[go: up one dir, main page]

Ma et al., 2023 - Google Patents

A deep-learning search for technosignatures from 820 nearby stars

Ma et al., 2023

View PDF
Document ID
11584358266545196542
Author
Ma P
Ng C
Rizk L
Croft S
Siemion A
Brzycki B
Czech D
Drew J
Gajjar V
Hoang J
Isaacson H
Lebofsky M
MacMahon D
de Pater I
Price D
Sheikh S
Worden S
Publication year
Publication venue
Nature Astronomy

External Links

Snippet

The goal of the search for extraterrestrial intelligence (SETI) is to quantify the prevalence of technological life beyond Earth via their 'technosignatures'. One theorized technosignature is narrowband Doppler drifting radio signals. The principal challenge in conducting SETI in …
Continue reading at arxiv.org (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6279Classification techniques relating to the number of classes
    • G06K9/6284Single class perspective, e.g. one-against-all classification; Novelty detection; Outlier detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6261Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation partitioning the feature space
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6256Obtaining sets of training patterns; Bootstrap methods, e.g. bagging, boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6228Selecting the most significant subset of features
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/36Image preprocessing, i.e. processing the image information without deciding about the identity of the image
    • G06K9/46Extraction of features or characteristics of the image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6201Matching; Proximity measures
    • G06K9/6202Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/68Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/02Knowledge representation
    • G06N5/022Knowledge engineering, knowledge acquisition
    • G06N5/025Extracting rules from data
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00127Acquiring and recognising microscopic objects, e.g. biological cells and cellular parts
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/04Inference methods or devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models

Similar Documents

Publication Publication Date Title
Ma et al. A deep-learning search for technosignatures from 820 nearby stars
Belis et al. Quantum anomaly detection in the latent space of proton collision events at the LHC
George et al. Deep Transfer Learning: A new deep learning glitch classification method for advanced LIGO
Felser et al. Quantum-inspired machine learning on high-energy physics data
Guo et al. Pulsar candidate classification using generative adversary networks
Golling et al. The interplay of machine learning-based resonant anomaly detection methods
Subhan et al. A deep learning‐based approach for software vulnerability detection using code metrics
Bastien et al. Structured variational inference for simulating populations of radio galaxies
Bykov et al. DORA: Exploring outlier representations in deep neural networks
Wu et al. Learning quantum properties from short-range correlations using multi-task networks
Huang et al. EMA: Auditing data removal from trained models
Pettee et al. Weakly supervised anomaly detection in the Milky Way
Geissler et al. A low-cost strategic monitoring approach for scalable and interpretable error detection in deep neural networks
Devlin et al. Disentangled attribution curves for interpreting random forests and boosted trees
Yao et al. Empowering graph invariance learning with deep spurious infomax
La Rosa et al. A self-interpretable module for deep image classification on small data
Leuzzi et al. Euclid preparation-XXXIII. Characterization of convolutional neural networks for the identification of galaxy-galaxy strong-lensing events
Alam et al. Social media images classification models for real-time disaster response
Amirian et al. Two to trust: Automl for safe modelling and interpretable deep learning for robustness
Demir et al. Test selection for deep neural networks using meta-models with uncertainty metrics
Väth et al. Diffusion-Based Visual Counterfactual Explanations-Towards Systematic Quantitative Evaluation
Guo et al. Pulsar candidate identification with artificial intelligence techniques
Vikkurty et al. Effective prediction of brain tumor using machine learning algorithms
Vasishth et al. Enhanced software defect prediction using krill herd algorithm with stacked LSTM with attention mechanism
Ma et al. The first deep-learning search for radio technosignatures from 820 nearby stars