[go: up one dir, main page]

MX2014004471A - Fenotipificacion de precision utilizando analisis de proximidad de espacio de puntuacion. - Google Patents

Fenotipificacion de precision utilizando analisis de proximidad de espacio de puntuacion.

Info

Publication number
MX2014004471A
MX2014004471A MX2014004471A MX2014004471A MX2014004471A MX 2014004471 A MX2014004471 A MX 2014004471A MX 2014004471 A MX2014004471 A MX 2014004471A MX 2014004471 A MX2014004471 A MX 2014004471A MX 2014004471 A MX2014004471 A MX 2014004471A
Authority
MX
Mexico
Prior art keywords
organisms
experimental group
statistical analysis
score space
data
Prior art date
Application number
MX2014004471A
Other languages
English (en)
Inventor
James Janni
Jan Hazebroek
Stephen L Wright
Original Assignee
Pioner Hi Bred International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioner Hi Bred International Inc filed Critical Pioner Hi Bred International Inc
Publication of MX2014004471A publication Critical patent/MX2014004471A/es

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/20Allele or variant detection, e.g. single nucleotide polymorphism [SNP] detection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • G16B40/20Supervised data analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • G16B40/30Unsupervised data analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/50Mutagenesis

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biotechnology (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Epidemiology (AREA)
  • Software Systems (AREA)
  • Public Health (AREA)
  • Artificial Intelligence (AREA)
  • Bioethics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Databases & Information Systems (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Complex Calculations (AREA)

Abstract

Se proporcionan los métodos para determinar el nivel de perturbación de un fenotipo en un organismo mediante el uso de un análisis estadístico multivariante. El método comprende una primera etapa de recolectar al menos una medición de al menos un grupo de control de organismos y al menos un grupo experimental de organismos para producir un conjunto de datos. El método comprende, además, una segunda etapa de usar un procesador para conducir un análisis estadístico multivariante sobre el conjunto de datos para determinar el nivel de perturbación de un fenotipo o rasgo de interés en el grupo experimental de organismos. Tal análisis estadístico multivariante comprende las etapas de organizar el conjunto de datos en una matriz, expresar la matriz en un conjunto de funciones base nuevas y proyectar el conjunto de datos en el conjunto de funciones base nuevas para calcular un conjunto de puntuaciones para cada uno de los dos grupos de organismos. El análisis estadístico multivariante comprende, además, las etapas de determinar un espacio de puntuación mediante el cálculo de la distancia entre el conjunto de puntuaciones generadas por el grupo de control de los organismos y por el grupo experimental de organismos, y usar del espacio de puntuación para determinar el nivel de perturbación del fenotipo de interés en el grupo experimental de organismos. Los métodos se proporcionan, además, para seleccionar un grupo de organismos en base a la distancia en el espacio de puntuación entre el grupo de control de organismos y el grupo experimental de organismos.
MX2014004471A 2011-10-13 2012-10-09 Fenotipificacion de precision utilizando analisis de proximidad de espacio de puntuacion. MX2014004471A (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161546672P 2011-10-13 2011-10-13
PCT/US2012/059290 WO2013055651A2 (en) 2011-10-13 2012-10-09 Precision phenotyping using score space proximity analysis

Publications (1)

Publication Number Publication Date
MX2014004471A true MX2014004471A (es) 2014-08-01

Family

ID=47080839

Family Applications (1)

Application Number Title Priority Date Filing Date
MX2014004471A MX2014004471A (es) 2011-10-13 2012-10-09 Fenotipificacion de precision utilizando analisis de proximidad de espacio de puntuacion.

Country Status (8)

Country Link
US (1) US20130179085A1 (es)
EP (1) EP2766837A2 (es)
AR (1) AR088276A1 (es)
AU (2) AU2012323405A1 (es)
BR (1) BR112014009059A2 (es)
CA (1) CA2852001A1 (es)
MX (1) MX2014004471A (es)
WO (1) WO2013055651A2 (es)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103760113B (zh) * 2014-01-27 2016-06-29 林兴志 高光谱遥感甘蔗糖分分析装置
CN103760114B (zh) * 2014-01-27 2016-06-08 林兴志 一种基于高光谱遥感的甘蔗糖分预测方法
CN104881018B (zh) * 2015-03-26 2018-07-24 河海大学 用于小型灌区的水田灌溉水利用系数测试系统及测试方法
CN107966116B (zh) * 2017-11-20 2019-10-11 苏州市农业科学院 一种水稻种植面积的遥感监测方法及系统
CN116721366B (zh) * 2023-06-07 2025-03-04 北京爱科农科技有限公司 基于深度学习的玉米出苗率的评估方法、系统及设备
CN118131844B (zh) * 2024-05-10 2024-07-19 山东美丽乡村云计算有限公司 一种基于物联网数据识别的动物温室管理系统
CN120494309B (zh) * 2025-07-18 2025-09-19 浙江农林大学 基于农业多场景的碳汇动态监测调控系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9717926D0 (en) 1997-08-22 1997-10-29 Micromass Ltd Methods and apparatus for tandem mass spectrometry
US6920231B1 (en) * 2000-06-30 2005-07-19 Indentix Incorporated Method and system of transitive matching for object recognition, in particular for biometric searches
US20040018500A1 (en) * 2001-11-21 2004-01-29 Norman Glassbrook Methods and systems for analyzing complex biological systems
EP1936370A1 (en) * 2006-12-22 2008-06-25 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Determination and prediction of the expression of traits of plants from the metabolite profile as a biomarker
US8429115B1 (en) * 2009-12-23 2013-04-23 Decision Lens, Inc. Measuring change distance of a factor in a decision

Also Published As

Publication number Publication date
AR088276A1 (es) 2014-05-21
AU2018200030A1 (en) 2018-01-25
WO2013055651A2 (en) 2013-04-18
EP2766837A2 (en) 2014-08-20
CA2852001A1 (en) 2013-04-18
WO2013055651A3 (en) 2013-10-10
AU2012323405A1 (en) 2014-05-01
BR112014009059A2 (pt) 2017-04-18
US20130179085A1 (en) 2013-07-11

Similar Documents

Publication Publication Date Title
MX2014004471A (es) Fenotipificacion de precision utilizando analisis de proximidad de espacio de puntuacion.
PH12019501965A1 (en) Method and device for constructing scoring model and evaluating user credit
WO2015056091A3 (en) Assessment system
WO2012053792A3 (ko) 입력 장치 및 이 장치의 접촉 위치 검출 방법
WO2013040025A3 (en) Methods and apparatus to monitor products in stores
WO2012119126A3 (en) Apparatus, system, and method for automatic identification of sensor placement
WO2012091843A3 (en) Systems and methods for evaluating range sensor calibration data
WO2012115912A3 (en) Design based device risk assessment
CA2840969C (en) Systems, computer medium and computer-implemented methods for monitoring and improving biometric health of employees
PH12014502650B1 (en) Method for predicting quality or manufacturing condition of cement
PH12016501255A1 (en) Improved molecular breeding methods
EP3922731A3 (en) Methods and processes for non-invasive assessment of genetic variations
WO2011035298A3 (en) Methods and apparatus to perform choice modeling with substitutability data
EP4275596A3 (en) Apparatus and method for motor function characterization
GB201206444D0 (en) Data cleaning
WO2015129934A8 (ko) 명령제어채널 탐지장치 및 방법
WO2013184929A3 (en) Determining behavior-based relationships between website users
BR102012002812A8 (pt) método para determinar a influência de uma variável em um fenômeno
WO2012006148A3 (en) Genotype simulation estimates mis-classification rate in genotyping
SG11201804355UA (en) Data analysis apparatus, method, and program
WO2014037937A3 (en) System and method for selection of data according to measurement of physiological parameters
WO2012061585A3 (en) In silico prediction of high expression gene combinations and other combinations of biological components
WO2014039290A3 (en) Method for energy demand management in a production flow line
WO2013015841A3 (en) Method for calibrating apparatus for measuring shape factor
WO2013112312A3 (en) Hybrid internet traffic measurement usint site-centric and panel data