[go: up one dir, main page]

Hong et al., 2022 - Google Patents

Dfx: A low-latency multi-fpga appliance for accelerating transformer-based text generation

Hong et al., 2022

View PDF
Document ID
17813474168073272623
Author
Hong S
Moon S
Kim J
Lee S
Kim M
Lee D
Kim J
Publication year
Publication venue
2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO)

External Links

Snippet

Transformer is a deep learning language model widely used for natural language processing (NLP) services in datacenters. Among transformer models, Generative Pretrained Transformer (GPT) has achieved remarkable performance in text generation, or …
Continue reading at arxiv.org (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5061Partitioning or combining of resources
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/30Arrangements for executing machine-instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline, look ahead
    • G06F9/3885Concurrent instruction execution, e.g. pipeline, look ahead using a plurality of independent parallel functional units
    • G06F9/3889Concurrent instruction execution, e.g. pipeline, look ahead using a plurality of independent parallel functional units controlled by multiple instructions, e.g. MIMD, decoupled access or execute
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/30Arrangements for executing machine-instructions, e.g. instruction decode
    • G06F9/30003Arrangements for executing specific machine instructions
    • G06F9/30007Arrangements for executing specific machine instructions to perform operations on data operands
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5009Computer-aided design using simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/52Multiplying; Dividing
    • G06F7/523Multiplying only
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/76Architectures of general purpose stored programme computers
    • G06F15/80Architectures of general purpose stored programme computers comprising an array of processing units with common control, e.g. single instruction multiple data processors
    • G06F15/8007Architectures of general purpose stored programme computers comprising an array of processing units with common control, e.g. single instruction multiple data processors single instruction multiple data [SIMD] multiprocessors
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F1/00Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power Management, i.e. event-based initiation of power-saving mode
    • G06F1/3234Action, measure or step performed to reduce power consumption
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/16Combinations of two or more digital computers each having at least an arithmetic unit, a programme unit and a register, e.g. for a simultaneous processing of several programmes
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/40Transformations of program code
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models

Similar Documents

Publication Publication Date Title
Hong et al. Dfx: A low-latency multi-fpga appliance for accelerating transformer-based text generation
Jouppi et al. A domain-specific supercomputer for training deep neural networks
Norrie et al. The design process for Google's training chips: TPUv2 and TPUv3
Zhou et al. Transpim: A memory-based acceleration via software-hardware co-design for transformer
Fowers et al. A configurable cloud-scale DNN processor for real-time AI
Zeng et al. Flightllm: Efficient large language model inference with a complete mapping flow on fpgas
Khan et al. NPE: An FPGA-based overlay processor for natural language processing
Ma et al. BaGuaLu: targeting brain scale pretrained models with over 37 million cores
US11275561B2 (en) Mixed precision floating-point multiply-add operation
He et al. A survey to predict the trend of AI-able server evolution in the cloud
Li et al. Efficient methods for mapping neural machine translator on FPGAs
US12380060B2 (en) Graph spatial split
US20230409882A1 (en) Efficient processing of transformer based models
Park et al. TrainBox: An extreme-scale neural network training server architecture by systematically balancing operations
Pati et al. T3: Transparent tracking & triggering for fine-grained overlap of compute & collectives
Sun et al. An I/O bandwidth-sensitive sparse matrix-vector multiplication engine on FPGAs
Wen-mei et al. Rebooting the data access hierarchy of computing systems
Que et al. A reconfigurable multithreaded accelerator for recurrent neural networks
Que et al. Remarn: A reconfigurable multi-threaded multi-core accelerator for recurrent neural networks
Moon et al. Lpu: A latency-optimized and highly scalable processor for large language model inference
Pietras Hardware conversion of neural networks simulation models for neural processing accelerator implemented as FPGA-based SoC
Ono et al. Fpga-based acceleration of word2vec using opencl
Dhingra et al. Atleus: Accelerating Transformers on the Edge Enabled by 3D Heterogeneous Manycore Architectures
Chen et al. Ai soc design challenges in the foundation model era
Moon et al. Hybe: GPU-NPU Hybrid System for Efficient LLM Inference with Million-Token Context Window