[go: up one dir, main page]

Gadal et al., 2017 - Google Patents

Anomaly detection approach using hybrid algorithm of data mining technique

Gadal et al., 2017

Document ID
12571046932236283998
Author
Gadal S
Mokhtar R
Publication year
Publication venue
2017 International Conference on Communication, Control, Computing and Electronics Engineering (ICCCCEE)

External Links

Snippet

The excessive use of the communication networks, rising of Internet of Things leads to increases the vulnerability to the important and secret information. advance attacking techniques and number of attackers are increasing radically. Intrusion is one of the main …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1408Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
    • H04L63/1425Traffic logging, e.g. anomaly detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1408Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
    • H04L63/1416Event detection, e.g. attack signature detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/55Detecting local intrusion or implementing counter-measures
    • G06F21/552Detecting local intrusion or implementing counter-measures involving long-term monitoring or reporting
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/55Detecting local intrusion or implementing counter-measures
    • G06F21/56Computer malware detection or handling, e.g. anti-virus arrangements
    • G06F21/562Static detection
    • G06F21/563Static detection by source code analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/57Certifying or maintaining trusted computer platforms, e.g. secure boots or power-downs, version controls, system software checks, secure updates or assessing vulnerabilities
    • G06F21/577Assessing vulnerabilities and evaluating computer system security
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/55Detecting local intrusion or implementing counter-measures
    • G06F21/554Detecting local intrusion or implementing counter-measures involving event detection and direct action
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1441Countermeasures against malicious traffic
    • H04L63/1458Denial of Service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1433Vulnerability analysis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1441Countermeasures against malicious traffic
    • H04L63/145Countermeasures against malicious traffic the attack involving the propagation of malware through the network, e.g. viruses, trojans or worms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/02Network architectures or network communication protocols for network security for separating internal from external traffic, e.g. firewalls
    • H04L63/0227Filtering policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/02Network architectures or network communication protocols for network security for separating internal from external traffic, e.g. firewalls
    • H04L63/0209Architectural arrangements, e.g. perimeter networks or demilitarized zones
    • H04L63/0218Distributed architectures, e.g. distributed firewalls
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/82Protecting input, output or interconnection devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing packet switching networks
    • H04L43/02Arrangements for monitoring or testing packet switching networks involving a reduction of monitoring data
    • H04L43/026Arrangements for monitoring or testing packet switching networks involving a reduction of monitoring data using flow generation

Similar Documents

Publication Publication Date Title
Gadal et al. Anomaly detection approach using hybrid algorithm of data mining technique
US20240259405A1 (en) Treating data flows differently based on level of interest
US12407712B2 (en) Artificial intelligence cyber security analyst
Kanimozhi et al. Artificial intelligence based network intrusion detection with hyper-parameter optimization tuning on the realistic cyber dataset CSE-CIC-IDS2018 using cloud computing
US20230012220A1 (en) Method for determining likely malicious behavior based on abnormal behavior pattern comparison
Ashraf et al. A comparative study of data mining algorithms for high detection rate in intrusion detection system
Sharma et al. DFA-AD: a distributed framework architecture for the detection of advanced persistent threats
US11700269B2 (en) Analyzing user behavior patterns to detect compromised nodes in an enterprise network
Asif et al. Network intrusion detection and its strategic importance
Bolzoni et al. Panacea: Automating attack classification for anomaly-based network intrusion detection systems
Fallahi et al. Automated flow-based rule generation for network intrusion detection systems
Alzahrani et al. A novel method for feature learning and network intrusion classification
Aldhyani et al. Analysis of dimensionality reduction in intrusion detection
Gui et al. A Principled Approach for Detecting APTs in Massive Networks via Multi-Stage Causal Analytics
Sulaiman et al. Big data analytic of intrusion detection system
Venkata Rao et al. Deep Learning CNN Framework for Detection and Classification of Internet Worms
Kaushik et al. Leveraging Data Mining for Cybersecurity Threat Detection
Sameer et al. A Deep And Machine Learning Comparative Approach for Networks Intrusion Detection
Yadav et al. Intrusion detection system with FGA and MLP algorithm
Shivam et al. Anomaly Detection in Cloud Networks using Machine Learning Techniques
Jaggi et al. Detecting and classifying attacks using artificial neural network
Singh et al. AI-Powered Cyber Vigilance: Explainable Threat Detection for Next-Gen Security
Rengarajan et al. Enhancing Cybersecurity Resilience with CYBRANA: A Cyber YARA/YAML-Based Resilience Firewall Solution Applied with Next-Gen AI
James et al. Leveraging Data Mining Approaches For Enhanced Malware Classification And Digital Forensic Investigation
Kumar et al. Analysis of Data Normalization with Multilevel Classifiers for Intrusion Detection