[go: up one dir, main page]

Drucker et al., 1999 - Google Patents

Support vector machines for spam categorization

Drucker et al., 1999

View PDF
Document ID
18185744430868097683
Author
Drucker H
Wu D
Vapnik V
Publication year
Publication venue
IEEE Transactions on Neural networks

External Links

Snippet

We study the use of support vector machines (SVM) in classifying e-mail as spam or nonspam by comparing it to three other classification algorithms: Ripper, Rocchio, and boosting decision trees. These four algorithms were tested on two different data sets: one …
Continue reading at www.site.uottawa.ca (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/3061Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F17/30705Clustering or classification
    • G06F17/3071Clustering or classification including class or cluster creation or modification
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/3061Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F17/30705Clustering or classification
    • G06F17/30707Clustering or classification into predefined classes
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/3061Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F17/30634Querying
    • G06F17/30657Query processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30861Retrieval from the Internet, e.g. browsers
    • G06F17/30864Retrieval from the Internet, e.g. browsers by querying, e.g. search engines or meta-search engines, crawling techniques, push systems
    • G06F17/30867Retrieval from the Internet, e.g. browsers by querying, e.g. search engines or meta-search engines, crawling techniques, push systems with filtering and personalisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/3061Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F17/30613Indexing
    • G06F17/30619Indexing indexing structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation, e.g. computer aided management of electronic mail or groupware; Time management, e.g. calendars, reminders, meetings or time accounting
    • G06Q10/107Computer aided management of electronic mail
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S707/00Data processing: database and file management or data structures
    • Y10S707/99931Database or file accessing
    • Y10S707/99933Query processing, i.e. searching
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation

Similar Documents

Publication Publication Date Title
Drucker et al. Support vector machines for spam categorization
Rupapara et al. Impact of SMOTE on imbalanced text features for toxic comments classification using RVVC model
Alguliyev et al. COSUM: Text summarization based on clustering and optimization
Magdy et al. Efficient spam and phishing emails filtering based on deep learning
Dewdney et al. The form is the substance: Classification of genres in text
Méndez et al. Tracking concept drift at feature selection stage in spamhunting: An anti-spam instance-based reasoning system
RU2543315C2 (en) Method of selecting effective versions in search and recommendation systems (versions)
Quan et al. Term weighting schemes for question categorization
Mengle et al. Ambiguity measure feature‐selection algorithm
Firte et al. Spam detection filter using KNN algorithm and resampling
Choi et al. Web page classification
Doshi et al. Movie genre detection using topological data analysis
Van Gysel et al. Reply with: Proactive recommendation of email attachments
Liu et al. Boosting to correct inductive bias in text classification
Dasgupta et al. Enhanced email spam filtering through combining similarity graphs
Reddy et al. Classification of spam messages using random forest algorithm
Almeida et al. Filtering spams using the minimum description length principle
Trivedi et al. A modified content-based evolutionary approach to identify unsolicited emails
Hur et al. Utilizing large language models for detection of sms spam in few-shot settings
Yih et al. Mining online deal forums for hot deals
Itskevitch Automatic hierarchical e-mail classification using association rules
Macskassy et al. Emailvalet: Learning user preferences for wireless email
Mock Dynamic email organization via relevance categories
Yang et al. Intelligent email categorization based on textual information and metadata
Kalinov et al. Building a dynamic classifier for large text data collections