[go: up one dir, main page]

Yin et al., 2023 - Google Patents

DeltaGNN: Accelerating graph neural networks on dynamic graphs with delta updating

Yin et al., 2023

Document ID
9567266670350406152
Author
Yin C
Jiang J
Wang Q
Mao Z
Jing N
Publication year
Publication venue
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

External Links

Snippet

Graph neural network (GNN) accelerators have achieved prominent performance speedup on static graphs but fallen with inefficiency on dynamic graphs. The reason is that in dynamic graphs, updating on a few vertices will introduce enormous redundant neighbor …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30286Information retrieval; Database structures therefor; File system structures therefor in structured data stores
    • G06F17/30386Retrieval requests
    • G06F17/30424Query processing
    • G06F17/30533Other types of queries
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0806Multiuser, multiprocessor or multiprocessing cache systems
    • G06F12/0815Cache consistency protocols
    • G06F12/0817Cache consistency protocols using directory methods
    • G06F12/0826Limited pointers directories; State-only directories without pointers
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0844Multiple simultaneous or quasi-simultaneous cache accessing
    • G06F12/0846Cache with multiple tag or data arrays being simultaneously accessible
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0893Caches characterised by their organisation or structure
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5061Partitioning or combining of resources
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30286Information retrieval; Database structures therefor; File system structures therefor in structured data stores
    • G06F17/30587Details of specialised database models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30943Information retrieval; Database structures therefor; File system structures therefor details of database functions independent of the retrieved data type
    • G06F17/30946Information retrieval; Database structures therefor; File system structures therefor details of database functions independent of the retrieved data type indexing structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5009Computer-aided design using simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30861Retrieval from the Internet, e.g. browsers
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/76Architectures of general purpose stored programme computers
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/34Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2201/00Indexing scheme relating to error detection, to error correction, and to monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass

Similar Documents

Publication Publication Date Title
Rahman et al. Graphpulse: An event-driven hardware accelerator for asynchronous graph processing
Liang et al. EnGN: A high-throughput and energy-efficient accelerator for large graph neural networks
Chen et al. ReGNN: A redundancy-eliminated graph neural networks accelerator
Cheng et al. VENUS: Vertex-centric streamlined graph computation on a single PC
Bai et al. Efficient data loader for fast sampling-based GNN training on large graphs
Zhang et al. Depgraph: A dependency-driven accelerator for efficient iterative graph processing
Yin et al. DeltaGNN: Accelerating graph neural networks on dynamic graphs with delta updating
Li et al. GraphIA: An in-situ accelerator for large-scale graph processing
Li et al. PIMS: A lightweight processing-in-memory accelerator for stencil computations
Fuchs et al. Scaling datacenter accelerators with compute-reuse architectures
Chen et al. GCIM: Towards Efficient Processing of Graph Convolutional Networks in 3D-Stacked Memory
Jin et al. Accelerating graph convolutional networks through a PIM-accelerated approach
Adiletta et al. Characterizing the scalability of graph convolutional networks on intel® piuma
Li et al. Ndrec: A near-data processing system for training large-scale recommendation models
Zhao et al. SaGraph: A similarity-aware hardware accelerator for temporal graph processing
Wang et al. Ems-i: An efficient memory system design with specialized caching mechanism for recommendation inference
Klenk et al. Analyzing communication models for distributed thread-collaborative processors in terms of energy and time
Zhou et al. FASTCF: FPGA-based accelerator for stochastic-gradient-descent-based collaborative filtering
Sun et al. GraphMP: I/O-efficient big graph analytics on a single commodity machine
Hermes et al. Udon: A case for offloading to general purpose compute on cxl memory
Lin et al. Overcoming the memory hierarchy inefficiencies in graph processing applications
Wang et al. HAM: Hotspot-aware manager for improving communications with 3D-stacked memory
Keshtegar et al. Cluster‐based approach for improving graphics processing unit performance by inter streaming multiprocessors locality
Segura et al. Energy-efficient stream compaction through filtering and coalescing accesses in gpgpu memory partitions
Huang et al. Vulnerability-aware energy optimization using reconfigurable caches in multicore systems