[go: up one dir, main page]

Munira et al., 2022 - Google Patents

Hybrid deep learning models for multi-classification of tumour from brain MRI

Munira et al., 2022

View PDF
Document ID
10190213398625905744
Author
Munira H
Islam M
Publication year
Publication venue
Journal of Information Systems Engineering and Business Intelligence

External Links

Snippet

Background: Brain tumour categorisation can be assisted with computer-aided diagnostic (CAD) for medical applications. Biopsies to classify brain tumours can be costly and time- consuming. Radiologists may also misclassify brain tumour types when handling large …
Continue reading at www.researchgate.net (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6279Classification techniques relating to the number of classes
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/36Image preprocessing, i.e. processing the image information without deciding about the identity of the image
    • G06K9/46Extraction of features or characteristics of the image
    • G06K9/52Extraction of features or characteristics of the image by deriving mathematical or geometrical properties from the whole image
    • G06K9/527Scale-space domain transformation, e.g. with wavelet analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/30Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
    • G06F19/34Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
    • G06F19/345Medical expert systems, neural networks or other automated diagnosis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6228Selecting the most significant subset of features
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/68Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/30Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
    • G06F19/32Medical data management, e.g. systems or protocols for archival or communication of medical images, computerised patient records or computerised general medical references
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00127Acquiring and recognising microscopic objects, e.g. biological cells and cellular parts
    • G06K9/00147Matching; Classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/02Knowledge representation
    • G06N5/022Knowledge engineering, knowledge acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/18Digital computers in general; Data processing equipment in general in which a programme is changed according to experience gained by the computer itself during a complete run; Learning machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/3061Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F17/30705Clustering or classification
    • G06F17/3071Clustering or classification including class or cluster creation or modification

Similar Documents

Publication Publication Date Title
Pitchai et al. Retracted article: brain tumor segmentation using deep learning and fuzzy k-means clustering for magnetic resonance images
Bukhari et al. A deep learning framework for leukemia cancer detection in microscopic blood samples using squeeze and excitation learning
Rehman et al. Microscopic brain tumor detection and classification using 3D CNN and feature selection architecture
Shafique et al. Acute lymphoblastic leukemia detection and classification of its subtypes using pretrained deep convolutional neural networks
Begum et al. Combining optimal wavelet statistical texture and recurrent neural network for tumour detection and classification over MRI
Fondón et al. Automatic classification of tissue malignancy for breast carcinoma diagnosis
Trusculescu et al. Deep learning in interstitial lung disease—how long until daily practice
Munira et al. Hybrid deep learning models for multi-classification of tumour from brain MRI
Tavakoli et al. Detection of abnormalities in mammograms using deep features
Shinde et al. Performance analysis of machine learning algorithm of detection and classification of brain tumor using computer vision
Thomas et al. Diabetic retinopathy detection using ensembled transfer learning based thrice CNN with SVM classifier
Sagayam et al. A cognitive perception on content-based image retrieval using an advanced soft computing paradigm
Bajcsi et al. Towards feature selection for digital mammogram classification
Gahukar et al. Segmentation of MRI brain image using fuzzy c means for brain tumor diagnosis
Islam Bhuiyan et al. Deep learning-based analysis of COVID-19 X-ray images: Incorporating clinical significance and assessing misinterpretation
Shyamala et al. Brain tumor classification using optimized and relief-based feature reduction and regression neural network
Ganesh et al. Multi class robust brain tumor with hybrid classification using DTA algorithm
Abdulazeez A review on utilizing machine learning classification algorithms for skin cancer
Nugroho et al. Image dermoscopy skin lesion classification using deep learning method: systematic literature review
Aswathy et al. Detection of brain tumor abnormality from MRI FLAIR images using machine learning techniques
Muhtasim et al. Artificial intelligence for detection of lung cancer using transfer learning and morphological features
Princy Magdaline et al. Detection of lung cancer using novel attention gate residual U-Net model and KNN classifier from computer tomography images
Amirkhani et al. Classifying mammography images by using fuzzy cognitive maps and a new segmentation algorithm
Amarneni et al. Diagnosing the MRI brain tumour images through RNN-LSTM
Osadebey et al. Enhancement of clustering techniques by coupling clustering tree and neural network: Application to brain tumour segmentation