MX2017002962A - Ubicacion de vehiculos en un carril. - Google Patents
Ubicacion de vehiculos en un carril.Info
- Publication number
- MX2017002962A MX2017002962A MX2017002962A MX2017002962A MX2017002962A MX 2017002962 A MX2017002962 A MX 2017002962A MX 2017002962 A MX2017002962 A MX 2017002962A MX 2017002962 A MX2017002962 A MX 2017002962A MX 2017002962 A MX2017002962 A MX 2017002962A
- Authority
- MX
- Mexico
- Prior art keywords
- actions
- data
- perform
- rnn
- virtue
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
- G06T7/521—Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/588—Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/18—Conjoint control of vehicle sub-units of different type or different function including control of braking systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/20—Conjoint control of vehicle sub-units of different type or different function including control of steering systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/10—Path keeping
- B60W30/12—Lane keeping
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/0088—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0246—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
- G05D1/0248—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means in combination with a laser
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2413—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
- G06F18/24133—Distances to prototypes
- G06F18/24143—Distances to neighbourhood prototypes, e.g. restricted Coulomb energy networks [RCEN]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/40—Scenes; Scene-specific elements in video content
- G06V20/46—Extracting features or characteristics from the video content, e.g. video fingerprints, representative shots or key frames
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/18—Braking system
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/20—Steering systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/18—Braking system
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/20—Steering systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/4808—Evaluating distance, position or velocity data
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30248—Vehicle exterior or interior
- G06T2207/30252—Vehicle exterior; Vicinity of vehicle
- G06T2207/30256—Lane; Road marking
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- Automation & Control Theory (AREA)
- Data Mining & Analysis (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Databases & Information Systems (AREA)
- Aviation & Aerospace Engineering (AREA)
- Optics & Photonics (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Electromagnetism (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Business, Economics & Management (AREA)
- Game Theory and Decision Science (AREA)
- Traffic Control Systems (AREA)
- Image Analysis (AREA)
- Computer Networks & Wireless Communication (AREA)
Abstract
Un sistema de una o más computadoras puede estar configurado para realizar operaciones o acciones particulares por medio de la inclusión de software, firmware, hardware, o una combinación de los mismos instalados en el sistema que, en el funcionamiento, causa las acciones o hace que el sistema realice las acciones. Uno o más programas de computadora pueden estar configurados para realizar operaciones o acciones particulares por medio de la inclusión de instrucciones que, cuando son llevadas a cabo por un aparato de procesamiento de datos, hacen que el aparato realice las acciones. Un aspecto general incluye enviar datos de video y datos de detección y medición por luz (LIDAR) a una red neuronal recurrente (rnn) que incluye elementos de retroalimentación para identificar una característica de una calzada. El sistema también envía los datos a una red neuronal convolucional dinámica (dcnn) para identificar la característica. Se envían valores de salida a una red de decisión softmax para acumular los valores de salida de la rnn y de la dcnn y determinar una ubicación de la posición de un vehículo en la calzada.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/064,139 US9802599B2 (en) | 2016-03-08 | 2016-03-08 | Vehicle lane placement |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| MX2017002962A true MX2017002962A (es) | 2018-08-15 |
Family
ID=58543777
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| MX2017002962A MX2017002962A (es) | 2016-03-08 | 2017-03-07 | Ubicacion de vehiculos en un carril. |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US9802599B2 (es) |
| CN (1) | CN107169402B (es) |
| DE (1) | DE102017103123A1 (es) |
| GB (1) | GB2549836A (es) |
| MX (1) | MX2017002962A (es) |
| RU (1) | RU2017105514A (es) |
Families Citing this family (64)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10466714B2 (en) * | 2016-09-01 | 2019-11-05 | Ford Global Technologies, Llc | Depth map estimation with stereo images |
| JP2018060268A (ja) * | 2016-10-03 | 2018-04-12 | 株式会社日立製作所 | 認識装置および学習システム |
| US10198655B2 (en) | 2017-01-24 | 2019-02-05 | Ford Global Technologies, Llc | Object detection using recurrent neural network and concatenated feature map |
| US10796204B2 (en) * | 2017-02-27 | 2020-10-06 | Huawei Technologies Co., Ltd. | Planning system and method for controlling operation of an autonomous vehicle to navigate a planned path |
| US9953236B1 (en) * | 2017-03-10 | 2018-04-24 | TuSimple | System and method for semantic segmentation using dense upsampling convolution (DUC) |
| WO2018212538A1 (en) * | 2017-05-16 | 2018-11-22 | Samsung Electronics Co., Ltd. | Electronic device and method of detecting driving event of vehicle |
| US10402687B2 (en) * | 2017-07-05 | 2019-09-03 | Perceptive Automata, Inc. | System and method of predicting human interaction with vehicles |
| KR20190017454A (ko) * | 2017-08-11 | 2019-02-20 | 고려대학교 산학협력단 | 인공 신경망을 이용한 자기장 기반 위치 추정 모델 생성 장치 및 방법 |
| US10678241B2 (en) | 2017-09-06 | 2020-06-09 | GM Global Technology Operations LLC | Unsupervised learning agents for autonomous driving applications |
| US11079497B2 (en) * | 2017-09-25 | 2021-08-03 | Continental Automotive Systems, Inc. | Vehicle localization based on neural network |
| US9947228B1 (en) * | 2017-10-05 | 2018-04-17 | StradVision, Inc. | Method for monitoring blind spot of vehicle and blind spot monitor using the same |
| CN107544518B (zh) * | 2017-10-17 | 2020-12-01 | 芜湖伯特利汽车安全系统股份有限公司 | 基于拟人驾驶的acc/aeb系统及车辆 |
| US20190147255A1 (en) * | 2017-11-15 | 2019-05-16 | Uber Technologies, Inc. | Systems and Methods for Generating Sparse Geographic Data for Autonomous Vehicles |
| CN109858309B (zh) * | 2017-11-30 | 2021-04-20 | 东软睿驰汽车技术(上海)有限公司 | 一种识别道路线的方法和装置 |
| CN111465936B (zh) * | 2017-12-06 | 2023-11-24 | 北京嘀嘀无限科技发展有限公司 | 确定地图上新道路的系统和方法 |
| DE102017223206A1 (de) * | 2017-12-19 | 2019-06-19 | Robert Bosch Gmbh | Niederdimensionale Ermittlung von abgegrenzten Bereichen und Bewegungspfaden |
| DE112019000070T5 (de) | 2018-01-07 | 2020-03-12 | Nvidia Corporation | Führen von fahrzeugen durch fahrzeugmanöver unter verwendung von modellen für maschinelles lernen |
| US10574890B2 (en) * | 2018-01-12 | 2020-02-25 | Movidius Ltd. | Methods and apparatus to operate a mobile camera for low-power usage |
| CN110044371B (zh) * | 2018-01-16 | 2025-07-04 | 深圳引望智能技术有限公司 | 一种车辆定位的方法以及车辆定位装置 |
| US11079764B2 (en) | 2018-02-02 | 2021-08-03 | Nvidia Corporation | Safety procedure analysis for obstacle avoidance in autonomous vehicles |
| DE112019000049T5 (de) | 2018-02-18 | 2020-01-23 | Nvidia Corporation | Für autonomes fahren geeignete objekterfassung und erfassungssicherheit |
| CN111095291B (zh) | 2018-02-27 | 2024-04-09 | 辉达公司 | 由自动驾驶车辆实时检测车道和边界 |
| US11994405B2 (en) | 2018-03-07 | 2024-05-28 | Google Llc | Methods and systems for determining geographic orientation based on imagery |
| DE112019000048T5 (de) | 2018-03-15 | 2020-01-16 | Nvidia Corporation | Bestimmung eines befahrbaren freiraums für autonome fahrzeuge |
| WO2019182974A2 (en) | 2018-03-21 | 2019-09-26 | Nvidia Corporation | Stereo depth estimation using deep neural networks |
| CN110298219A (zh) * | 2018-03-23 | 2019-10-01 | 广州汽车集团股份有限公司 | 无人驾驶车道保持方法、装置、计算机设备和存储介质 |
| DE112019001605T5 (de) | 2018-03-27 | 2020-12-17 | Nvidia Corporation | Trainieren, testen und verifizieren von autonomen maschinen unter verwendung simulierter umgebungen |
| US11966838B2 (en) | 2018-06-19 | 2024-04-23 | Nvidia Corporation | Behavior-guided path planning in autonomous machine applications |
| DE102019113114A1 (de) | 2018-06-19 | 2019-12-19 | Nvidia Corporation | Verhaltensgesteuerte wegplanung in autonomen maschinenanwendungen |
| EP3814981B1 (en) * | 2018-06-26 | 2025-12-31 | Nokia Technologies OY | METHOD AND APPARATUS FOR ARTIFICIAL VISION |
| KR102727289B1 (ko) * | 2018-06-27 | 2024-11-07 | 삼성전자주식회사 | 모션 인식 모델을 이용한 자체 운동 추정 장치 및 방법, 모션 인식 모델 트레이닝 장치 및 방법 |
| DE102018116036A1 (de) * | 2018-07-03 | 2020-01-09 | Connaught Electronics Ltd. | Training eines tiefen konvolutionellen neuronalen Netzwerks für individuelle Routen |
| WO2020048358A1 (en) * | 2018-09-04 | 2020-03-12 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Method, system, and computer-readable medium for recognizing speech using depth information |
| US10915995B2 (en) | 2018-09-24 | 2021-02-09 | Movidius Ltd. | Methods and apparatus to generate masked images based on selective privacy and/or location tracking |
| CN109522800A (zh) * | 2018-10-16 | 2019-03-26 | 广州鹰瞰信息科技有限公司 | 前方车辆尾部近端跟踪识别的方法和装置 |
| US11079495B2 (en) * | 2018-10-31 | 2021-08-03 | Mitsubishi Electric Research Laboratories, Inc. | Position estimation under multipath transmission |
| CN113039563B (zh) | 2018-11-16 | 2024-03-12 | 辉达公司 | 学习生成用于训练神经网络的合成数据集 |
| CN109606364B (zh) * | 2018-11-19 | 2020-06-09 | 江苏大学 | 一种分层式自学习可拓神经网络车道保持控制方法 |
| US10831209B2 (en) | 2018-12-19 | 2020-11-10 | Fca Us Llc | Using a long-term recurrent convolutional network to plan a sequence of lateral controls in autonomous driving |
| CN109685017B (zh) * | 2018-12-26 | 2023-02-03 | 中山大学 | 一种基于轻量神经网络的实时目标检测系统及检测方法 |
| CN113228042B (zh) | 2018-12-28 | 2024-09-06 | 辉达公司 | 自主机器应用中障碍物检测的距离 |
| US11170299B2 (en) | 2018-12-28 | 2021-11-09 | Nvidia Corporation | Distance estimation to objects and free-space boundaries in autonomous machine applications |
| WO2020140049A1 (en) | 2018-12-28 | 2020-07-02 | Nvidia Corporation | Distance to obstacle detection in autonomous machine applications |
| JP7256758B2 (ja) * | 2019-01-30 | 2023-04-12 | バイドゥドットコム タイムズ テクノロジー (ベイジン) カンパニー リミテッド | 自動運転車両においてrnnとlstmを用いて時間平滑化を行うlidar測位 |
| US11087175B2 (en) * | 2019-01-30 | 2021-08-10 | StradVision, Inc. | Learning method and learning device of recurrent neural network for autonomous driving safety check for changing driving mode between autonomous driving mode and manual driving mode, and testing method and testing device using them |
| US10503174B1 (en) * | 2019-01-31 | 2019-12-10 | StradVision, Inc. | Method and device for optimized resource allocation in autonomous driving on the basis of reinforcement learning using data from lidar, radar, and camera sensor |
| WO2020163390A1 (en) | 2019-02-05 | 2020-08-13 | Nvidia Corporation | Driving lane perception diversity and redundancy in autonomous driving applications |
| US12517511B2 (en) * | 2019-02-05 | 2026-01-06 | Nvidia Corporation | Combined prediction and path planning for autonomous objects using neural networks |
| US10853671B2 (en) * | 2019-03-06 | 2020-12-01 | Dura Operating, Llc | Convolutional neural network system for object detection and lane detection in a motor vehicle |
| US11648945B2 (en) | 2019-03-11 | 2023-05-16 | Nvidia Corporation | Intersection detection and classification in autonomous machine applications |
| DE112020001897T5 (de) | 2019-04-12 | 2021-12-30 | Nvidia Corporation | Trainieren neuronaler Netze unter Verwendung von Grundwahrheitsdaten, die mit Karteninformationen ergänzt wurden, für autonome Maschinenanwendungen |
| DE102019115327A1 (de) * | 2019-06-06 | 2020-12-10 | Valeo Schalter Und Sensoren Gmbh | Linienmarkierungsidentifizierung unter Verwendung von LiDAR |
| US11934191B2 (en) * | 2019-07-05 | 2024-03-19 | Huawei Technologies Co., Ltd. | Method and system for predictive control of vehicle using digital images |
| CN114127810B (zh) * | 2019-07-08 | 2025-04-25 | 华为技术有限公司 | 车辆自主级功能 |
| WO2021008702A1 (en) | 2019-07-17 | 2021-01-21 | Telefonaktiebolaget Lm Ericsson (Publ) | A computer software module arrangement, a circuitry arrangement, an arrangement and a method for improved object detection |
| US11713978B2 (en) | 2019-08-31 | 2023-08-01 | Nvidia Corporation | Map creation and localization for autonomous driving applications |
| WO2021195955A1 (zh) * | 2020-03-31 | 2021-10-07 | 华为技术有限公司 | 检测车辆行驶场景的复杂度的方法和装置 |
| US12077190B2 (en) | 2020-05-18 | 2024-09-03 | Nvidia Corporation | Efficient safety aware path selection and planning for autonomous machine applications |
| WO2022061289A1 (en) | 2020-09-21 | 2022-03-24 | Nvidia Corporation | Simulating viewpoint transformations for sensor independent scene understanding in autonomous systems |
| US11978266B2 (en) | 2020-10-21 | 2024-05-07 | Nvidia Corporation | Occupant attentiveness and cognitive load monitoring for autonomous and semi-autonomous driving applications |
| US12202518B2 (en) | 2020-11-02 | 2025-01-21 | Nvidia Corporation | Safety decomposition architecture for autonomous machine applications |
| US11733369B2 (en) * | 2021-02-11 | 2023-08-22 | Waymo Llc | Methods and systems for three dimensional object detection and localization |
| US12135222B2 (en) | 2021-05-18 | 2024-11-05 | Argo AI, LLC | Automatic generation of vector map for vehicle navigation |
| US12179795B2 (en) | 2021-05-24 | 2024-12-31 | Nvidia Corporation | Using arrival times and safety procedures in motion planning trajectories for autonomous vehicles |
Family Cites Families (29)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2601003B2 (ja) | 1990-09-25 | 1997-04-16 | 日産自動車株式会社 | 車両の走行条件認識装置 |
| JPH0785280B2 (ja) | 1992-08-04 | 1995-09-13 | タカタ株式会社 | 神経回路網による衝突予測判定システム |
| US5983161A (en) | 1993-08-11 | 1999-11-09 | Lemelson; Jerome H. | GPS vehicle collision avoidance warning and control system and method |
| JPH08202877A (ja) | 1995-01-31 | 1996-08-09 | Toyota Motor Corp | 画像認識装置 |
| US6720920B2 (en) * | 1997-10-22 | 2004-04-13 | Intelligent Technologies International Inc. | Method and arrangement for communicating between vehicles |
| US7979173B2 (en) * | 1997-10-22 | 2011-07-12 | Intelligent Technologies International, Inc. | Autonomous vehicle travel control systems and methods |
| AUPS123702A0 (en) * | 2002-03-22 | 2002-04-18 | Nahla, Ibrahim S. Mr | The train navigtion and control system (TNCS) for multiple tracks |
| US8050863B2 (en) * | 2006-03-16 | 2011-11-01 | Gray & Company, Inc. | Navigation and control system for autonomous vehicles |
| CN100492437C (zh) * | 2007-06-01 | 2009-05-27 | 清华大学 | 一种目标车换道工况下的快速识别方法 |
| US20090140887A1 (en) * | 2007-11-29 | 2009-06-04 | Breed David S | Mapping Techniques Using Probe Vehicles |
| US8605947B2 (en) * | 2008-04-24 | 2013-12-10 | GM Global Technology Operations LLC | Method for detecting a clear path of travel for a vehicle enhanced by object detection |
| CN101419679B (zh) | 2008-12-11 | 2011-11-23 | 北京交通大学 | 一种混合动力电动汽车行驶状态的智能识别方法 |
| US8812226B2 (en) * | 2009-01-26 | 2014-08-19 | GM Global Technology Operations LLC | Multiobject fusion module for collision preparation system |
| CN102201167B (zh) | 2010-04-07 | 2013-03-06 | 宫宁生 | 基于视频的汽车车道自动识别方法 |
| KR101178507B1 (ko) | 2010-08-16 | 2012-09-07 | 포항공과대학교 산학협력단 | 도로 표식 인식 시스템 및 방법 |
| WO2013110072A1 (en) | 2012-01-20 | 2013-07-25 | University Of Alaska | Surface feature detection by radiation analysis |
| KR101261409B1 (ko) | 2012-04-24 | 2013-05-10 | 이엔지정보기술 주식회사 | 영상 내 노면표시 인식시스템 |
| US9026300B2 (en) * | 2012-11-06 | 2015-05-05 | Google Inc. | Methods and systems to aid autonomous vehicles driving through a lane merge |
| GB2513105A (en) * | 2013-03-15 | 2014-10-22 | Deepmind Technologies Ltd | Signal processing systems |
| US9145139B2 (en) * | 2013-06-24 | 2015-09-29 | Google Inc. | Use of environmental information to aid image processing for autonomous vehicles |
| CN103413441B (zh) | 2013-06-26 | 2015-12-23 | 广东惠利普路桥信息工程有限公司 | 道路天气状况监控方法 |
| US9988047B2 (en) * | 2013-12-12 | 2018-06-05 | Magna Electronics Inc. | Vehicle control system with traffic driving control |
| US9720411B2 (en) * | 2014-02-25 | 2017-08-01 | Ford Global Technologies, Llc | Autonomous driving sensing system and method |
| CN104036323B (zh) * | 2014-06-26 | 2016-11-09 | 叶茂 | 一种基于卷积神经网络的车辆检测方法 |
| US9568611B2 (en) | 2014-08-20 | 2017-02-14 | Nec Corporation | Detecting objects obstructing a driver's view of a road |
| US9630318B2 (en) * | 2014-10-02 | 2017-04-25 | Brain Corporation | Feature detection apparatus and methods for training of robotic navigation |
| CN105354568A (zh) * | 2015-08-24 | 2016-02-24 | 西安电子科技大学 | 基于卷积神经网络的车标识别方法 |
| CN105184271A (zh) * | 2015-09-18 | 2015-12-23 | 苏州派瑞雷尔智能科技有限公司 | 一种基于深度学习的车辆自动检测方法 |
| CN105373796B (zh) * | 2015-10-23 | 2019-01-25 | 河南眼神科技有限公司 | 图像激活操作的方法、装置及其应用 |
-
2016
- 2016-03-08 US US15/064,139 patent/US9802599B2/en active Active
-
2017
- 2017-02-16 DE DE102017103123.5A patent/DE102017103123A1/de active Pending
- 2017-02-21 RU RU2017105514A patent/RU2017105514A/ru not_active Application Discontinuation
- 2017-03-01 CN CN201710117461.0A patent/CN107169402B/zh active Active
- 2017-03-06 GB GB1703555.1A patent/GB2549836A/en not_active Withdrawn
- 2017-03-07 MX MX2017002962A patent/MX2017002962A/es unknown
Also Published As
| Publication number | Publication date |
|---|---|
| CN107169402A (zh) | 2017-09-15 |
| GB2549836A (en) | 2017-11-01 |
| CN107169402B (zh) | 2021-10-08 |
| US9802599B2 (en) | 2017-10-31 |
| DE102017103123A1 (de) | 2017-09-14 |
| GB201703555D0 (en) | 2017-04-19 |
| RU2017105514A (ru) | 2018-08-22 |
| US20170259801A1 (en) | 2017-09-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| MX2017002962A (es) | Ubicacion de vehiculos en un carril. | |
| NZ759915A (en) | Apparatus for weed control | |
| ZA202107333B (en) | System and associated method for ensuring data privacy | |
| MX2017000418A (es) | Gestion de carriles para vehiculos autonomos. | |
| EP3624002A3 (en) | Training data generating method for image processing, image processing method, and devices thereof | |
| PH12017550118A1 (en) | Management of commitments and requests extracted from communications and content | |
| MX2017002721A (es) | Aprendizaje de carriles para vehiculo. | |
| WO2015157745A3 (en) | Improving future reliability prediction based on system operational and performance data modelling | |
| EP4560549A3 (en) | Methods and systems for evaluating and recycling electronic devices | |
| MX383962B (es) | Detección de objetos con red neuronal. | |
| GB2563340A8 (en) | Labeling computing objects for improved threat detection | |
| IL226747B (en) | A system and method for studying malware detection | |
| NZ630949A (en) | Systems and methods for determining a coating formulation | |
| GB2559282A (en) | Enhancing drilling operations with cognitive computing | |
| MX2015009369A (es) | Servicio de estacionamiento. | |
| MX2017016784A (es) | Método combinado para la detección de anomalías en un sistema de distribución de agua. | |
| BR112016024507A8 (pt) | métodos de estabelecer confiança para um hospedeiro, e sistema de computação | |
| EP4220537A3 (en) | Road profile along a predicted path | |
| WO2013003778A3 (en) | Method and apparatus for determining and utilizing value of digital assets | |
| GB2491751A (en) | Method of optimizing the interaction between a software application and a database server or other kind of remote data source | |
| WO2017023396A3 (en) | Numeric pattern normalization for cryptographic signatures | |
| IN2015DE01659A (es) | ||
| GB2559925A (en) | Methods and systems for clustering of repair orders based on inferences gathered from repair orders | |
| HK1249603A1 (zh) | 用於生成网络威胁情报的系统及方法 | |
| GB2570825A (en) | Reducing cybersecurity risks when purchasing products over a network |