[go: up one dir, main page]

Garg et al., 2022 - Google Patents

Dynamic interpretable change point detection

Garg et al., 2022

View PDF
Document ID
9312045131810462593
Author
Garg K
Yu J
Behrouzi T
Tonekaboni S
Goldenberg A
Publication year
Publication venue
arXiv preprint arXiv:2211.03991

External Links

Snippet

Identifying change points (CPs) in a time series is crucial to guide better decision making across various fields like finance and healthcare and facilitating timely responses to potential risks or opportunities. Existing Change Point Detection (CPD) methods have a …
Continue reading at arxiv.org (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6279Classification techniques relating to the number of classes
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6232Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
    • G06K9/6247Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6228Selecting the most significant subset of features
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00496Recognising patterns in signals and combinations thereof
    • G06K9/00536Classification; Matching
    • G06K9/0055Classification; Matching by matching signal segments
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/30Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
    • G06F19/34Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
    • G06F19/345Medical expert systems, neural networks or other automated diagnosis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/36Image preprocessing, i.e. processing the image information without deciding about the identity of the image
    • G06K9/46Extraction of features or characteristics of the image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/10Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00221Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
    • G06K9/00268Feature extraction; Face representation
    • G06K9/00281Local features and components; Facial parts ; Occluding parts, e.g. glasses; Geometrical relationships
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/18Digital computers in general; Data processing equipment in general in which a programme is changed according to experience gained by the computer itself during a complete run; Learning machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computer systems based on specific mathematical models
    • G06N7/005Probabilistic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models

Similar Documents

Publication Publication Date Title
Fulcher Feature-based time-series analysis
Wang et al. Detection analysis of epileptic EEG using a novel random forest model combined with grid search optimization
Christy et al. Cluster based outlier detection algorithm for healthcare data
US7818131B2 (en) Non-parametric modeling apparatus and method for classification, especially of activity state
Lima et al. Kernel machines for epilepsy diagnosis via EEG signal classification: A comparative study
Jain et al. EEG-based detection of cognitive load using VMD and LightGBM classifier
Parthiban et al. Hybrid dragonfly optimization-based artificial neural network for the recognition of epilepsy
Azami et al. Ensemble entropy: A low bias approach for data analysis
Bairy et al. Automated classification of depression electroencephalographic signals using discrete cosine transform and nonlinear dynamics
Popov Feature engineering methods
Zhang et al. Anomaly detection in ECG based on trend symbolic aggregate approximation
Duan et al. Epileptic seizure prediction based on convolutional recurrent neural network with multi-timescale
Tago et al. Classification of TCM pulse diagnoses based on pulse and periodic features from personal health data
Fernandez-Blanco et al. Automatic seizure detection based on star graph topological indices
Pouromran et al. Automatic pain recognition from Blood Volume Pulse (BVP) signal using machine learning techniques
Siddiqi et al. Detecting outliers in non-iid data: A systematic literature review
Ermshaus et al. Raising the ClaSS of streaming time series segmentation
Vempati et al. Cross-subject emotion recognition from multichannel EEG signals using multivariate decomposition and ensemble learning
Yu et al. Dynamic interpretable change point detection for physiological data analysis
Garg et al. Dynamic interpretable change point detection
Şenol et al. An investigation on the use of clustering algorithms for data preprocessing in breast cancer diagnosis
Cao et al. Detecting change intervals with isolation distributional kernel
Prantzalos et al. MaTiLDA: an integrated machine learning and topological data analysis platform for brain network dynamics
Nickerson et al. Transition icons for time-series visualization and exploratory analysis
Bostrom Shapelet transforms for univariate and multivariate time series classification