[go: up one dir, main page]

Zech et al., 2013 - Google Patents

Inferring Team Strengths Using a Discrete Markov Random Field

Zech et al., 2013

View PDF
Document ID
17024023079515122610
Author
Zech J
Wood F
Publication year
Publication venue
arXiv preprint arXiv:1305.1998

External Links

Snippet

We propose an original model for inferring team strengths using a Markov Random Field, which can be used to generate historical estimates of the offensive and defensive strengths of a team over time. This model was designed to be applied to sports such as soccer or …
Continue reading at arxiv.org (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/12Computer systems based on biological models using genetic models
    • G06N3/126Genetic algorithms, i.e. information processing using digital simulations of the genetic system
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/04Inference methods or devices
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/50Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by details of game servers
    • A63F2300/55Details of game data or player data management
    • A63F2300/5546Details of game data or player data management using player registration data, e.g. identification, account, preferences, game history
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/60Methods for processing data by generating or executing the game program
    • A63F2300/6027Methods for processing data by generating or executing the game program using adaptive systems learning from user actions, e.g. for skill level adjustment
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation, e.g. linear programming, "travelling salesman problem" or "cutting stock problem"
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F17/00Coin-freed apparatus for hiring articles; Coin-freed facilities or services
    • G07F17/32Coin-freed apparatus for hiring articles; Coin-freed facilities or services for games, toys, sports or amusements, e.g. casino games, online gambling or betting
    • G07F17/326Game play aspects of gaming systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/10Control of the course of the game, e.g. start, progess, end
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/60Generating or modifying game content before or while executing the game program, e.g. authoring tools specially adapted for game development or game-integrated level editor

Similar Documents

Publication Publication Date Title
Berner et al. Dota 2 with large scale deep reinforcement learning
Świechowski et al. Monte Carlo tree search: A review of recent modifications and applications
Silver et al. Mastering the game of go without human knowledge
US7050868B1 (en) Bayesian scoring
US8175726B2 (en) Seeding in a skill scoring framework
Anfilets et al. Deep multilayer neural network for predicting the winner of football matches
Lucas Learning to play Othello with n-tuple systems
Zhang et al. Improving hearthstone AI by learning high-level rollout policies and bucketing chance node events
Becker et al. An analytical approach for fantasy football draft and lineup management
Landers et al. Machine learning approaches to competing in fantasy leagues for the NFL
Lanctot et al. Monte Carlo tree search in simultaneous move games with applications to Goofspiel
Tziortziotis et al. A bayesian ensemble regression framework on the Angry Birds game
Beal et al. Optimising daily fantasy sports teams with artificial intelligence
Ilhan et al. Monte Carlo tree search with temporal-difference learning for general video game playing
Lutz Fantasy football prediction
Rajesh et al. Player recommendation system for fantasy premier league using machine learning
Zech et al. Inferring Team Strengths Using a Discrete Markov Random Field
Mlčoch et al. Competing in daily fantasy sports using generative models
Che et al. Athlete rating in multicompetitor games with scored outcomes via monotone transformations
Antonoglou Learning to search in reinforcement learning
Askren Survey of Deep Neural Networks Handling Plan Development using Simulations of Real-World Environments
Lopez-Mejia Finding the Optimal Blackjack Strategy Using Markov Decision Process Monte Carlo
WATSON Esports Betting Technology: Machine Learning for Match Prediction and Odds Estimation
Fleischhaker Modelling outcomes in canadian professional football via generalized bradley-terry models
Biro Statistically driven decision making in football through the use of reinforcement learning, random utility models, and parametric modeling