * | 2020-05-29 | 2024-06-25 | Robert Bosch Gmbh | Meta-learned, evolution strategy black box optimization classifiers |
| DE102020207004A1 (de) * | 2020-06-04 | 2021-12-09 | Robert Bosch Gesellschaft mit beschränkter Haftung | Regularisiertes Training neuronaler Netzwerke |
| CN111709878B (zh) | 2020-06-17 | 2023-06-23 | 北京百度网讯科技有限公司 | 人脸超分辨率实现方法、装置、电子设备及存储介质 |
| DE102020208737A1 (de) | 2020-07-13 | 2022-01-13 | Volkswagen Aktiengesellschaft | Verfahren und Vorrichtung zum Bewerten und Zertifizieren einer Robustheit eines KI-basierten Informationsverarbeitungssystems |
| US12340574B2 (en) * | 2020-07-28 | 2025-06-24 | Mitsubishi Electric Corporation | Learning utilization system, utilizing device, learning device, non-transitory computer-readable medium, and learning utilization method |
| CN116210007A (zh) * | 2020-09-02 | 2023-06-02 | 大众汽车股份公司 | 在交通工具运行期间控制驾驶员辅助系统的方法 |
| KR102598909B1 (ko) * | 2020-09-03 | 2023-11-06 | 부산대학교 산학협력단 | 적대적 사례에 강인한 심층 신경망 모델을 위한 입력 장치 및 방법 |
| US12210966B2 (en) * | 2020-09-28 | 2025-01-28 | Robert Bosch Gmbh | Method and system for probably robust classification with detection of adversarial examples |
| DE102020212147A1 (de) * | 2020-09-28 | 2022-03-31 | Robert Bosch Gesellschaft mit beschränkter Haftung | Datenbasierte Fortschreibung des Trainings von Klassifikatornetzwerken |
| US11687619B2 (en) * | 2020-10-02 | 2023-06-27 | Robert Bosch Gmbh | Method and system for an adversarial training using meta-learned initialization |
| DE102020213058A1 (de) | 2020-10-15 | 2022-04-21 | Volkswagen Aktiengesellschaft | Verfahren und Vorrichtung zum teilautomatisierten oder vollautomatisierten Steuern eines Fahrzeugs |
| DE102020213057A1 (de) | 2020-10-15 | 2022-04-21 | Volkswagen Aktiengesellschaft | Verfahren und Vorrichtung zum Überprüfen eines beim teilautomatisierten oder vollautomatisierten Steuern eines Fahrzeugs verwendeten KI-basierten Informationsverarbeitungssystems |
| WO2022079901A1 (ja) * | 2020-10-16 | 2022-04-21 | 日本電気株式会社 | 情報処理装置、情報処理方法および記録媒体 |
| US12282839B2 (en) * | 2020-11-25 | 2025-04-22 | The Boeing Company | Constraint based inference and machine learning system |
| JP7561013B2 (ja) | 2020-11-27 | 2024-10-03 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | データ処理装置、ニューラルネットワークの深層学習の方法及びプログラム |
| US11907334B2 (en) * | 2020-12-08 | 2024-02-20 | International Business Machines Corporation | Neural network negative rule extraction |
| CN116635867A (zh) * | 2020-12-21 | 2023-08-22 | 罗伯特·博世有限公司 | 训练分类器或回归器以对时间序列进行鲁棒的分类和回归的方法和设备 |
| US12488279B2 (en) | 2020-12-28 | 2025-12-02 | International Business Machines Corporation | Domain-specific constraints for predictive modeling |
| US12307333B2 (en) * | 2020-12-28 | 2025-05-20 | International Business Machines Corporation | Loss augmentation for predictive modeling |
| US12165057B2 (en) | 2020-12-28 | 2024-12-10 | International Business Machines Corporation | Split-net configuration for predictive modeling |
| KR102875463B1 (ko) * | 2021-04-21 | 2025-10-24 | 한국전자통신연구원 | 뉴럴 네트워크 학습 장치 및 방법 |
| EP4083859A1 (en) * | 2021-04-30 | 2022-11-02 | Robert Bosch GmbH | Improved training of classifiers and/or regressors on uncertain training data |
| EP4156025A1 (en) * | 2021-09-23 | 2023-03-29 | Robert Bosch GmbH | Device and method for generating training data for a machine learning system |
| CN114200841B (zh) * | 2021-12-13 | 2023-05-23 | 电子科技大学 | 一种基于模糊反步的网联汽车系统安全控制方法 |
| CN115114395B (zh) * | 2022-04-15 | 2024-03-19 | 腾讯科技(深圳)有限公司 | 内容检索及模型训练方法、装置、电子设备和存储介质 |
| CN114756214B (zh) * | 2022-06-15 | 2022-08-12 | 中国海洋大学 | 基于OpenCV和插件的图像处理方法、装置 |
| KR20250074917A (ko) * | 2023-11-21 | 2025-05-28 | 이화여자대학교 산학협력단 | 적대적 공격에 강건한 이상 탐지 방법 |
| EP4582884A1 (de) * | 2024-01-03 | 2025-07-09 | Siemens Aktiengesellschaft | Verfahren zum erzeugen einer betriebssteuerung für eine maschine mittels einer elektronischen recheneinrichtung, computerprogrammprodukt, computerlesbares speichermedium sowie elektronische recheneinrichtung |
| CN119312845B (zh) * | 2024-09-24 | 2025-09-09 | 电子科技大学 | 一种多功能雷达干扰决策网络编码方法 |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4884216A (en) * | 1987-11-09 | 1989-11-28 | Michael Kuperstein | Neural network system for adaptive sensory-motor coordination of multijoint robots for single postures |
| US8688616B2 (en) * | 2010-06-14 | 2014-04-01 | Blue Prism Technologies Pte. Ltd. | High-dimensional data analysis |
| US8712940B2 (en) * | 2011-05-31 | 2014-04-29 | International Business Machines Corporation | Structural plasticity in spiking neural networks with symmetric dual of an electronic neuron |
| CN104392143B (zh) * | 2014-12-09 | 2017-05-17 | 北京四方继保自动化股份有限公司 | 一种自适应量子神经网络汽轮机故障趋势预测方法 |
| CN105512725B (zh) * | 2015-12-14 | 2018-08-28 | 杭州朗和科技有限公司 | 一种神经网络的训练方法和设备 |
| US11144889B2 (en) * | 2016-04-06 | 2021-10-12 | American International Group, Inc. | Automatic assessment of damage and repair costs in vehicles |
| US10282656B2 (en) | 2017-01-11 | 2019-05-07 | Thomas Danaher Harvey | Method and device for detecting unauthorized tranfer between persons |
| US10810481B2 (en) * | 2017-01-11 | 2020-10-20 | Thomas Danaher Harvey | Method and system to count movements of persons from vibrations in a floor |
| DE102018200724A1 (de) | 2017-04-19 | 2018-10-25 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Verbessern der Robustheit gegen "Adversarial Examples" |
| WO2019227294A1 (zh) * | 2018-05-28 | 2019-12-05 | 华为技术有限公司 | 图像处理方法、相关设备及计算机存储介质 |
| DE102018208763A1 (de) | 2018-06-04 | 2019-12-05 | Robert Bosch Gmbh | Verfahren, Vorrichtung und Computerprogramm zum Betreiben eines maschinellen Lernsystems |
-
2018
- 2018-10-29 MX MX2018013242A patent/MX2018013242A/es unknown
- 2018-10-29 KR KR1020180130138A patent/KR102790856B1/ko active Active
- 2018-10-29 US US16/173,126 patent/US11676025B2/en active Active
- 2018-10-29 CN CN201811268424.0A patent/CN110554602B/zh active Active
- 2018-10-29 US US16/173,698 patent/US11386328B2/en active Active
- 2018-10-30 CA CA3022728A patent/CA3022728A1/en active Pending
- 2018-10-30 DE DE102018218586.7A patent/DE102018218586A1/de not_active Withdrawn
- 2018-10-30 AU AU2018256516A patent/AU2018256516A1/en not_active Abandoned
-
2019
- 2019-01-22 BR BR102019001258A patent/BR102019001258A2/pt not_active IP Right Cessation
- 2019-05-16 EP EP19174931.6A patent/EP3576021B1/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| DE102018218586A1 (de) | 2020-01-09 |
| US20200026996A1 (en) | 2020-01-23 |
| AU2018256516A1 (en) | 2019-12-19 |
| CA3022728A1 (en) | 2019-11-30 |
| CN110554602B (zh) | 2024-10-01 |
| KR20190136893A (ko) | 2019-12-10 |
| US20190370660A1 (en) | 2019-12-05 |
| KR102790856B1 (ko) | 2025-04-07 |
| EP3576021A1 (en) | 2019-12-04 |
| BR102019001258A2 (pt) | 2019-12-03 |
| US11676025B2 (en) | 2023-06-13 |
| EP3576021B1 (en) | 2024-10-30 |
| CN110554602A (zh) | 2019-12-10 |
| US11386328B2 (en) | 2022-07-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| MX2018013242A (es) | Metodo, aparato y programa de computadora para generar sistemas de aprendizaje automatizados, robustos y sistemas de aprendizaje automatizados formados de prueba. | |
| Hussain et al. | Interpretive structural modeling-analytic network process integrated framework for evaluating sustainable supply chain management alternatives | |
| EP3686782C0 (en) | LEARNING METHOD AND LEARNING DEVICE FOR OBJECT DETECTOR USING TARGET OBJECT ESTIMATION NETWORK AND TARGET OBJECT FUSION NETWORK, TESTING METHOD AND TESTING DEVICE USING THEM | |
| Qian et al. | The Gaussian CLs method for searches of new physics | |
| MX2024015892A (es) | Sistemas y metodos para determinar defectos en objetos fisicos | |
| Cribbs et al. | Mathematics identity and student persistence in engineering | |
| MX2022005752A (es) | Sistema de análisis de imágenes para pruebas en la fabricación. | |
| GB2563523A (en) | Electromagnetic (EM) defect detection methods and systems employing deconvolved raw measurements | |
| PH12016000112B1 (en) | Protocol evaluator | |
| PH12020550509A1 (en) | System for identifying pests and monitoring information through image analysis, and monitoring method using same | |
| MX2020004068A (es) | Sistemas y métodos para el seguimiento de portadores de bienes. | |
| SG10201802739PA (en) | Neural network systems | |
| WO2019079621A8 (en) | Method and system for penetration testing classification based on captured log data | |
| IN2015CH04673A (es) | ||
| GB2571645A (en) | Automatic classification of drilling reports with deep natural language processing | |
| KR20180084576A (ko) | 행동-인식 연결 학습 기반 의도 이해 장치, 방법 및 그 방법을 수행하기 위한 기록 매체 | |
| MX2019003101A (es) | Estimación de vida útil remanente (rul) basada en casos fallidos y censurados de entidades. | |
| EP3671244A4 (en) | SOH ANALYSIS DEVICE AND METHOD | |
| MX2020013214A (es) | Actualizacion de graficos ejecutables. | |
| GB2546666A (en) | Optical computing device diagnostics and treatment | |
| WO2016050412A3 (en) | Monitoring means and monitoring method for monitoring at least one step of a process run on an industrial site | |
| GB2566651A (en) | Systems and methods of providing decision support to first responders | |
| EP3686785C0 (en) | LEARNING METHOD AND DEVICE FOR CNN-BASED FLUCTUATION-RESISTANT OBJECT DETECTOR USING TARGET OBJECT ESTIMATION NETWORK AND TESTING METHOD AND DEVICE USING THE SAME | |
| MX2016003852A (es) | Plataforma para generar trayectorias laborales personalizadas. | |
| EP3745137A4 (en) | SAMPLE MEASURING DEVICE, REAGENT CONTAINER AND SAMPLE MEASUREMENT METHOD |