Li et al., 2021 - Google Patents
Subspace-based multi-view fusion for instance-level image retrievalLi et al., 2021
- Document ID
- 2389723544676526234
- Author
- Li J
- Yang B
- Yang W
- Sun C
- Xu J
- Publication year
- Publication venue
- The Visual Computer
External Links
Snippet
In this paper, we address the problem of multiple features fusion in instance-level image retrieval. Achieving tremendous success in recent retrieval task, convolutional neural network (CNN) features are capable of encoding high-level image contents and …
- 230000004927 fusion 0 title abstract description 34
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30244—Information retrieval; Database structures therefor; File system structures therefor in image databases
- G06F17/30247—Information retrieval; Database structures therefor; File system structures therefor in image databases based on features automatically derived from the image data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30587—Details of specialised database models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30017—Multimedia data retrieval; Retrieval of more than one type of audiovisual media
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30312—Storage and indexing structures; Management thereof
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30386—Retrieval requests
- G06F17/30424—Query processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30781—Information retrieval; Database structures therefor; File system structures therefor of video data
- G06F17/30784—Information retrieval; Database structures therefor; File system structures therefor of video data using features automatically derived from the video content, e.g. descriptors, fingerprints, signatures, genre
- G06F17/30799—Information retrieval; Database structures therefor; File system structures therefor of video data using features automatically derived from the video content, e.g. descriptors, fingerprints, signatures, genre using low-level visual features of the video content
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6201—Matching; Proximity measures
- G06K9/6202—Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Wang et al. | A survey on learning to hash | |
| Wang et al. | Learning to hash for indexing big data—A survey | |
| Jégou et al. | Aggregating local image descriptors into compact codes | |
| Araujo et al. | Large-scale video retrieval using image queries | |
| Gong et al. | Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval | |
| Grauman et al. | Learning binary hash codes for large-scale image search | |
| Xie et al. | Image classification and retrieval are one | |
| Li et al. | Subspace-based multi-view fusion for instance-level image retrieval | |
| Iscen et al. | Memory vectors for similarity search in high-dimensional spaces | |
| Gong et al. | A multi-view embedding space for modeling internet images, tags, and their semantics | |
| Fernando et al. | Mining mid-level features for image classification | |
| Wu et al. | Semi-supervised nonlinear hashing using bootstrap sequential projection learning | |
| Gordoa et al. | Leveraging category-level labels for instance-level image retrieval | |
| Zhou et al. | Collaborative index embedding for image retrieval | |
| Liu et al. | Indexing of the CNN features for the large scale image search | |
| Li et al. | Hybrid shape descriptor and meta similarity generation for non-rigid and partial 3D model retrieval | |
| CN106202256A (en) | Propagate based on semanteme and mix the Web graph of multi-instance learning as search method | |
| CN106033426A (en) | Image retrieval method based on latent semantic minimum hash | |
| Hong et al. | Fried binary embedding for high-dimensional visual features | |
| Zhou et al. | Multiple distance-based coding: toward scalable feature matching for large-scale web image search | |
| Han et al. | VRFP: On-the-fly video retrieval using web images and fast fisher vector products | |
| Zhang et al. | Large‐scale video retrieval via deep local convolutional features | |
| Zhang et al. | Video copy detection based on deep CNN features and graph-based sequence matching | |
| Ng et al. | Bit-wise attention deep complementary supervised hashing for image retrieval | |
| JP6373292B2 (en) | Feature generation apparatus, method, and program |