Kalaiarasu et al., 2020 - Google Patents
Modified Cuckoo Search-Support Vector Machine (MCS-SVM) Gene Selection and Classification for Autism Spectrum Disorder (ASD) Gene Expression.Kalaiarasu et al., 2020
- Document ID
- 17853576465223175694
- Author
- Kalaiarasu M
- Anitha J
- Publication year
- Publication venue
- NeuroQuantology
External Links
Snippet
Chemical imbalance Spectrum Disorder (ASD) is a mental health issue that outcomes in deferred and irregular improvement. ASD impacts the sensory system and influences the general psychological, passionate, social and physical soundness of the influenced person …
- 201000007185 autism spectrum disease 0 title abstract description 45
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/34—Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
- G06F19/345—Medical expert systems, neural networks or other automated diagnosis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/32—Medical data management, e.g. systems or protocols for archival or communication of medical images, computerised patient records or computerised general medical references
- G06F19/322—Management of patient personal data, e.g. patient records, conversion of records or privacy aspects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30705—Clustering or classification
- G06F17/3071—Clustering or classification including class or cluster creation or modification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6228—Selecting the most significant subset of features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6279—Classification techniques relating to the number of classes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6256—Obtaining sets of training patterns; Bootstrap methods, e.g. bagging, boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/24—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for machine learning, data mining or biostatistics, e.g. pattern finding, knowledge discovery, rule extraction, correlation, clustering or classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/28—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for programming tools or database systems, e.g. ontologies, heterogeneous data integration, data warehousing or computing architectures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30587—Details of specialised database models
- G06F17/30595—Relational databases
- G06F17/30598—Clustering or classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/02—Knowledge representation
- G06N5/022—Knowledge engineering, knowledge acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/18—Digital computers in general; Data processing equipment in general in which a programme is changed according to experience gained by the computer itself during a complete run; Learning machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Systems or methods specially adapted for a specific business sector, e.g. utilities or tourism
- G06Q50/10—Services
- G06Q50/22—Health care, e.g. hospitals; Social work
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhuang et al. | Unsupervised neural network models of the ventral visual stream | |
Chung et al. | A fully automated approach to spike sorting | |
Kanhirakadavath et al. | Investigation of eye-tracking scan path as a biomarker for autism screening using machine learning algorithms | |
US11355240B2 (en) | Determination of health sciences recommendations | |
Hag et al. | Enhancing EEG-based mental stress state recognition using an improved hybrid feature selection algorithm | |
WO2019079490A1 (en) | Probabilistic modeling to match patients to clinical trials | |
Garg et al. | A bootstrap machine learning approach to identify rare disease patients from electronic health records | |
Cwiek et al. | Feeding the machine: Challenges to reproducible predictive modeling in resting-state connectomics | |
Dai et al. | Patient similarity: methods and applications | |
Kanimozhi et al. | Machine learning‐based recommender system for breast cancer prognosis | |
Abdanan Mehdizadeh et al. | Classifying chewing and rumination in dairy cows using sound signals and machine learning | |
Kavitha et al. | An efficient boruta-based feature selection and classification of gene expression data | |
Sha et al. | Multimodal data fusion framework for early prediction of autism spectrum disorder | |
Sallibi et al. | Detection of Autism Spectrum Disorder in Children Using Efficient Pre-Processing and Machine Learning Techniques | |
Alarcón-Narváez et al. | Toward a machine learning model for a primary diagnosis of Guillain-Barré syndrome subtypes | |
Pooch et al. | A computational tool for automated detection of genetic syndrome using facial images | |
Vashisht et al. | Using support vector machine to detect and classify the alzheimer disease | |
Kundu et al. | Predicting autism spectrum disorder in infants using machine learning | |
Zhang et al. | Enhancing clinical decision support systems with public knowledge bases | |
Yilmaz | Stacked ensemble modeling for improved tuberculosis treatment outcome prediction in pediatric cases | |
Kalaiarasu et al. | Modified Cuckoo Search-Support Vector Machine (MCS-SVM) Gene Selection and Classification for Autism Spectrum Disorder (ASD) Gene Expression. | |
Arunkumar et al. | Autism Spectrum Disorder Diagnosis Using Ensemble ML and Max Voting Techniques. | |
Nagaraj et al. | Comparative Analysis for Prediction and Classification of Mental Health Issues and Challenges Using Hybrid Learning Techniques | |
Muthalaly | Using deep learning to predict the mortality of leukemia patients | |
Sharma et al. | Improvising healthcare decision making by employing ensemble technique |