[go: up one dir, main page]

Nazirun et al., 2024 - Google Patents

Prediction models for type 2 diabetes progression: A systematic review

Nazirun et al., 2024

View PDF
Document ID
8020552877839779645
Author
Nazirun N
Wahab A
Selamat A
Fujita H
Krejcar O
Kuca K
Seng G
Publication year
Publication venue
IEEE Access

External Links

Snippet

Diabetes, especially type 2 diabetes (T2D), is a chronic disease affecting millions of people worldwide. The increasing prevalence of T2D, coupled with the complex interplay between genetic, environmental, and lifestyle factors, presents a major challenge for effective disease …
Continue reading at ieeexplore.ieee.org (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/30Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
    • G06F19/34Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
    • G06F19/345Medical expert systems, neural networks or other automated diagnosis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/30Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
    • G06F19/32Medical data management, e.g. systems or protocols for archival or communication of medical images, computerised patient records or computerised general medical references
    • G06F19/322Management of patient personal data, e.g. patient records, conversion of records or privacy aspects
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/30Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
    • G06F19/34Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
    • G06F19/3437Medical simulation or modelling, e.g. simulating the evolution of medical disorders
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/30Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
    • G06F19/34Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
    • G06F19/3487Medical report generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/30Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
    • G06F19/36Computer-assisted acquisition of medical data, e.g. computerised clinical trials or questionnaires
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/10Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
    • G06F19/28Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for programming tools or database systems, e.g. ontologies, heterogeneous data integration, data warehousing or computing architectures
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/10Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
    • G06F19/24Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for machine learning, data mining or biostatistics, e.g. pattern finding, knowledge discovery, rule extraction, correlation, clustering or classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for a specific business sector, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/22Health care, e.g. hospitals; Social work
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation, e.g. computer aided management of electronic mail or groupware; Time management, e.g. calendars, reminders, meetings or time accounting
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/02Knowledge representation
    • G06N5/022Knowledge engineering, knowledge acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/04Inference methods or devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6279Classification techniques relating to the number of classes

Similar Documents

Publication Publication Date Title
ElShawi et al. Interpretability in healthcare: A comparative study of local machine learning interpretability techniques
Akella et al. Machine learning algorithms for predicting coronary artery disease: efforts toward an open source solution
Lin et al. Healthcare predictive analytics for risk profiling in chronic care
Yadav et al. Mining electronic health records (EHRs) A survey
Tao et al. Mining health knowledge graph for health risk prediction
Enad et al. A Review on Artificial Intelligence and Quantum Machine Learning for Heart Disease Diagnosis: Current Techniques, Challenges and Issues, Recent Developments, and Future Directions.
Valizadegan et al. Learning classification models from multiple experts
Nazirun et al. Prediction models for type 2 diabetes progression: A systematic review
Kwon et al. Nurses “seeing forest for the trees” in the age of machine learning: using nursing knowledge to improve relevance and performance
Rashidi et al. Machine learning in the coagulation and hemostasis arena: an overview and evaluation of methods, review of literature, and future directions
Ramadhan et al. Chronic diseases prediction using machine learning with data preprocessing handling: A critical review
Lenhof et al. Trust me if you can: a survey on reliability and interpretability of machine learning approaches for drug sensitivity prediction in cancer
Dhiyanesh et al. Cloud computing and machine learning for analysis of health care data based on neuro fuzzy logistic regression
Popat et al. Embracing the uncertainty in human–machine collaboration to support clinical decision-making for mental health conditions
Galimzhanov et al. Prediction of clinical outcomes after percutaneous coronary intervention: Machine-learning analysis of the National Inpatient Sample
Ojha et al. Navigating uncertainty: A user-perspective survey of trustworthiness of ai in healthcare
Patnaik et al. Intelligent decision support system in healthcare using machine learning models
Bae et al. A practical guide to implementing artificial intelligence in traditional East Asian medicine research
Bassam et al. Diabetes prediction empowered with multi-level data fusion and machine learning
Manjunath et al. Predicting Diabetic Retinopathy and Nephropathy Complications Using Machine Learning Techniques
Rojo et al. Analyzing the performance of feature selection on regression problems: A case study on older adults’ functional profile
Eshun A Machine Learning Approach to Evaluate the Effect of Sodium-Glucose Cotransporter-2 Inhibitors on Chronic Kidney Disease in Diabetes Patients
Alenezi et al. Predictive Modeling of Kuwaiti Chronic Kidney Diseases (KCKD): Leveraging Electronic Health Records for Clinical Decision-Making.
Mehdaoui Diabetes Prediction Using Logistic Regression Optimized with Newton-Raphson: A Non-Invasive Approach
Hung et al. Enhancing generalization in a Kawasaki Disease prediction model using data augmentation: Cross-validation of patients from two major hospitals in Taiwan