MX2017009218A - Metodo y sistema de generacion de datos de sensor virtual que soportan el desarrollo de algoritmos de deteccion de lluvia basada en la vision. - Google Patents
Metodo y sistema de generacion de datos de sensor virtual que soportan el desarrollo de algoritmos de deteccion de lluvia basada en la vision.Info
- Publication number
- MX2017009218A MX2017009218A MX2017009218A MX2017009218A MX2017009218A MX 2017009218 A MX2017009218 A MX 2017009218A MX 2017009218 A MX2017009218 A MX 2017009218A MX 2017009218 A MX2017009218 A MX 2017009218A MX 2017009218 A MX2017009218 A MX 2017009218A
- Authority
- MX
- Mexico
- Prior art keywords
- virtual
- driving environment
- data
- vision
- generation system
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
- G06T19/006—Mixed reality
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/15—Vehicle, aircraft or watercraft design
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/28—Determining representative reference patterns, e.g. by averaging or distorting; Generating dictionaries
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T15/00—3D [Three Dimensional] image rendering
- G06T15/10—Geometric effects
- G06T15/20—Perspective computation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/20—Movements or behaviour, e.g. gesture recognition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/90—Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R2300/00—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
- B60R2300/10—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of camera system used
- B60R2300/105—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of camera system used using multiple cameras
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R2300/00—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
- B60R2300/30—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing
- B60R2300/303—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing using joined images, e.g. multiple camera images
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R2300/00—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
- B60R2300/30—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing
- B60R2300/307—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing virtually distinguishing relevant parts of a scene from the background of the scene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R2300/00—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
- B60R2300/80—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement
- B60R2300/8053—Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement for bad weather conditions or night vision
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30181—Earth observation
- G06T2207/30192—Weather; Meteorology
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30248—Vehicle exterior or interior
- G06T2207/30252—Vehicle exterior; Vicinity of vehicle
- G06T2207/30256—Lane; Road marking
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computer Hardware Design (AREA)
- Multimedia (AREA)
- Bioinformatics & Computational Biology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Automation & Control Theory (AREA)
- Evolutionary Biology (AREA)
- Mathematical Optimization (AREA)
- Computer Graphics (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Signal Processing (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Psychiatry (AREA)
- Social Psychology (AREA)
- Human Computer Interaction (AREA)
- Traffic Control Systems (AREA)
- Closed-Circuit Television Systems (AREA)
Abstract
Se describe un método para generar datos de entrenamiento. El método puede incluir ejecutar un proceso de simulación. El proceso de simulación puede incluir cruzar una cámara virtual a través de un entorno de conducción virtual que comprenda al menos una condición de precipitación virtual y al menos una condición sin precipitación virtual. Durante el cruce, la cámara virtual puede moverse con respecto al entorno de conducción virtual tal como lo determina un modelo de movimiento de vehículo que modela el movimiento de un vehículo en conducción a través del entorno de conducción virtual mientras transporta la cámara virtual. Se pueden registrar los datos de sensor virtual que caracterizan el entorno de conducción virtual tanto en condiciones de precipitación virtual como en condiciones sin precipitación virtual. Los datos de sensor virtual pueden corresponder a lo que produciría un sensor real de haber detectado el entorno de conducción virtual en el mundo real.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/210,670 US10521677B2 (en) | 2016-07-14 | 2016-07-14 | Virtual sensor-data-generation system and method supporting development of vision-based rain-detection algorithms |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| MX2017009218A true MX2017009218A (es) | 2018-09-10 |
Family
ID=59676731
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| MX2017009218A MX2017009218A (es) | 2016-07-14 | 2017-07-13 | Metodo y sistema de generacion de datos de sensor virtual que soportan el desarrollo de algoritmos de deteccion de lluvia basada en la vision. |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US10521677B2 (es) |
| CN (1) | CN107622527B (es) |
| DE (1) | DE102017115393A1 (es) |
| GB (1) | GB2554507A (es) |
| MX (1) | MX2017009218A (es) |
| RU (1) | RU2017124994A (es) |
Families Citing this family (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10521677B2 (en) * | 2016-07-14 | 2019-12-31 | Ford Global Technologies, Llc | Virtual sensor-data-generation system and method supporting development of vision-based rain-detection algorithms |
| US10520904B2 (en) | 2016-09-08 | 2019-12-31 | Mentor Graphics Corporation | Event classification and object tracking |
| US11067996B2 (en) | 2016-09-08 | 2021-07-20 | Siemens Industry Software Inc. | Event-driven region of interest management |
| WO2018176000A1 (en) * | 2017-03-23 | 2018-09-27 | DeepScale, Inc. | Data synthesis for autonomous control systems |
| US10481044B2 (en) * | 2017-05-18 | 2019-11-19 | TuSimple | Perception simulation for improved autonomous vehicle control |
| US10726248B2 (en) * | 2018-02-01 | 2020-07-28 | Ford Global Technologies, Llc | Validating gesture recognition capabilities of automated systems |
| GB201803599D0 (en) * | 2018-03-06 | 2018-04-18 | Morpheus Labs Ltd | Behaviour models for autonomous vehicle simulators |
| US10891497B2 (en) * | 2018-03-23 | 2021-01-12 | NetraDyne, Inc. | Traffic boundary mapping |
| US11315015B2 (en) * | 2018-06-08 | 2022-04-26 | Technip France | Continuous learning of simulation trained deep neural network model |
| CN110874610B (zh) * | 2018-09-01 | 2023-11-03 | 图森有限公司 | 一种使用机器学习的人类驾驶行为建模系统及方法 |
| CN112970029B (zh) * | 2018-09-13 | 2024-06-07 | 辉达公司 | 用于自主机器应用中传感器视盲检测的深度神经网络处理 |
| JP7157320B2 (ja) * | 2018-09-19 | 2022-10-20 | 日本電信電話株式会社 | 学習データ生成装置、学習データ生成方法およびプログラム |
| CN109556832B (zh) * | 2018-11-30 | 2024-01-26 | 吉林大学 | 一种具有天气模拟功能的相机在环测试试验台 |
| DE102018220865B4 (de) * | 2018-12-03 | 2020-11-05 | Psa Automobiles Sa | Verfahren zum Trainieren wenigstens eines Algorithmus für ein Steuergerät eines Kraftfahrzeugs, Computerprogrammprodukt sowie Kraftfahrzeug |
| CN110334382B (zh) * | 2019-05-09 | 2020-11-17 | 电子科技大学 | 一种基于循环神经网络的汽车车窗起雾状况预测方法 |
| US11529886B2 (en) | 2019-07-23 | 2022-12-20 | Ford Global Technologies, Llc | Power supply during vehicle off state |
| US11391257B2 (en) * | 2019-07-23 | 2022-07-19 | Ford Global Technologies, Llc | Power supply during vehicle startup |
| KR102737426B1 (ko) * | 2019-10-22 | 2024-12-02 | 현대자동차주식회사 | 오류 모니터링을 이용한 운전자 숙련용 주행 모델 생성 장치 및 방법 |
| DE102020106857A1 (de) * | 2020-03-12 | 2021-09-16 | Carl Zeiss Microscopy Gmbh | Mikroskopiesystem und verfahren zum verarbeiten von mikroskopbildern |
Family Cites Families (39)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA2199588A1 (en) * | 1997-03-10 | 1998-09-10 | Efrem Hoffman | Hierarchical data matrix pattern recognition and identification system |
| KR20000013675A (ko) | 1998-08-12 | 2000-03-06 | 밍 루 | 차량 주행 모의 실험장치 |
| US20060018565A1 (en) * | 2004-07-26 | 2006-01-26 | Davidson Scott W | System and method for infrared sensor simulation |
| KR100709401B1 (ko) | 2005-09-15 | 2007-04-18 | 현대모비스 주식회사 | 차선이탈경보시스템용 힐스 장치 및 그의 시험 방법 |
| US20080062167A1 (en) * | 2006-09-13 | 2008-03-13 | International Design And Construction Online, Inc. | Computer-based system and method for providing situational awareness for a structure using three-dimensional modeling |
| DE102009029318A1 (de) * | 2009-09-09 | 2011-03-17 | Ford Global Technologies, LLC, Dearborn | Verfahren und Vorrichtung zur Erprobung einer Fahrzeugkonstruktion |
| KR101135186B1 (ko) * | 2010-03-03 | 2012-04-16 | 광주과학기술원 | 상호작용형 실시간 증강현실 시스템과 그 방법, 및 상기 방법을 구현하는 프로그램이 기록된 기록매체 |
| KR20120064474A (ko) | 2010-12-09 | 2012-06-19 | 엘지이노텍 주식회사 | 카메라 모듈을 이용한 우적 감지 장치 및 방법 |
| WO2013034167A1 (en) * | 2011-09-07 | 2013-03-14 | Valeo Schalter Und Sensoren Gmbh | Method and camera assembly for detecting raindrops on a windscreen of a vehicle |
| CN102880755B (zh) * | 2012-09-25 | 2014-10-08 | 河海大学 | 一种极端降水的定量预测方法及系统 |
| US20140181630A1 (en) * | 2012-12-21 | 2014-06-26 | Vidinoti Sa | Method and apparatus for adding annotations to an image |
| KR101419170B1 (ko) | 2013-01-22 | 2014-07-11 | 주식회사 현대케피코 | 힐스를 이용한 차량 환경 신뢰성 시험 장치 |
| WO2014152339A1 (en) * | 2013-03-14 | 2014-09-25 | Robert Bosch Gmbh | Time and environment aware graphical displays for driver information and driver assistance systems |
| CN203275098U (zh) | 2013-05-24 | 2013-11-06 | 东莞中山大学研究院 | 电动汽车电驱动与驾驶员双在环模拟测试系统 |
| US9145139B2 (en) * | 2013-06-24 | 2015-09-29 | Google Inc. | Use of environmental information to aid image processing for autonomous vehicles |
| US9715764B2 (en) * | 2013-10-03 | 2017-07-25 | Honda Motor Co., Ltd. | System and method for dynamic in-vehicle virtual reality |
| US9630631B2 (en) * | 2013-10-03 | 2017-04-25 | Honda Motor Co., Ltd. | System and method for dynamic in-vehicle virtual reality |
| US20150203107A1 (en) * | 2014-01-17 | 2015-07-23 | Ford Global Technologies, Llc | Autonomous vehicle precipitation detection |
| JP6489408B2 (ja) * | 2014-01-30 | 2019-03-27 | パナソニックIpマネジメント株式会社 | 表示制御プログラム、表示制御装置および表示装置 |
| DE102014209197B4 (de) * | 2014-05-15 | 2024-09-19 | Continental Autonomous Mobility Germany GmbH | Vorrichtung und Verfahren zum Erkennen von Niederschlag für ein Kraftfahrzeug |
| US20150363654A1 (en) * | 2014-06-12 | 2015-12-17 | GM Global Technology Operations LLC | Vision-based wet road surface detection using mirrored and real images |
| CN105323456B (zh) * | 2014-12-16 | 2018-11-30 | 维沃移动通信有限公司 | 用于拍摄装置的图像预览方法、图像拍摄装置 |
| US20160210383A1 (en) * | 2015-01-21 | 2016-07-21 | Ford Global Technologies, Llc | Virtual autonomous response testbed |
| US20160210775A1 (en) * | 2015-01-21 | 2016-07-21 | Ford Global Technologies, Llc | Virtual sensor testbed |
| US20160210382A1 (en) * | 2015-01-21 | 2016-07-21 | Ford Global Technologies, Llc | Autonomous driving refined in virtual environments |
| US20160314224A1 (en) * | 2015-04-24 | 2016-10-27 | Northrop Grumman Systems Corporation | Autonomous vehicle simulation system |
| US10229231B2 (en) * | 2015-09-11 | 2019-03-12 | Ford Global Technologies, Llc | Sensor-data generation in virtual driving environment |
| US20170083794A1 (en) * | 2015-09-18 | 2017-03-23 | Ford Global Technologies, Llc | Virtual, road-surface-perception test bed |
| US20170109458A1 (en) * | 2015-10-16 | 2017-04-20 | Ford Global Technologies, Llc | Testbed for lane boundary detection in virtual driving environment |
| US10176634B2 (en) * | 2015-10-16 | 2019-01-08 | Ford Global Technologies, Llc | Lane boundary detection data generation in virtual environment |
| US10013617B2 (en) * | 2015-12-03 | 2018-07-03 | Gm Global Technology Operations | Snow covered path of travel surface condition detection |
| US9740944B2 (en) * | 2015-12-18 | 2017-08-22 | Ford Global Technologies, Llc | Virtual sensor data generation for wheel stop detection |
| US10346564B2 (en) * | 2016-03-30 | 2019-07-09 | Toyota Jidosha Kabushiki Kaisha | Dynamic virtual object generation for testing autonomous vehicles in simulated driving scenarios |
| US10049284B2 (en) * | 2016-04-11 | 2018-08-14 | Ford Global Technologies | Vision-based rain detection using deep learning |
| US10356217B2 (en) * | 2016-06-21 | 2019-07-16 | The Boeing Company | Virtual weather generation |
| US20180004210A1 (en) * | 2016-07-01 | 2018-01-04 | nuTonomy Inc. | Affecting Functions of a Vehicle Based on Function-Related Information about its Environment |
| US11210436B2 (en) * | 2016-07-07 | 2021-12-28 | Ford Global Technologies, Llc | Virtual sensor-data-generation system and method supporting development of algorithms facilitating navigation of railway crossings in varying weather conditions |
| US10521677B2 (en) * | 2016-07-14 | 2019-12-31 | Ford Global Technologies, Llc | Virtual sensor-data-generation system and method supporting development of vision-based rain-detection algorithms |
| US10427645B2 (en) * | 2016-10-06 | 2019-10-01 | Ford Global Technologies, Llc | Multi-sensor precipitation-classification apparatus and method |
-
2016
- 2016-07-14 US US15/210,670 patent/US10521677B2/en active Active
-
2017
- 2017-07-10 DE DE102017115393.4A patent/DE102017115393A1/de active Pending
- 2017-07-10 CN CN201710555954.2A patent/CN107622527B/zh active Active
- 2017-07-11 GB GB1711155.0A patent/GB2554507A/en not_active Withdrawn
- 2017-07-13 MX MX2017009218A patent/MX2017009218A/es unknown
- 2017-07-13 RU RU2017124994A patent/RU2017124994A/ru not_active Application Discontinuation
Also Published As
| Publication number | Publication date |
|---|---|
| CN107622527A (zh) | 2018-01-23 |
| CN107622527B (zh) | 2023-05-23 |
| GB201711155D0 (en) | 2017-08-23 |
| US10521677B2 (en) | 2019-12-31 |
| GB2554507A (en) | 2018-04-04 |
| US20180018527A1 (en) | 2018-01-18 |
| RU2017124994A (ru) | 2019-01-15 |
| DE102017115393A1 (de) | 2018-01-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| MX2017009218A (es) | Metodo y sistema de generacion de datos de sensor virtual que soportan el desarrollo de algoritmos de deteccion de lluvia basada en la vision. | |
| MX2016011788A (es) | Generacion de datos del sensor en entorno de manejo virtual. | |
| MX2016013344A (es) | Generacion de datos para la deteccion de limites de carriles en un entorno virtual. | |
| MX2017008974A (es) | Sistema virtual de generacion de datos de sensor y metodo que soporta el desarrollo de algoritmos que facilitan la navegacion de cruces ferroviarios en diversas condiciones meteorologicas. | |
| Roy et al. | Oppositional teaching learning based optimization approach for combined heat and power dispatch | |
| JP2013050947A5 (es) | ||
| MX2016013343A (es) | Banco de pruebas para deteccion de limites de carriles en un entorno virtual de conduccion. | |
| JP2014021810A5 (es) | ||
| Liang et al. | A unified design method for adaptive visual tracking control of robots with eye-in-hand/fixed camera configuration | |
| EP2811424A3 (en) | Method and apparatus for training an estimator for estimating a pose of an articulated object | |
| EP3002646A3 (en) | Virtual design engineering | |
| WO2017029488A3 (en) | Methods of generating personalized 3d head models or 3d body models | |
| WO2016003529A3 (en) | Rapid avatar capture and simulation using commodity depth sensors | |
| EA201490172A1 (ru) | Система и способ для формирования геостатистической модели интересующего геологического объема, ограниченной процесс-ориентированной моделью интересующего геологического объема | |
| SE1851266A1 (sv) | System and method for training object classifier by machine learning | |
| MX2017007817A (es) | Algoritmo de entrenamiento para evitar colisiones usando datos auditivos. | |
| WO2014140821A3 (en) | Systems and methods for automatic control of a continuous action | |
| GB2528821A (en) | Algorithm for optimal ICD configuration using a coupled wellbore-reservoir model | |
| EP2939797A3 (en) | Motion limiting device and motion limiting method | |
| WO2016003555A3 (en) | Device, method, apparatus, and computer-readable medium for solar site assessment | |
| WO2013003534A3 (en) | Measuring device user experience through display outputs | |
| EP3971906A3 (en) | Method and system for determining treatments by modifying patient-specific geometrical models | |
| WO2014133756A3 (en) | Method and apparatus for learning-enhanced altas-based auto-segmentation | |
| EA201391111A1 (ru) | Система и способ для использования искусственной нейронной сети для моделирования гидравлики трубопроводов в имитаторе пластов | |
| WO2014200865A3 (en) | Systems, apparatus and methods for delivery and augmentation of behavior modification therapy and teaching |