[go: up one dir, main page]

Piratla, 2023 - Google Patents

Robustness, Evaluation and Adaptation of Machine Learning Models in the Wild

Piratla, 2023

View PDF
Document ID
1786581962546681232
Author
Piratla V
Publication year
Publication venue
arXiv preprint arXiv:2303.02781

External Links

Snippet

Our goal is to improve reliability of Machine Learning (ML) systems deployed in the wild. ML models perform exceedingly well when test examples are similar to train examples. However, real-world applications are required to perform on any distribution of test …
Continue reading at arxiv.org (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6279Classification techniques relating to the number of classes
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6232Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
    • G06K9/6247Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6256Obtaining sets of training patterns; Bootstrap methods, e.g. bagging, boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/04Inference methods or devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/02Knowledge representation
    • G06N5/022Knowledge engineering, knowledge acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/36Image preprocessing, i.e. processing the image information without deciding about the identity of the image
    • G06K9/46Extraction of features or characteristics of the image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computer systems based on specific mathematical models
    • G06N7/005Probabilistic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/18Digital computers in general; Data processing equipment in general in which a programme is changed according to experience gained by the computer itself during a complete run; Learning machines

Similar Documents

Publication Publication Date Title
Segu et al. Batch normalization embeddings for deep domain generalization
Tian et al. Contrastive representation distillation
Chen et al. Domain space transfer extreme learning machine for domain adaptation
Dehghani et al. Fidelity-weighted learning
Guyon et al. Model selection: beyond the bayesian/frequentist divide.
Niu et al. Zero-shot learning via category-specific visual-semantic mapping and label refinement
Piratla et al. Focus on the common good: Group distributional robustness follows
Piratla Robustness, Evaluation and Adaptation of Machine Learning Models in the Wild
Huang et al. Winning prize comes from losing tickets: Improve invariant learning by exploring variant parameters for out-of-distribution generalization
Alexandrescu et al. Data-driven graph construction for semi-supervised graph-based learning in NLP
Bacciu et al. Compositional generative mapping for tree-structured data—part II: topographic projection model
Hu et al. An integrated classification model for incremental learning
Hu et al. Causality‐inspired crop pest recognition based on Decoupled Feature Learning
Jalaldoust et al. Partial transportability for domain generalization
Shono Application of support vector regression to CPUE analysis for southern bluefin tuna Thunnus maccoyii, and its comparison with conventional methods
Saad et al. Probabilistic data analysis with probabilistic programming
Gupta et al. A new transfer learning framework with application to model-agnostic multi-task learning
Hosseini et al. Class-imbalanced unsupervised and semi-supervised domain adaptation for Histopathology Images
Verine Quality and Diversity in Generative Models through the lens of f-divergences
Zhang Adaptation Based Approaches to Distribution Shift Problems
Pooladzandi Fast training of generalizable deep neural networks
Wu et al. Trustworthy Transfer Learning: A Survey
Bietti Foundations of deep convolutional models through kernel methods
Haddad BagStack Classification for Data Imbalance Problems with Application to Defect Detection and Labeling in Semiconductor Units
Saha Deep Representation Learning for Statistical Analysis