[go: up one dir, main page]

Rustad et al., 2024 - Google Patents

Systematic Literature Review on Named Entity Recognition: Approach, Method, and Application

Rustad et al., 2024

View PDF
Document ID
13892395653875605255
Author
Rustad S
Shidik G
Noersasongko E
Setiadi D
et al.
Publication year
Publication venue
Statistics, Optimization & Information Computing

External Links

Snippet

Named entity recognition (NER) is one of the preprocessing stages in natural language processing (NLP), which functions to detect and classify entities in the corpus. NER results are used in various NLP applications, including sentiment analysis, text summarization …
Continue reading at iapress.org (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/3061Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F17/30634Querying
    • G06F17/30657Query processing
    • G06F17/30675Query execution
    • G06F17/30684Query execution using natural language analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/20Handling natural language data
    • G06F17/27Automatic analysis, e.g. parsing
    • G06F17/2765Recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/20Handling natural language data
    • G06F17/27Automatic analysis, e.g. parsing
    • G06F17/2705Parsing
    • G06F17/2715Statistical methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/20Handling natural language data
    • G06F17/27Automatic analysis, e.g. parsing
    • G06F17/2785Semantic analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/20Handling natural language data
    • G06F17/21Text processing
    • G06F17/22Manipulating or registering by use of codes, e.g. in sequence of text characters
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/20Handling natural language data
    • G06F17/28Processing or translating of natural language
    • G06F17/2872Rule based translation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/20Handling natural language data
    • G06F17/28Processing or translating of natural language
    • G06F17/2809Data driven translation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/30Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
    • G06F19/32Medical data management, e.g. systems or protocols for archival or communication of medical images, computerised patient records or computerised general medical references
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/30Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
    • G06F19/34Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/02Knowledge representation
    • G06N5/022Knowledge engineering, knowledge acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/10Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/04Inference methods or devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/18Digital computers in general; Data processing equipment in general in which a programme is changed according to experience gained by the computer itself during a complete run; Learning machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computer systems based on specific mathematical models
    • G06N7/005Probabilistic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches

Similar Documents

Publication Publication Date Title
Perera et al. Named entity recognition and relation detection for biomedical information extraction
Li et al. Combined attention mechanism for named entity recognition in chinese electronic medical records
Lyu et al. Long short-term memory RNN for biomedical named entity recognition
Asgari-Chenaghlu et al. CWI: A multimodal deep learning approach for named entity recognition from social media using character, word and image features
Wang et al. Models and techniques for domain relation extraction: a survey
Zhang et al. Information extraction from the text data on traditional Chinese medicine: a review on tasks, challenges, and methods from 2010 to 2021
Ji et al. Fully-connected LSTM–CRF on medical concept extraction
Deng et al. Self-attention-based BiGRU and capsule network for named entity recognition
Kia et al. Adaptable closed-domain question answering using contextualized CNN-attention models and question expansion
Kambar et al. A survey on deep learning techniques for joint named entities and relation extraction
Zhang et al. Using a pre-trained language model for medical named entity extraction in Chinese clinic text
Guo et al. A multi-layer soft lattice based model for Chinese clinical named entity recognition
Grissette et al. Deep associative learning approach for bio-medical sentiment analysis utilizing unsupervised representation from large-scale patients’ narratives
Hou et al. Enhancing traditional Chinese medical named entity recognition with Dyn-Att Net: a dynamic attention approach
Albared et al. Recent progress of named entity recognition over the most popular datasets
Rustad et al. Systematic Literature Review on Named Entity Recognition: Approach, Method, and Application
Che et al. Fast and effective biomedical named entity recognition using temporal convolutional network with conditional random field
Zhao et al. A multi-scale embedding network for unified named entity recognition in Chinese electronic medical records
Shi et al. DCM-CNER: A dual-channel model for clinical named entity recognition based on embedded ConvNet and gated dilated CNN
Chopard et al. A deep learning approach to self-expansion of abbreviations based on morphology and context distance
Park et al. SCREENER: Streamlined collaborative learning of NER and RE model for discovering gene-disease relations
Hafsa et al. Accurate disaster entity recognition based on contextual embeddings in self-attentive BiLSTM-CRF
Zhang et al. Chinese medical entity recognition model based on character and word vector fusion
Afzal et al. Multi-class clinical text annotation and classification using BERT-based active learning
Dai Recognising biomedical names: Challenges and solutions