[go: up one dir, main page]

Grigoletto et al., 2023 - Google Patents

Algebraic reduction of hidden markov models

Grigoletto et al., 2023

View PDF
Document ID
8922150967826979871
Author
Grigoletto T
Ticozzi F
Publication year
Publication venue
IEEE Transactions on Automatic Control

External Links

Snippet

The problem of reducing a hidden Markov model (HMM) to one of smaller dimension that exactly reproduces the same marginals is tackled by using a system-theoretic approach. Realization theory tools are extended to HMMs by leveraging suitable algebraic …
Continue reading at ieeexplore.ieee.org (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5009Computer-aided design using simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/12Computer systems based on biological models using genetic models
    • G06N3/126Genetic algorithms, i.e. information processing using digital simulations of the genetic system
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computer systems based on specific mathematical models
    • G06N7/005Probabilistic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/02Knowledge representation
    • G06N5/022Knowledge engineering, knowledge acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6232Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
    • G06K9/6251Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on a criterion of topology preservation, e.g. multidimensional scaling, self-organising maps
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/04Inference methods or devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6296Graphical models, e.g. Bayesian networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6279Classification techniques relating to the number of classes
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/10Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/70Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
    • G06F19/708Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for data visualisation, e.g. molecular structure representations, graphics generation, display of maps or networks or other visual representations
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled

Similar Documents

Publication Publication Date Title
Li et al. Deep learning via dynamical systems: An approximation perspective
Wu et al. Variational approach for learning Markov processes from time series data
Radev et al. BayesFlow: Learning complex stochastic models with invertible neural networks
Grigoletto et al. Algebraic reduction of hidden markov models
Wang et al. The mixing method: low-rank coordinate descent for semidefinite programming with diagonal constraints
Brence et al. Dimensionally-consistent equation discovery through probabilistic attribute grammars
Merrill et al. A little depth goes a long way: The expressive power of log-depth transformers
Rafajłowicz Learning Decision Sequences For Repetitive Processes--Selected Algorithms
Bolager et al. Gradient-free training of recurrent neural networks
Fang et al. Learning through deterministic assignment of hidden parameters
Katona et al. A symplectic analysis of alternating mirror descent
Küngas Petri net reachability checking is polynomial with optimal abstraction hierarchies
Nareklishvili et al. Generative modeling: A review
Azar et al. Learning embedding representations in high dimensions
Sznaier A convex optimization approach to learning Koopman operators
Even-Dar et al. Planning in POMDPs using multiplicity automata
Watanabe et al. Loopy belief propagation, Bethe free energy and graph zeta function
Bahmani et al. Neural Chaos: A Spectral Stochastic Neural Operator
Ochoa et al. Linking entropy to estimation of distribution algorithms
Johnson et al. Learning Markov structure by maximum entropy relaxation
Rached et al. Double loop Monte Carlo estimator with importance sampling for mckean-vlasov stochastic differential equation
Wang et al. Inference in randomized least squares and PCA via normality of quadratic forms
Ialongo Variational inference in dynamical systems
Rumsey Methods of uncertainty quantification for physical parameters
Očenášek Parallel estimation of distribution algorithms